
Metabolomic profiles of human glioma inform patient survival 

Andrew J. Scott1,2, Luis O. Correa3, Yilun Sun4, Visweswaran Ravikumar5, Anthony C. Andren6, Li Zhang6, 

Sudharsan Srinivasan7, Neil Jairath1, Kait Verbal7, Karin Muraszko7, Oren Sagher7, Shannon A. Carty2,8, 

Shawn Hervey-Jumper9, Daniel Orringer10, Michelle M. Kim1, Larry Junck11, Yoshie Umemura11, Denise 

Leung11, Sriram Venneti12, Sandra Camelo-Piragua12, Theodore S. Lawrence1,2, Joseph E. Ippolito13,14, Wajd 

N. Al-Holou7, Prakash Chinnaiyan15,16, Jason Heth7, Arvind Rao1,2,5,17, Costas A. Lyssiotis2,6,18*, Daniel R. 

Wahl1,2,* 

 

Affiliations 
1Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA 
2Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA 
3Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA 
4Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 
OH, USA 
5Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA 
6Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 
7Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA 
8Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA 
9Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA 
10Department of Neurosurgery, New York University Langone Health, New York, New York, USA 
11Department of Neurology, University of Michigan, Ann Arbor, MI, USA 
12Department of Pathology, University of Michigan, Ann Arbor, MI, USA 
13Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, 
MO, USA 
14Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA 
15Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA 
16Oakland University William Beaumont School of Medicine, Rochester, MI, USA 
17Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA 
18Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann 
Arbor, MI, USA 
*Co-senior authors to whom correspondence should be addressed: clyssiot@med.umich.edu and 
dwahl@med.umich.edu,  
 

Abstract 

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To further 
preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be stratified 
into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor metabolites 
relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic information 
with clinical data. 
Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable 
from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas 
was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt 
GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved 
survival while those whose tumors were enriched for nucleobases and carbohydrates fared more poorly. These 
findings were recapitulated in validation cohorts using both metabolomic and transcriptomic data. 
Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses and 
further support the concept that metabolism may drive the aggressiveness of human gliomas. 
Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These 
findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different 
metabolic phenotypes. 
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Introduction 
 
Glioblastoma (GBM) is the most common invasive primary brain tumor and nearly uniformly 
fatal despite surgical resection and standard of care chemoradiation. While therapeutic 
intervention has initial efficacy, tumors invariably recur and become resistant to treatment. Thus, 
there is an urgent need to identify and target molecular mediators of this resistance. While the 
therapy resistance and aggressiveness of GBM have been explored at genomic and 
transcriptomic levels, less is known about the metabolic mediators of therapy-resistant 
phenotypes. 
 
Altered metabolism is a hallmark of cancers including GBM (1), and metabolic rewiring is critical 
for tumor cells to undergo conversion to aggressive and treatment-resistant phenotypes. Tumor 
metabolism is influenced by both cancer cell-intrinsic information (genome, epigenome, 
proteome, post-translational modifications) and cell-extrinsic cues from the tumor 
microenvironment. Given that targeting metabolism has a history of success in a variety of 
cancers, targeting the metabolic phenotypes of GBM cells may represent an effective treatment 
strategy (2). Indeed, early data from several metabolically targeted therapies for GBM patients 
have yielded promising outcomes (3, 4).  
 
Understanding the metabolic phenotypes of gliomas could also provide information about tumor 
aggressiveness and patient prognosis. Altered expression of metabolic enzymes or imaging-
defined glucose uptake can inform prognosis in a variety of cancers including glioma (5-8). 
Metabolite levels themselves can distinguish low grade and high-grade gliomas and suggest 
that GBMs favor anabolic metabolism and heterotrophy (9, 10). Whether these metabolomic 
profiles can provide information regarding glioma patient outcome remains uncertain.   
 
To address this question, we measured the metabolomes of 69 patient gliomas and found that 
tumors robustly cluster into categories representing isocitrate dehydrogenase-wildtype (IDHwt) 
GBM and IDH-mutant (IDHmut) gliomas based on metabolic profiles. IDHmut gliomas further 
separate high grade (grade 4 astrocytoma) from lower grade tumors (grades 2 and 3 
astrocytomas and oligodendrogliomas). Further analyses of GBM tumors reveals distinct 
metabolic subtypes with different patient survival times. We found no relation of these subtypes 
to known survival predictors, suggesting metabolism can influence GBM progression 
independently of these factors. Taken together, these findings suggest the existence of discrete 
metabolic GBM subtypes and may pave the way for therapies targeting metabolic pathway 
activity to improve patient outcome. 
 
Results 
 
Metabolomic profiling distinguishes IDH-mutant from IDH-wildtype gliomas 
 
Using the University of Michigan Brain Tumor Bank, we identified 69 flash-frozen glioma 
samples with sufficient tissue for metabolomic analysis. All samples were deemed to contain 
70% or greater viable tumor content at time of resection after quality assurance by a clinical 
neuropathologist (S.V. and S.C-P.). Clinical data associated with these tumor samples was then 
obtained from the medical record. This cohort (Table 1, Figure 1) contained IDHmut 
oligodendrogliomas (29%), IDHmut astrocytomas (12%), and IDHwt GBMs (59%), all of which 
were molecularly defined using the 2021 WHO criteria (11). Overall median survival, sex ratios, 
and MGMT promoter methylation status of all three groups were as expected with median 
survival times of around 11 years for IDHmut oligodendrogliomas, 7 years for IDHmut 
astrocytomas and 1.6 years for IDHwt GBMs (12). All patients were treated with some extent of 
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resection (as opposed to biopsy-alone) due to the requirement of sufficient tissue for banking.    
Within this cohort, 63% of patients with IDHmut astrocytomas, 67% of patients with IDHmut 
oligodendrogliomas, and 95% of those with IDHwt GBMs received both RT and chemotherapy, 
typically temozolomide, at some point following resection. 
 
We first asked whether metabolomic information from our tumor samples would be of sufficient 
quality to discriminate between known biologic tumor types. Within this cohort and for each 
tumor sample, we extracted polar metabolites and performed quantification by liquid 
chromatography-mass spectrometry (LC-MS) as described previously (13). With this method we 
determined relative abundances of over 200 compounds comprising central carbon, nucleotide, 
and amino acid metabolism. To visualize whether our high dimensional metabolite information 
was sufficient to group tumor samples based on original identity, we performed uniform manifold 
approximation and projection (UMAP). UMAP analysis revealed that IDHwt GBMs tend to 
separate from IDHmut gliomas, while IDHmut subsets (astrocytoma and oligodendroglioma) are 
more metabolically similar (Figure 2A).  
 
When levels of tumor metabolites across patients were analyzed by unsupervised hierarchical 
clustering, two distinct metabolomic groups were immediately apparent, with one cluster 
representing IDHwt GBM and the other representing IDHmut astrocytoma and 
oligodendroglioma (Figure 2B, Supplemental Figure 1). This is consistent with our UMAP 
analysis (Figure 2A). Mutations of IDH, typically at an arginine residue required for substrate 
recognition, cause an accumulation of 2-hydroxyglutarate (2HG, (14-17)). As expected, levels of 
2HG were 10 to 50-fold higher in IDHmut tumors than IDHwt GBMs (Figure 2C). Surprisingly, 
our method identified several other metabolites, including itaconate, citramalate and 
ketoleucine, that were elevated to a similar magnitude as 2HG in IDHmut tumors 
(Supplemental Figure 1). These findings could hint at interesting new biology in IDHmut 
gliomas, or they could be mis-called metabolites due to their chemical similarity to 2HG (e.g., 
similar fragmentation patterns and retention times on chromatography). To discriminate 
between these possibilities, we processed our data using Binner (18), which identified isobaric 
overlaps of 2HG with citramalate and itaconate with ketoleucine. Following this additional 
processing of LC-MS data, IDHwt GBMs remained distinct from IDHmut gliomas (Figure 2B). 
Together, these data show that our tumor metabolomic data is of sufficient quality to 
discriminate known biologic subtypes of glioma and would allow for deeper investigations for 
novel biology.   
 
Grade 4 IDHmut astrocytomas have a worse prognosis than grade 2 or 3 IDHmut astrocytomas, 
but the prognostic difference between grade 2 and 3 IDHmut gliomas is uncertain in the era of 
molecularly defined tumors (19). Notably, grade 4 IDHmut astrocytomas clustered together, and 
lower grade 2 and 3 tumors remained intermixed on the basis of metabolites (Figure 2B). While 
IDHmut grade 4 astrocytomas had similar levels of 2HG as lower grade IDH mutant tumors, 
their levels of asparagine and several other metabolites were more similar to IDHwt GBMs than 
to lower grade IDHmut tumors. Hierarchical clustering could not discriminate between grade 2 
or grade 3 IDHmut tumors (Figure 2B).  
 
We also noted that two IDHwt GBMs clustered with low-grade IDHmut tumors (Figure 2B). This 
clustering was not due to alternative IDH mutations missed by immunohistochemistry, as 2HG 
levels were similar to other IDHwt GBMs. Rather, these two tumors had similar levels of 
succinate, creatinine and other metabolites as the IDHmut tumors. Additional investigation of 
these two unusual GBM cases found survival times substantially longer than the 1.5-year 
median for GBM, similar to IDHmut gliomas. One patient in their early fifties survived 4 years 
beyond diagnosis and the other (early twenties, far below median age of 65 years) is still alive 
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5.5 years after diagnosis at the time of writing. A single IDHmut grade 3 oligodendroglioma 
metabolically clustered with IDHwt GBMs. This tumor was one of only 3 recurrent 
oligodendrogliomas in our cohort, and this patient survived 2.5 years following re-resection, 
suggesting more aggressive behavior than a typical oligodendroglioma.  
 
Metabolomics-based clustering bins GBM patients into groups with different prognoses 
 
The data above confirmed that IDHwt GBMs have a metabolic phenotype distinct from IDHmut 
gliomas and suggested that our data was of sufficient quality to investigate less understood 
metabolic pathways in glioma. Outcome for GBM is dramatically worse than for IDH mutant 
tumors. This poor survival rate may be at least partially due to metabolic phenotype (2, 9, 20), 
and we and others have demonstrated that targeting metabolism in GBM can improve survival 
in animal models and is under investigation in patients (4, 21, 22). To determine if tumor 
metabolomic profiles are related to patient survival in GBM, we questioned if GBMs can be 
grouped into different metabolic subtypes with different survival times in a manner similar to 
efforts to categorize GBMs by transcriptomic and DNA methylation patterns (23, 24). 
 
We first confirmed our GBM tumor samples reflected a typical clinical cohort by univariate 
analyses with known survival factors. As expected, older age, male sex, poor performance 
status, and an unmethylated MGMT promoter were all associated with inferior survival within 
this cohort of GBM patients (Supplemental Table 1), though some variables did not achieve 
statistical significance. We then performed unsupervised hierarchical clustering of metabolites in 
the 41 tumors from GBM patients. This analysis identified 3 unique metabolic clusters of GBMs 
(Figure 3A). Inspection of individual metabolites represented by each subtype revealed 
enrichment of either 1) nucleobases and carbohydrates (Base/Carb), 2) amino acids (AA), or 3) 
metabolites associated with oxidative stress regulation and mature nucleoside/nucleotide 
species (Nuc/Ox).  
 
Among these three putative metabolic subgroups of GBM, the Base/Carb group was 
predominantly comprised of patients with below-median survival, and GBM patients with above-
median survival tended to fall within the AA and Nuc/Ox clusters (Figure 3A). Survival analysis 
of these 3 groups confirmed prognostic differences, with Base/Carb patients showing the worst 
survival and the AA group showing superior survival (Figure 3B). These differences were not 
due to receipt of different treatments, as receipt of RT and temozolomide was not different 
between groups (Supplementary Figure 2A,B). These findings are reminiscent of our previous 
work showing that GBMs with high levels of nucleotides and their derivatives, particularly 
purines, are especially resistant to treatment (21). 
 
We then asked if survival differences among metabolic subtypes were related to known clinical 
predictors of GBM patient survival. Assessment of established predictors of GBM patient 
survival (sex, age at diagnosis, MGMT promoter methylation, performance status and extent of 
resection) within each subtype determined a mostly even distribution of these factors across 
metabolic groups (Supplemental Figure 2C-G). MGMT promoter methylation, despite being a 
predictor of longer survival, was notably higher in the poor-prognosis Base/Carb group than the 
AA and Nuc/Ox groups. Taken together these observations indicate that the metabolic features 
of GBM patient tumors might provide information regarding patient prognosis that could 
complement the information conveyed by conventionally used clinical information. 
 
To validate our findings that GBMs can cluster into metabolic groups with different prognosis, 
we assessed a second, independent dataset (validation cohort) of GBM tumor specimens 
containing both metabolomic profiles and survival times (9, 20). While metabolomic data from 
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the validation cohort contained largely different metabolites due to different LC-MS detection 
methods, patients in the validation cohort could also be binned into metabolically defined 
subtypes with differing prognosis that were similar to those found in our initial cohort of tumors 
(Figure 3C). Consistent with the data obtained using our method, an amino acid-high subtype 
with superior survival was identified (Figure 3D). The second subtype within our validation 
cohort contained high levels of many lipid species and had a significantly reduced median 
survival compared to the amino acid-high subtype. The identification of a lipid-high subtype in 
this dataset, rather than the Base/Carb and Nuc/Ox groups reported in set 1, is likely due to 
differences in LC-MS compound detection methods with limited detection of nucleobases that 
are increased in patients with worse survival. 
 
Association of individual metabolites with GBM patient survival 
 
Having identified metabolic signatures that correlated with GBM patient survival, we next 
explored if patient outcome was related to levels of individual metabolites. For each metabolite 
in each independent dataset, we determined hazard ratios (Supplemental Figure 3A-B) and 
correlation with survival (Supplemental Figure 3C-D). While a variety of metabolites exceeded 
the 95% confidence interval, no singular metabolite appeared to reliably predict survival with a 
p-value of <0.05 in both sets. This may be due to sample quality, different analysis methods 
across data sets, or the inherently dynamic nature of metabolite levels. 
 
We then asked if patients with below-median vs. above-median survival were metabolically 
distinguishable when the two groups were directly compared. To this end, we used partial least 
squares discriminant analysis (PLS-DA) to identify metabolic features that could discriminate 
between above median survivors and below median survivors (Figure 4A,B). In this comparison 
we found that levels of purines including AMP/dGMP and adenine were significantly elevated in 
patients with inferior survival, as well as a variety of other purine and pyrimidine metabolites 
(Figure 4C). This agrees both with our metabolic clustering (Figure 3) and with our previous 
data showing that purines promote therapeutic resistance in GBM (21). When we assessed our 
validation cohort, we found several diverse lipid and amino acid species were different between 
groups, in agreement with our metabolic clustering analysis (Figure 4D). Distinct from these two 
metabolite categories, levels of ascorbate were notably higher in above-median than below-
median survivors, in agreement with ongoing clinical strategies to modulate ascorbate levels in 
GBM patients to improve outcome (3, 22).  
 
Metabolomic analysis of primary vs. recurrent GBM 
 
Surgical resection and standard chemoradiation therapy improve survival for GBM patients, but 
this initial efficacy is limited by the development of treatment resistance. Recurrent, therapy-
resistant tumors develop within the high-dose radiation field, and the ability of recurrent tumors 
to resist therapy is in part due to metabolic alterations within the tumor (2). Therefore, we asked 
if recurrent GBMs were metabolically distinct from primary GBM. Metabolomic profiles between 
primary and recurrent GBM tumor samples were largely similar with respect to central carbon 
and amino acid metabolites. In contrast, we observed differences in individual metabolites that 
agree with their known roles in tumorigenesis. Levels of guanosine, which may promote glioma 
stemness, gliomagenesis and treatment resistance (7, 21, 25, 26), were approximately 50% 
higher in recurrent tumors than in primary GBM (Figure 5A). Decreased levels of cystathionine 
(a precursor to glutathione) and aconitate (a TCA cycle intermediate) were also observed in 
recurrent GBM compared to primary GBM (Figure 5B-C). To further determine if recurrent GBM 
is metabolically distinguishable from primary GBM, we performed metabolite set enrichment 
analysis (MSEA) of compounds whose average abundance differed by more than 50% between 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.04.22275972doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.04.22275972
http://creativecommons.org/licenses/by-nc-nd/4.0/


groups. Metabolite sets most enriched in recurrent GBM agreed with our survival analysis. That 
is, we observed pathways that we and others have linked to patient outcome and tumor 
progression, including carbohydrate, nucleotide, tryptophan and ascorbate metabolism (9, 20-
22), which were further enriched in recurrent GBM (Figure 5D) and suggest these may be 
promising leads to target metabolic activity in patients with recurrent GBM. 
 
Validation of metabolic subtypes by transcriptomic analysis 
 
Metabolomic analysis of brain tumors is not a standard part of clinical care, in part due to the 
logistical challenges of quickly flash-freezing tumor tissue and the cost of metabolomic analysis. 
We wanted to understand if our metabolism-centric approach to understanding GBM patient 
outcomes could translate into standard clinical settings where approaches such as exome 
sequencing and transcriptomic analysis are more commonly performed. Metabolites are linked 
by the enzymes that catalyze their interconversion, and the levels of these enzymes are 
quantified in transcriptomic analyses such as RNAseq. 
 
We questioned if it were possible to validate metabolic GBM subtypes and their prognostic utility 
at the transcriptional level. Therefore, we selected the metabolites of the compound-high 
clusters characterizing each subtype and performed joint pathway analysis with MetaboAnalyst 
5.0 (27) for each set. This approach allowed us to identify connections globally across gene-
metabolite networks and predict the genes likely involved in the metabolic activities of each 
subtype (Figure 6A-C). We first defined a gene set for each tumor type (Base/Carb, Nuc/Ox 
and AA) comprised of the genes with at least two connections to respective input metabolites. 
Thus, these sets of genes were predicted to contribute to tumor metabolic phenotype. We then 
interrogated linked expression and outcome data from the TCGA to determine how these gene 
sets were associated with GBM patient survival. For each transcriptional signature, TCGA GBM 
tumor samples were scored using ssGSEA (28) and then assessed for survival in high-scoring 
(>0) vs. low-scoring (<0) groups. Similarly, we performed separate analyses of patient survival 
in each metabolite-defined subtype vs. the remainder of the cohort. 
 
Comparison of survival curves between metabolite-defined groups and corresponding 
transcriptionally defined groups showed close agreement. Patients in the Base/Carb subtype 
had inferior survival (Figure 6D), as did those in the transcriptionally defined Base/Carb group 
(Figure 6E). Analysis of both the metabolically and transcriptionally defined Nuc/Ox groups 
were also consistent, with neither showing differences in survival from the rest of the cohort 
(Figure 6F-H). While the metabolically defined AA group trended with a higher median survival, 
the transcriptional AA group showed no significant difference in survival from the rest of the 
cohort (Figure 6I-K). Collectively, these data suggest that the Base/Carb subtype can be 
transcriptionally distinguished from the other metabolic subtypes of GBM. 
 
Discussion 
 
In this study we have nominated metabolomic subtypes for GBM that inform patient prognosis 
and could lead to new treatment strategies. IDHwt GBMs are metabolically separable from 
IDHmut gliomas, and within the IDHmut group of gliomas grade 4 astrocytomas are 
metabolically distinct from grade 2 and 3 gliomas. IDHwt GBM and IDHmut gliomas also differ 
dramatically by 2HG levels, with IDHmut gliomas containing expectedly higher levels than 
IDHwt GBMs by up to 50-fold. GBMs can be further separated into metabolic groups with 
different survival times that agree with transcriptional analysis of metabolite-associated genes. 
These data indicate that metabolic phenotypes of brain tumors may be able to inform patient 
outcome and tumor aggressiveness.  
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There are several general reasons metabolite levels could contribute to patient outcome. 
Metabolites are likely to regulate therapeutic responses to radiation and temozolomide, which 
are the predominant treatments prescribed for GBM. For example, high nucleobase levels could 
provide a readily accessible pool of substrates for nucleic acid synthesis required for 
proliferation, and/or the production of mature nucleosides and nucleotides that mediate 
radiotherapy resistance (21). High levels of carbohydrates might similarly feed anabolic 
pathways contributing to tumor aggressiveness (9). We also observed that tumors rich in lipids 
were linked to worse patient outcome. This can be explained by numerous cellular activities for 
lipids, including membrane production in proliferating cells, second messenger activity for 
proliferative and survival signaling pathways, and oxidation in the mitochondria to produce redox 
cofactors and ATP (29, 30). 
 
In contrast to carbohydrates, nucleotide species, and lipids, levels of amino acids were 
associated with more favorable outcomes. Notably, synthesis and degradation pathways of 
amino acids are more diverse, branching about numerous metabolic pathways. Thus, GBMs 
with high amino acid levels might represent a more globally active network of metabolic 
pathways without reserve capacity and thus may be more easily perturbed by therapy. 
Alternatively, or in addition, high amino acid levels might also reflect lower levels of protein 
synthesis. Both scenarios could in turn could lead to more favorable survival. Our observation 
that predicted genes representing the AA subtype did not correlate with survival (in contrast to 
metabolite levels) could be explained by several hypotheses. Amino acid pathways represented 
by the indicated metabolites and transcripts might be regulated post-transcriptionally, in which 
case transcriptional data would not represent actual metabolic activity. Alternatively, or in 
addition, metabolite levels do not necessarily reflect pathway activity; for example, high amino 
acid levels could arise either from increased production or decreased utilization. 
 
At present, metabolomic analysis of patient tumors is infrequently performed in clinical practice. 
Flash freezing tumor specimens immediately after resection and subsequent metabolomic 
analysis is logistically difficult and costly. There is also a lack of standardization regarding 
metabolomic detection methods and analysis across academic and medical centers. We directly 
observed this difficulty in the different types of metabolites detected between our initial and 
validation cohorts, which were generated using different platforms. However, further 
investigation of the metabolic underpinnings of GBM or other cancers might lead to 
standardized diagnostic and prognostic methods for metabolite detection and quantification. 
Studies employing analysis of transcriptional or proteomic signatures with patient-matched 
metabolomic data could identify molecular profiles that directly correspond to metabolic subtype. 
Such a profile could be used to predict metabolic treatments that are effective against specific 
GBM tumor types.  
 
From a therapeutic targeting perspective, numerous metabolic inhibitors have been used in 
many disease contexts and could be tailored to specific GBM metabolic groups. Classical 
examples include gemcitabine and fluorouracil, which suppress nucleotide metabolism and 
nucleic acid synthesis (2). More recent examples that we and others are investigating include 
the FDA-approved inosine monophosphate dehydrogenase inhibitor known as mycophenolate 
mofetil (MMF (31)), which is used to block purine synthesis in autoimmunity and is under 
investigation in GBM (NCT04477200). This may be an especially effective novel therapy in the 
Base/Carb and Nuc/Ox subgroups, which are also enriched for nucleobases and nucleotides. 
GBMs in the AA subtype might be treated with amino acid-targeted approaches such as the 
glutamine antagonist JHU-083, asparaginase, or a methionine-restricted diet (32-34). Lipid 
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metabolism can be targeted by etomoxir or statins and might be an effective approach against 
GBMs rich in lipids, which likely also encompass Base/Carb and Nuc/Ox GBMs (35). 
 
Our data further suggest that metabolic phenotypes in patients could mediate resistance to 
standard therapies. Radiotherapy, a standard treatment for GBM, causes DNA damage and 
oxidative stress. This is notable as we observed an enrichment of metabolites associated with 
ascorbate metabolism in recurrent GBM compared to primary GBM. Notably, oxidative stress 
can be targeted by pharmacological ascorbate, which is has shown early promise in patients 
(3). It could be speculated that ascorbate treatment may be most effective in Nuc/Ox GBMs and 
recurrent GBM, which is likely to have higher levels of oxidative stress.  
 
While our analyses define subsets of human GBM by metabolite levels, metabolic pathway 
activity remains to be defined across subtypes. This can be accomplished by measuring the 
accumulation of an isotope tracer (for example, 13C-glucose) into downstream intermediates. 
Stable isotope tracing is feasible in both preclinical animal models and cancer patients (36, 37) 
and could potentially be used in this endeavor. Finally, determining the molecular mechanisms 
of these phenotypic differences, and how they contribute to tumor progression and therapy 
resistance, across subtypes in vitro and in preclinical animal models will be critical to translation 
into clinical care. Altogether, these metabolic analyses suggest that gliomas can be grouped 
into distinct survival groups by metabolite levels and could lay the groundwork to begin 
developing novel therapeutic strategies for glioma patients. 
 
Materials and Methods 
 
Patients, tissue collection and storage 
For more than 10 years, the Neurosurgery Department at the University of Michigan has 
processed and stored resected brain tumor samples not needed for clinical use to facilitate 
future research endeavors. All samples in this brain tumor bank undergo quality assurance by a 
clinical neuropathologist to estimate viability and tumor content. Due to the need for banked 
tissue, patients who only underwent diagnostic biopsy rather than tumor resection are not 
included in this analysis. Among the types of tissues collected was flash-frozen brain tumor 
tissue appropriate for metabolomic analysis. Clinical information linked to these samples was 
abstracted from the medical record under an IRB-approved research protocol.  
 
Sample preparation 
Frozen tissue specimens were homogenized in cold (-80 °C) 80% methanol. Soluble metabolite 
fractions were separated from insoluble homogenate by centrifugation and dried by speedvac at 
volumes normalized to equal tissue weights. Dried metabolites were then reconstituted in 1:1 
methanol:water for LC-MS. 
 
Liquid chromatography-mass spectrometry 
Metabolite extracts were analyzed using an Agilent Technologies Triple Quad 6470 LC-MS/MS 
system consisting of the 1290 Infinity II LC Flexible Pump (Quaternary Pump), the 1290 Infinity 
II Multisampler, the 1290 Infinity II Multicolumn Thermostat with 6 port valve and the 6470 triple 
quad mass spectrometer. Agilent MassHunter Workstation Software LC/MS Data Acquisition for 
6400 Series Triple Quadrupole MS with Version B.08.02 was used for compound optimization, 
calibration, and data acquisition. Chromatographic separation of compounds is as described 
(21). Data were pre-processed with Agilent MassHunter Workstation QqQ Quantitative Analysis 
Software (B0700). For all compounds, the extracted ion chromatograms and mass spectra were 
manually inspected for sample quality and consistent peak integrations. To validate findings, a 
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second set of samples from patients of an independent cohort (9, 20) was assessed by mass 
spectrometry by Metabolon. 
 
Statistical analysis 
Descriptive statistics were used to characterize baseline patient and treatment characteristics. 
Univariable Cox proportional hazard models were used to estimate the association between 
clinical factors (age and year of diagnosis, performance status, MGMT methylation status, 
extent of resection, and gender) and overall survival. Kendall’s tau for censored data was used 
to rank the correlation between metabolites and overall survival (38).  
 
Metabolomic Analysis 
Unsupervised hierarchical clustering, heat map generation, PLS-DA and metabolite set 
enrichment analysis (MSEA) were performed using MetaboAnalyst 5.0 (27). Processed peak 
intensities were normalized by the median of all samples, log-transformed and used to generate 
metabolite-based patient groups by unsupervised hierarchical clustering. Metabolic subtypes 
were defined as the three largest patient clusters encompassing all GBM samples. Metabolites 
representing each subtype were identified from the three largest clusters covering all 
metabolites detected. Network analysis was performed on metabolites representing each 
subtype and using the joint gene-metabolite interaction network module. Metabolite-gene 
associations with high confidence were retrieved from STITCH (39). MSEA was performed 
using metabolites that differed by more than 50% between primary vs. recurrent GBMs with 
pathways defined by the Kyoto Encyclopedia of Genes and Genomes 
(https://www.genome.jp/kegg).  
 
Reduction of LC-MS data with Binner 
Metabolite features generated from our metabolomics platform were subjected to Binner quality 
control analysis (18). Briefly, metabolite features were binned by retention time, and Pearson’s 
correlation of intensity values were calculated for each feature bin. Isotopes were identified by 
retention time similarity, correlation, and mass differences. After isotope detection, metabolites 
in each bin are clustered by correlation coefficients of signal intensities. For each cluster, the 
highest intensity feature is treated as a neutral mass and iteratively assigned adducts 
corresponding to the most frequent ions (e.g., m+H, m+Na). Calculated adducts for each 
metabolite are searched within the bin based on the m/z of other features in the cluster. 
Identified adducts were removed from the data set. 
 
Transcriptional analysis 
Htseq quantified RNAseq counts data for 173 TCGA GBM samples were downloaded from the 
UCSC Xena browser (40). Survival data for these cases were obtained from the TCGA Clinical 
Data Resource (41). Enrichment scores of each case for specific metabolic genesets were 
computed with the ssGSEA function in the corto R package (28). We split cases based on 
positive or negative enrichment scores for the genesets and visualized their survival differences 
using the Kaplan-Meier method with p-values computed using the log-rank test.  
 
Other software 
All other analyses were performed using GraphPad Prism 8.0.0. Statistical significance between 
groups was determined by unpaired two-tailed t-tests. 
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Table 1. Patient Characteristics. Resected tumor 

samples stored in the University of Michigan Brain 

Tumor Bank were matched with patient medical records 

to determine the indicated information. Age and 

performance status are shown as median ± interquartile 

range.

Total cohort n=69

IDH mutant oligodendroglioma, n=20

Age 38.6 ± 17.5

Sex Male 55%, female 45%

Extent of resection GTR 50%, NTR 50%

Performance status 1.0 ± 0.75

Receipt of radiation 75.0%

Receipt of alkylating chemotherapy 77.8% (14/18, 2 unknown)

IDH mutant astrocytoma, n=8

Age 34.0 ± 15.0

Sex Male 50%, female 50%

Extent of resection GTR 25%, NTR 75%

Performance status 1.5 ± 1.8

MGMT methylation status Methylated 57.1%

Receipt of radiation 62.5%

Receipt of alkylating chemotherapy 62.5%

IDHwt GBM, n=41

Age 59.7 ± 13.3

Sex Male 62.5%, female 37.5%

Extent of resection GTR 53.7%, NTR 34.1%, STR 12.2%

Performance status 1.0 ± 1.0

MGMT methylation status Methylated 36.6%

Receipt of radiation 97.6%

Receipt of alkylating chemotherapy 95.1%
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Figure 1. Overall survival times for glioma patients. Kaplan-Meier curves of overall survival times for 

glioma patients corresponding to tissue samples acquired from the University of Michigan Brain Tumor 

Bank with the indicated tumor types are shown. Patients with unknown survival times were censored at 

time of last follow-up.
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Figure 2. Metabolomics distinguishes IDHmut from IDHwt gliomas. A, Metabolite levels of tumors from glioma 

patients were measured by LC-MS and then assessed by UMAP. B, Metabolite levels were assessed by data 

reduction with Binner followed by unsupervised hierarchical clustering. Color scale indicates log-transformed values of 

data points after normalization to the median area under the curve (AUC) of each compound. C, Levels of 2HG were 

determined by measuring LC-MS AUCs matched to ion fragmentation data. 
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Figure 3. Metabolomics-based clustering bins GBM patients into groups of different prognosis. A, Levels of 

metabolites in GBM patients with known survival times were organized by unsupervised hierarchical clustering. B, 

Kaplan-Meier curves with survival times for patients in the subtypes identified in panel A. C, To validate findings in 

panels A and B, a second, independent cohort was assessed using different mass spectrometry methods and then 

analyzed by clustering as in panel A. D, Kaplan-Meier curves with survival times for patients in the subtypes identified 

in panel C. Color scales for both heatmaps indicate log-transformed values of data points after normalization to the 

median AUC of each compound.
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Figure 4. Assessment of individual metabolites in patients with different outcomes. A-B, PLS-DA of 

metabolomics datasets. C-D, VIP scores for metabolites were determined in tumors from below-median vs. above-

median survivors.
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Figure 5. Metabolomic analyses of primary vs. recurrent GBM. A-C, Relative metabolite abundances in primary vs. 

recurrent GBM. D, MSEA of metabolites differing by more than 50% between primary and recurrent GBM.
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Figure 6. Transcript validation of GBM metabolic subtypes. A, Metabolites representing each metabolic GBM 

subtype were used to identify relevant RNA transcripts by metabolite-gene interactions with high confidence. B, 

Network of genes and metabolites from the Base/Carb GBM subtype. Blue squares represent metabolites; magenta 

circles represent genes. C, Genes from panel B with connections to at least 2 metabolites were selected for 

transcriptomic analysis. D, F, I, Kaplan-Meier curves with patients from the indicated metabolic subtypes vs. the 

remainder of the cohort. E, H, K, Kaplan-Meier curves using archived transcriptomic data with patients from high vs. 

low transcriptomic scores corresponding to the genes identified for each subtype.
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Supplemental Figure 1. Initial clustering of pre-reduction metabolomics data. Metabolite levels of tumors from 

glioma patients were measured by LC-MS, and metabolomics data were then subjected to unsupervised hierarchical 

clustering. Color scale indicates log-transformed values of data points after normalization to the median AUC of each 

compound. Compound overlaps highlighted in box were identified and corrected using Binner software.
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Supplemental Figure 2. Treatment regimens are similar across metabolic GBM subgroups. A-B, Total 

treatments of RT and TMZ in GBM patients within each metabolic subgroup. C-G, Distributions of clinical factors for 

patients with GBMs in the indicated subtypes.

A
A

B
as

e/
C
ar

b

N
uc/

O
x

0

20

40

60

80

100

T
o

ta
l 

R
T

 (
G

y
)

A
A

B
as

e/
C
ar

b

N
uc/

O
x

0

5

10

15

#
 T

M
Z

 c
y
c
le

s

A B

B
as

e/
C
ar

b
A
A

N
uc/

O
x

0

20

40

60

80

100

Sex

P
e

rc
e

n
t Male

Female

B
as

e/
C
ar

b
A
A

N
uc/

O
x

40

50

60

70

80

Age at dx

A
g

e
 a

t 
d

x
 (

y
e
a

rs
)

B
as

e/
C
ar

b
A
A

N
uc/

O
x

0

20

40

60

80

100

MGMT Methylation

P
e

rc
e

n
t Methylated

Unmethylated

B
as

e/
C
ar

b
A
A

N
uc/

O
x

0

20

40

60

80

100

Performance status

P
e

rc
e

n
t

0

1

2

3

4

B
as

e/
C
ar

b
A
A

N
uc/

O
x

0

20

40

60

80

100

Extent of resection

P
e

rc
e

n
t

Subtotal

Near-total
or gross-total

C D E F G

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.04.22275972doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.04.22275972
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 3. Volcano plots of metabolites in 

GBMs from set 1 or set 2 (validation cohort) with p-value 

vs. either hazard ratio (HR) or Kendall’s correlation. Red 

data points indicate metabolites with p-values below 0.05. 

No metabolites with p<0.05 in both datasets were 

identified.

A

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

HR

-l
o

g
 p

C

0.0 0.5 1.0 1.5 2.0

0

1

2

3

HR

-l
o

g
 p

B

-0.2 -0.1 0.0 0.1 0.2

0.0

0.5

1.0

1.5

2.0

Kendall's correlation

-l
o

g
 p

-0.2 -0.1 0.0 0.1 0.2

0

1

2

3

Kendall's correlation

-l
o

g
 p

D

Set 1 Set 2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.04.22275972doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.04.22275972
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 1: Univariate predictors of survival 
in GBM patients. Univariable Cox proportional hazard 

models were used to estimate associations between 

the indicated clinical factors and overall survival.

HR Lower Upper p C index

Age at diagnosis 1.03 1.00 1.07 0.0465 0.6398

Performance status 1.38 0.66 2.91 0.3890 0.5633

MGMT promoter methylation 0.53 0.24 1.15 0.1093 0.5686

Extent of resection 1.04 0.46 2.34 0.9174 0.5000

Sex 1.36 0.64 2.89 0.4179 0.5288
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