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Abstract 
Atopic dermatitis (AD), known as eczema, affects millions of people worldwide and is a 
chronic inflammatory skin disease. It is associated with risks of developing asthma, food 
allergies, and various other diseases related to the immune system. AD can also 
negatively affect the self-esteem of patients. Gene expression data could yield new 
insights into molecular mechanisms and pathways of AD, however, results often vary 
drastically between studies. In this study, expression data from five mRNA studies and 
one miRNA study were combined to identify differences between atopic dermatitis skin 
and unaffected, normal skin. Protein interaction network analysis and Panther analysis 
revealed that pathways related to leukocyte behavior, antimicrobial defense, metal 
sequestration, and type 1 interferon signaling were significantly affected in AD. In total, 
25 genes, such as SERPINB4 and ST1007 were consistently identified to be disrupted 
across studies. Within the 25, 11 were underexpressed and 14 were overexpressed. 
Several genes implicated in skin cancers were among the 25. We also identified 
underexpressed 13 miRNAs, many of which regulate some of the 14 overexpressed 
genes. Gene FOXM1 was targeted by 6 underexpressed miRNAs and was on average 
overexpressed by 9.53 times in AD. Presumably, underexpression of miRNAs led to 
overexpression of their gene targets. The results of this research have implications for 
diagnostic tests and therapies for AD. It elucidates molecular mechanisms of AD with 
greater confidence than does a single study alone. Future steps include experiments 
regarding the role of SERPINB4, ST1007, neutrophil and leukocyte aggregation, and 
interferon signaling in AD. Additionally, the associations between AD and skin cancers 
should be further investigated. 

Introduction 
Atopic dermatitis (AD), also called eczema, affects about ten to twenty percent of people in 
developed countries, such as the United States of America and France [1-2]. AD is known as a 
chronic inflammatory skin disease which means that it lasts for a long time and occurs when the 
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immune system wrongly targets normal body tissues [3]. Treatments for AD amount to up to 
$3.8 billion dollars yearly in the United States alone [4].  
 
AD is linked to higher risk for getting asthma, food allergies, and other immune system related 
diseases [5]. AD can also lower patient self esteem as it causes visible lesions and marks on 
the skin [6]. While AD has been researched before, scientists are still not entirely sure about 
how AD develops (pathogenesis) [7]. Therefore, research should be conducted to explore the 
pathways and mechanisms that cause, or are affected by, atopic dermatitis development. With 
this knowledge, new treatments and tests for AD can be developed and existing methods can 
be improved.  
Current treatments for AD include using moisturizers and applying corticosteroids to the affected 
skin [8]. However, the effectiveness of the treatments vary greatly. For some people the 
medicines help a lot but for others the medicines don’t do anything. 
 
Previously, microarrays have been used to measure gene and miRNA expression levels, often 
for disease research [9-12]. For example, microarrays are used to find differentially expressed 
genes (DEGs) between Parkinson’s patients and healthy control patients as well as differentially 
expressed miRNAs between lung cancer patients and healthy controls [13-14]. Microarrays are 
useful for discovering disease biomarkers and for learning more about changes in gene 
expression due to disease or some experimental variable [15]. While they have begun to be 
replaced by RNA-seq in many cases, existing microarray data still holds a lot of valuable 
information that can be analyzed. 
 
Several teams have performed microarray analysis on AD patients and control patients in order 
to find differences in gene expression that could shine light on how AD develops. Some 
researchers have focused on gene expression while others have focused on miRNA expression 
[16-17]. MiRNAs are non-coding RNAs that have an important role in regulating gene 
expression [18]. They repress protein production by destabilizing the mRNA they are targeting. 
As miRNAs are being studied more, scientists are realizing that miRNA and gene expression 
are often intrinsically correlated [19]. Thus, research linking miRNA expression and gene 
expression in AD is needed. For example, a miRNA could change gene expression in many 
genes in a pathway important to AD.  
 
Additionally, the existing studies conducted on AD gene/miRNA expression have small sample 
sizes, meaning that the results are more affected by random chance and individual differences 
in the patients from which skin samples were collected. Microarray experiments have been 
criticized in the past for often having errors and batch effects, among other things [20-22]. This 
means that a lot of the genes identified by one study are not able to be reproduced, or identified, 
by another group of researchers and sometimes the microarray data is flawed or biased.  
 
In the present study, gene and miRNA expression data from multiple sources were combined to 
provide greater confidence and accuracy in the results as well as elucidate interactions between 
miRNAs and genes that can play a role in AD. Our approach emphasized biological relevance 
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and statistical significance, often erring on the side of caution. For example, stringent minimum 
fold change and dataset overlap requirements were enforced. 
 

Methods 

GEO Dataset Search and Selection 
The Gene Expression Omnibus (GEO) is an online database of freely available data from 
various experiments, usually with gene expression [23]. GEO was searched for datasets related 
to atopic dermatitis. Criteria for selecting a dataset included sample size, age of the data, 
source of sample (skin tissue only), and the type of AD examined. Six datasets were selected 
for further analysis: GSE32924, GSE31408, GSE36842, GSE16161, GSE5667, GSE6012 [24-
29].  
 
GSE31408 contained miRNA expression data while the rest contained mRNA expression data. 
Many of the studies were comprised of samples from several types of atopic dermatitis, such as 
chronic atopic dermatitis and nonlesional atopic dermatitis. We grouped all such types under the 
umbrella category of atopic dermatitis. While having different specific characteristics, different 
types of atopic dermatitis still are likely to share similarities and atopic dermatitis is known as a 
systemic disease. Thus the tradeoff of combining types of atopic dermatitis to gain greater 
sample size is justified. 

Data processing and statistical analysis 
GEO2R is an online interactive tool that compares gene expression levels of groups of samples 
to identify genes that are differentially expressed between groups [30]. Following dataset 
selection, GEO2R was used to calculate differentially expressed genes between the AD 
samples and the control samples in each of the datasets. GEO2R automatically performed t-
tests on the data. Expression intensity value distribution was normal in each dataset, showing 
no outliers. Thus, all samples were kept. Subtypes of atopic dermatitis were all included in the 
AD group, such as nonlesional and lesional. Depending on the study, differentially expressed 
messenger RNAs or differentially expressed microRNAs were found. The DEGs were saved 
into Excel sheets. 
 
Differentially expressed genes with P values of greater than 0.05 were deleted. Genes were 
split into two lists, overexpressed and underexpressed (positive fold change and negative fold 
change, respectively). Next, we applied a minimum fold change threshold of 1.5 for 
overexpression and ⅔ for underexpression in an effort to enforce biological relevance standards 
and also reduce the number of genes for analysis (tens of thousands of genes passed the P 
value test).  
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Identifying common genes across studies 
After the relevant genes for each dataset were split into two lists, overexpressed and 
underexpressed, data were cleaned, removing duplicate genes and blank rows.  
We combined the lists of overexpressed genes from each of the five mRNA datasets together. 
The same was performed for the underexpressed genes. Next, we used Python and Google 
Colab to calculate out how many times each gene was repeated in a list. This revealed how 
many times each gene was identified across datasets.

Only genes identified in at least four out of five datasets were kept and the rest were deleted 
(Common Data Ratio >= 0.8). 

STRING protein interaction network analysis 
STRING is an online database search and network visualization tool of established and 
predicted protein interactions [31]. STRING was used to analyze relationships between the 
protein products of genes that were identified in previous steps. Overexpressed and 
underexpressed genes were analyzed separately. The cut off criteria for minimum confidence of 
genuine protein interaction was 0.4 which is accepted as medium confidence. Hub gene criteria 
was having at least a node degree of 6.  

Gene Ontology and pathway analysis 
Gene Ontology (GO) is a popular computational biology tool that gives information on the 
functions of various gene products [32]. PantherDB, a tool by Gene Ontology, was applied to 
identify enriched biological functions [33].  

miRNA target prediction and analysis 
The miRNA cutoff criteria were p-value <0.05 and fold change >1.5 or <0.66. The gene targets 
for the differentially expressed microRNAs identified in GSE31408 were predicted with the 
miRNet software. The gene targets were analyzed to find overlaps with the differentially 
expressed genes identified from the mRNA studies. It was assumed that under-expressed 
miRNAs would be associated with over-expressed target genes, and vice versa. 

Results 

Dataset 
Accession 

AD 
Samples 

Control 
Samples 

Type Platform Author Year Country 

GSE32924 25 8 Gene GPL570 Suárez-
Fariñas  

2011 United States 

GSE6012 10 8 Gene GPL96 Benson 2006 Sweden 
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GSE36842 24 15 Gene GPL570 Suarez-
Farinas 

2012 United States 

GSE16161 9 10 Gene GPL570 Suarez-
Farinas 

2009 United States 

GSE5667 12 
 

5 Gene GPL96 Plager 2006 United States 

GSE31408 24 2 miRNA GPL14149 Søkilde 2011 Sweden 

Table 1: Descriptive information for each of the six Gene Expression Omnibus datasets analyzed in this 
study. Specifically, the columns indicate the number of AD samples, number of control samples, type of 
expression profiled, platform, author of study, year of study, and country of study. 

 

Dataset Accession Upregulated Genes Satisfying Both 
Conditions 

Downregulated Genes Satisfying 
Both Conditions 

GSE32924 2868 3376 

GSE6012 1043 1414 

GSE36842 536 1033 

GSE16161 6860 7390 

GSE5667 474 270 

Total (including replicates) 11781 13483 

Table 2: Number of genes identified as significantly upregulated or downregulated from each of the gene 
expression datasets. For instance, in dataset GSE32924, 2,868 upregulated genes passed the logFC and 
p-value criteria. 

 

Status Total Unique 
Genes 

Identified in only 
� datasets 

Identified in only 
� datasets 

Identified in 5/5 
datasets 

Upregulated 5874 371 80 14 

Downregulated 6465 653 103 11 

Table 3: Total unique genes. Also, the number of genes across all five datasets that were found in three, 
four, and five datasets. For instance, only 14 genes were identified as upregulated in all five datasets.  
 
GSE32924, GSE6012, GSE36842, GSE16161, GSE5667, and GSE31408 were chosen for this 
study (Table 1). GSE31408 is a miRNA expression profiling study, while the other five are gene 
expression profiling studies. In total, there were 80 atopic dermatitis samples and 47 healthy 
control samples across all 5 gene expression datasets. There were 24 atopic dermatitis and 2 
control samples in the miRNA dataset. Expression value distribution was checked for each 
dataset and all were normal, with no outliers.  
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 After applying the logFC (>1.5 or <⅔) and p-value criteria (p<0.05), the number of differentially 
expressed genes were greatly reduced (Table 2). In general, more downregulated genes were 
identified than upregulated genes with the exception of GSE5667. Genes were sorted by logFC 
value. 
 
The five selected datasets contained a total of 11,781 upregulated genes and 13,483 
downregulated genes satisfying both conditions (Table 3). There were a total of 5,874 unique 
upregulated genes across the five datasets: 371 of them were identified in only � datasets, 80 
identified in � datasets, and 14 identified in all five datasets. There were a total of 6465 unique 
downregulated genes across the five datasets: 653 of them were identified in only � datasets, 
103 identified in � datasets, and 11 identified in all five datasets. The majority of differentially 
expressed genes were only identified in one dataset out of five. Amongst the downregulated 
genes, 4,088 out of 6,565 total genes were only found in a single dataset (62.3%). Similarly, 
amongst upregulated genes, 3,802 out of 5,873 total genes were only found in a single dataset 
(64.7%). A total of only 25 genes were consistently upregulated or downregulated in all five 
studies (Table 4). 
 

Gene name Status 

AKAP13 Upregulated 

DSC2 Upregulated 

DSG3 Upregulated 

FOXM1 Upregulated 

GART Upregulated 

H2AFX Upregulated 

IFI27 Upregulated 

LTB4R Upregulated 

MAP3K14 Upregulated 

MMP12 Upregulated 

NUP210 Upregulated 

S100A7 Upregulated 

SERPINB4 Upregulated 

TYMP Upregulated 

ALDH3A2 Downregulated 

BCHE Downregulated 

CHP2 Downregulated 

CST6 Downregulated 
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IL37 Downregulated 

LEPROT Downregulated 

MSMB Downregulated 

PSORS1C2 Downregulated 

PTN Downregulated 

SCGB2A1 Downregulated 

TSPAN8 Downregulated 

Table 4: 25 genes that appeared as upregulated (14) or downregulated (11) consistently in all 
five gene expression datasets. Genes are presented in alphabetical order. 

Notable Genes 
SERPINB4 appeared in all five datasets, and had the highest fold change out of all upregulated 
genes in four datasets, 68.26. SERPINB4 is in the SERPIN family of serine protease inhibitors 
[34]. SERPINB4 is a protein coding gene and it acts as an immune response gene. S100A7 was 
also found in all five datasets and regularly highly differentially expressed, with an average fold 
change of 21.45. Like SERPINB4, it was often among the top most upregulated genes in each 
dataset. S100A7 is S100 calcium-binding protein A7, or psoriasin [35]. It has antimicrobial 
activity and is reported to be produced by skin epithelial cells to ward off bacterial invaders. It 
also plays a role in the cell cycle. As its name psoriasin suggests, a study has found higher 
levels of S100A7 in psoriatic skin lesions. S100A9 was not identified as significantly differentially 
expressed in GSE5667 but appeared in the four other datasets. It belongs to the same family as 
S100A7, the S100 family, and also plays a role in the cell cycle [36]. S100A9 had an average 
fold change of 43.98, even higher than S100A7. 
 

Gene GSE32924 GSE6012 GSE36842 GSE16161 GSE5667 
Average FC 
(not log) 

miRNA 
regulated? 

SERPINB4 22.63 23.81 2.16 284.05 8.63 68.26 no 

S100A7 9.78 48.07 2.41 42.52 4.47 21.45 no 

MMP12 12.91 4.29 2.25 38.32 5.62 12.68 no 

FOXM1 3.92 2.89 1.55 37.01 2.28 9.53 yes (6) 

TYMP 6.23 3.51 2.09 24.59 2.11 7.71 yes (1) 

DSC2 4.23 2.53 1.75 18.25 2.25 5.8 yes (2) 

IFI27 3.12 8.82 1.54 10.34 3.63 5.49 yes (2) 

NUP210 3.66 1.71 1.67 13.09 1.65 4.36 yes (3) 

MAP3K14 4.23 1.74 1.52 7.01 1.57 3.21 yes (1) 

H2AFX 3.61 2.45 1.55 5.21 1.58 2.88 yes (1) 
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GART 2.28 1.55 1.59 4.5 1.92 2.37 no 

LTB4R 2.66 1.06 1.61 5.03 1.51 2.37 no 

DSG3 1.78 2.45 1.22 4.06 1.57 2.22 no 

AKAP13 2.62 1.84 1.58 1.68 1.88 1.92 yes (2) 

Table 5: Fold change for each of the 14 upregulated genes in each of the five datasets. The 
average fold change is also provided. The “miRNA regulated?” column shows whether the gene 
was identified as a target for one of the 13 underexpressed miRNAs, and if yes, how many 
miRNAs had it as a target. A value of 2 indicates that the gene was expressed twice as much in 
AD than in control skin. 
 

Gene GSE32924 GSE6012 GSE36842 GSE16161 GSE5667 
Average FC 
(not log) 

PTN 0.54 0.5 0.61 0.43 0.62 0.54 

ALDH3A2 0.28 0.47 0.62 0.31 0.61 0.46 

BCHE 0.29 0.49 0.62 0.2 0.5 0.42 

TSPAN8 0.3 0.26 0.61 0.35 0.53 0.41 

CHP2 0.22 0.37 0.48 0.24 0.54 0.37 

LEPROT 0.32 0.46 0.54 0.08 0.47 0.37 

PSORS1C2 0.09 0.4 0.31 0.02 0.62 0.29 

CST6 0.12 0.34 0.24 0.04 0.59 0.27 

SCGB2A1 0.23 0.23 0.51 0.11 0.23 0.26 

MSMB 0.02 0.26 0.35 0.03 0.31 0.19 

IL37 0.02 0.27 0.21 0.01 0.24 0.15 

Table 5: Fold change for each of the 11 downregulated genes in each of the five datasets. The 
average fold change is also provided. A value of 0.5 indicates that the gene was half as 
expressed in AD than control skin. 

STRING Network Analysis 

Figure 1 shows all the different upregulated genes that appear in at least � of the 
datasets, and the interactions between their protein products, visualized as edges 
between nodes. The diagram was generated using STRING DB and 92 out of 94 input 
genes were mapped (2 were not identified in the database search). 117 edges between 
gene nodes were mapped, with an expected value of 59 edges, demonstrating that the 
network of genes has significantly more interactions than would be expected of a 
random list. The average node degree was 2.54, meaning that on average each gene 
was linked to 2.54 others. Gene with node degree of at least 6 were: CXCR4, STAT1, 
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SAMHD1, DDX58, IRF9, OAS1, HERC6, CDC20, MCM5, FOXM1, CDC6, TOP2A,
S100A7, and KRT16. Notably, STAT1 had degree 12. STAT1 is a transcription factor
involved in cytokine signaling, interferon response, and interleukin signaling [37]. 

 
Figure 1: STRING protein interaction network for upregulated genes identified in at least four out
of five datasets shows several highly interconnected clusters. 
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Figure 2: Interferon signaling genes cluster in STRING network 
 
Amongst upregulated genes, there was one cluster all involved in interferon signaling (red) 
which was not found in any of the other upregulated genes. The cluster contains STAT1, 
identified as a hub gene with degree 12. These genes warrant further research for exploring 
how interferon signaling is implicated in atopic dermatitis.  
 

 
Figure 3: Antimicrobial peptides and metal ion sequestration gene cluster in STRING network 
 
There was also a cluster of genes involved in antimicrobial peptides (red) and metal ion 
sequestration (green). This reflects the nature of atopic dermatitis, a disease often triggered by 
skin infections. Only the genes depicted were involved in antimicrobial peptides and metal ion 
sequestration. S100A8, S100A7, and S100A9 are also involved in RAGE receptor binding and 
are the only genes in the network to do so. S100A8, S100A7, DEFB4B, and S100A9 are also 
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part of the interleukin-17 signaling pathway. SERPINB4 is shown to be connected to S100A7
and was previously identified to have the highest average fold change out of all genes. S100
proteins bind calcium which can explain the overlap between metal ion sequestration and
antimicrobial peptides. 
 

 
Figure 4: Cytokine signaling gene cluster in STRING network 
 
A cluster of genes involved in cytokine signaling in the immune system was prominent
as well. This reflects the roots of AD in the immune system response and perhaps the
inflammatory roots of AD [38-39].  
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Figure 5: Downregulated genes network in String. Edges indicate interactions between nodes,
which represent protein products of submitted genes. 
 
Figure 5 shows all the different downregulated genes that appear in � or in 5/5 of the
datasets, and their relations to each other. 112 out of 114 genes were mapped. 
68 edges were mapped with an expected value of 29 edges, again showing that there
were significantly more interactions between genes than expected randomly. The
average node degree was only 1.21. Genes with node degree of at least 6 were:
COL1A2, LOX and DCN.  All three are directly connected to each other.  
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Figure 6: Cornified envelope cluster of genes in String network 
 
The Gene Ontology component “cornified envelope” was functionally enriched. 6 genes
in the GO component were found in a cluster of genes detached from the main network
(Figure 6). The cornified envelope is a very tough and resistant envelope located
underneath keratinocyte membranes that protects the skin [40-41]. Downregulated
cornified envelope genes could partially explain skin sensitivity, disruption, and
weakness in AD. 

Panther Functional Enrichment Analysis 

Upregulated and downregulated genes identified as significant in at least four of five
datasets were submitted to the Gene Ontology Panther bioinformatics functional
enrichment analysis tool to identify any patterns in the disrupted genes. Panther
analysis revealed that the Gene Ontology Biological Process (GOBP) of neutrophil
aggregation was enriched by more than 100 times (p = 1.14E-04) in the list of
downregulated genes. Additionally, the GOBP Sequestering of Zinc Ion was also
enriched by more than 100 times (p = 2.83E-04). The GOBPs of leukocyte aggregation,
sequestering of metal ions, and type 1 interferon signaling pathway were all highly
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enriched as well. In total, 136 GOBPs were enriched in the downregulated genes. The 
first six by fold enrichment value are displayed in the table.  
 

Downregulated Genes Panther Results 

GO biological 
process complete (fold enrichment) p value 

FDR (false 
discovery 
rate) 

neutrophil 
aggregation 
(GO:0070488) > 100 1.14E-04 1.74E-02 

sequestering of zinc 
ion (GO:0032119) > 100 2.83E-04 3.54E-02 

leukocyte 
aggregation 
(GO:0070486) 56.66 3.59E-05 7.42E-03 

sequestering of metal 
ion (GO:0051238) 56.66 3.59E-05 7.32E-03 

leukocyte migration 
involved in 
inflammatory 
response 
(GO:0002523) 40 8.86E-05 1.50E-02 

negative regulation of 
leukocyte mediated 
cytotoxicity 
(GO:0001911) 34 1.36E-04 2.03E-02 

Table 6: Functional enrichment, p-value, and false discovery rates for the top six Gene Ontology 
biological process identified by Panther for downregulated genes. 
 
Amongst the upregulated gene list, there were several GOBPs identified by PantherDB 
however the fold enrichment was significantly less. The highest fold enrichment 
amongst the downregulated gene pathways was >100 while it was only 14.7 amongst 
the upregulated genes.  
 

Upregulated Genes Panther Results 
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GO biological 
process complete 

(fold 
Enrichment) 

 (raw P-
value) (FDR) 

regulation of bone 
mineralization 
(GO:0030500) 14.7 5.12E-06 9.04E-03 

regulation of 
biomineralization 
(GO:0110149) 11.88 1.61E-05 1.83E-02 

regulation of 
biomineral tissue 
development 
(GO:0070167) 11.88 1.61E-05 1.71E-02 

cardiac muscle 
tissue development 
(GO:0048738) 8.25 2.98E-05 2.37E-02 

connective tissue 
development 
(GO:0061448) 7.09 2.26E-05 2.00E-02 

ossification 
(GO:0001503) 6.3 1.71E-05 1.70E-02 

Table 7: Functional enrichment, p-value, and false discovery rates for the top six Gene Ontology 
biological process identified by Panther for downregulated genes.  

miRNA 

56 statistically significant miRNAs were identified in GSE31408 (p < 0.05). None of the 
overexpressed miRNAs passed both cutoff criteria (Fold Change >1.5, p < 0.05). 
However, 13 underexpressed miRNA passing both cutoff criteria were identified.  
 

P.Value logFC miRNA_ID_LIST 

0.00133333 -1.89 SNORD65 

0.00076996 -1.12 hsa-miR-26a 

0.00017998 -1.06 hsa-let-7a 

0.0013918 -1.04 hsa-miR-143 

0.00057997 -9.92E-01 hsa-let-7b 

0.00016403 -9.54E-01 hsa-miR-125b 
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0.00204407 -8.77E-01 SNORD6 

0.02253837 -8.50E-01 hsa-miR-24 

0.00000262 -7.12E-01 
hsa-miR-516a-3p,hsa-
miR-516b* 

0.01926674 -6.93E-01 SNORD2 

0.00007234 -6.29E-01 SNORD38B 

0.02638829 -6.23E-01 SNORD10 

0.00072411 -5.90E-01 SNORD13 

Table 8: 13 miRNAs identified as statistically relevant according to logFC and P-value. 
 
The miRNet software was used to predict gene targets of the 13 downregulated miRNAs [42]. 
The predicted gene targets were screened against the upregulated genes to identify potential 
interactions. For instance, a decrease in expression of a miRNA could lead to an increase in 
expression of its gene targets. FOXM1 was targeted by 6 out of 13 miRNAs. 
 

Gene name MicroRNAs 

FOXM1 

hsa-let-7a-5p 
hsa-let-7b-5p 
hsa-mir-125b-5p 
hsa-mir-143-3p 
hsa-mir-24-3p 
hsa-mir-26a-5p 

TYMP hsa-let-7b-5p 

DSC2 
hsa-let-7b-5p 
hsa-mir-24-3p 

IFI27 
hsa-let-7b-5p 
hsa-mir-26a-5p 

NUP210 

hsa-mir-125b-5p 
hsa-mir-24-3p 
hsa-mir-26a-5p 

MAP3K14 hsa-mir-24-3p 

H2AFX hsa-mir-24-3p 

AKAP13 
hsa-let-7b-3p 
hsa-mir-24-3p 

Table 9: Upregulated genes identified as gene targets for at least one of the 13 downregulated 
microRNAs. FOXM1 was a gene target for six microRNAs. 
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Discussion 
In the present study, five gene expression datasets and one miRNA expression dataset was 
analyzed and commonly differentially expressed genes were identified. 208 genes were 
identified to be biologically relevant and found in at least � studies (94 upregulated, 114 
downregulated). 14 upregulated genes and 11 downregulated genes were identified as 
significant in every dataset. For example, SERPINB4 had a high fold change in all datasets, 
including samples of chronic atopic dermatitis, nonlesional atopic dermatitis, and lesional atopic 
dermatitis. We also found several antimicrobial peptide genes such as S100A7 that were 
overexpressed. The neutrophil and leukocyte aggregation pathways were over-enriched among 
upregulated genes, which makes sense given the role of inflammation in AD. Cytokines and 
interferon signaling were also identified as over-enriched. The 25 genes, including SERPINB4, 
may be involved in molecular mechanisms of atopic dermatitis that are similar or the same 
between various subtypes of atopic dermatitis. 13 miRNAs were found to be underexpressed in 
AD. 6 of the 14 upregulated genes were identified as being gene targets for some of these 13 
miRNAs. FOXM1 was particularly implicated, with 6 of the underexpressed miRNAs targeting it. 
This could explain the consistent upregulation of FOXM1 in all five datasets, with an average 
fold change of 9.53 meaning that FOXM1 was 9.53x more expressed in AD patients than control 
patients. FOXM1 is a transcription factor that is very important in many processes such as DNA 
repair, angiogenesis, and cell cycle progression [43]. It “regulates prolifieration, senescence, 
and oxidative stress in keratinocytes and cancer cells” [44]. Finally, many of the 25 consistently 
disrupted genes have been implicated in skin-related cancers. SERPINB4 is involved in 
squamous cell carcinoma [45]. FOXM1 is upregulated in basal cell carcinoma [46-47]. S100A7 
is overexpressed in epithelial skin tumors [48]. 
 
The results of the study also highlight the need for caution with microarray gene expression 
studies. Out of thousands of statistically significant and relevantly differentially expressed 
genes, 63-64% of genes were only identified in a single study. This shows the great amount of 
variation in expression studies and perhaps serves as a warning. It could be costly and 
dangerous to focus research efforts on genes based on just one study. Aggregating data from 
multiple studies could help account for heterogeneity, methodology differences, and more, 
ultimately providing more reliable and dependable results. One limitation which could also be 
considered an advantage of the present study is that we grouped subtypes of atopic dermatitis 
together, for the sake of having more samples. While this means that we are able to identify 
common gene expression differences across subtypes, it also means that specific important 
gene expression differences in each subtype could be missed. Another limitation of the current 
study is that the datasets came from the United States and Sweden which have majority 
white/Caucasian populations. There could be subtle but clinically relevant racial/ethnic 
differences in AD that should be examined [49-50]. Overall, the present research helps 
elucidate molecular mechanisms of atopic dermatitis with greater confidence. Currently, 
corticosteroids, moisturizers, and immuno-suppressants are being used to treat AD. The 
identified AD-associated biological networks may be useful maps in designing new treatments 
for AD. The 25 consistently disrupted genes may be reliable and helpful drug targets for AD as 
well. Overall, this research provides insights into the molecular mechanisms behind atopic 
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dermatitis and provides leads for treatments and diagnosis tests. The authors recommend 
further analysis into the 25 consistently differentially expressed genes selected in this study, as 
well as research into the interaction of miRNAs and mRNAs in AD disease development and 
progression. 

Data Availability 
Data used in this study were retrieved from the public database, Gene Expression 
Omnibus. 
 

● GSE32924: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32924 
● GSE6012: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6012 
● GSE36842: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36842 
● GSE16161: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16161 
● GSE5667: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5667 
● GSE31408: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31408 
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