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Abstract

Objective:

Modeling of the ophthalmologist’s decision-making process for activity detection in neovascular age-

related macular degeneration with a multi-task convolutional deep neuronal network which takes intra-

and subretinal fluid into account.

Design:

A cohort study to evaluate the multi-task deep learning model for activity detection.

Participants:

n = 70 patients (46 female, 24 male) attended the University Eye Hospital Tübingen between 21.2.2018

and 27.6.2018. 3762 optical coherence tomography B-scans (right eye: 2011, left eye: 1751) were acquired

from them with Heidelberg Spectralis, Heidelberg, Germany.

Methods:

B-scans were graded by a retina specialist and an ophthalmology resident, and then used to develop a

multi-task deep learning model to concurrently predict disease activity in neovascular age-related mac-

ular degeneration along with the presence of sub- and intraretinal fluid.

Main outcome measures:

Performance metrics compared to single-task networks, visualization of the representation driving the

DNN-based decisions using t-distributed stochastic neighbor embedding and analysis of the model’s de-

cisions via clinically validated saliency mapping techniques.

Results:

The multi-task model surpassed single-task networks in accuracy for activity detection. Visualizations via

t-distributed stochastic neighbor embedding and saliency maps highlighted that the network’s decisions

for activity of neovascular age-related macular degeneration were based on the presence of sub- and

intraretinal fluids, the optical coherence tomography characteristics used for treatment decision in clinical

routine.

Conclusion:

Multi-task learning increases the performance of neuronal networks for predicting disease activity, while

providing clinicians with an easily accessible decision control, which resembles human reasoning.

Keywords— deep multi-task learning, age-related macular degeneration, anti-VEGF treatment, saliency maps
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1 Introduction

Age-related macular degeneration (AMD) is a sight-threatening disease affecting the elderly and among the most com-

mon causes of blindness worldwide [38, 60]. Despite its lower prevalence compared to atrophic AMD, 90% of vision

loss due to AMD is caused by the neovascular subtype (nAMD) [17]. Among the basic features of nAMD are subretinal

or intraretinal fluid, which serve as surrogate markers of nAMD activity and can be monitored using optical coherence

tomography (OCT) [51, 41] (Fig. 1).

In nAMD, increased levels of vascular endothelial growth factor (VEGF) lead to formation of new vessels from

the choroidal and/or retinal vasculature. If leakage from these vessels exceeds local clearance rates, liquid builds

up, leading to intra- and subretinal fluid [51]. Intraretinal fluid is assumed to originate from vascular leakage from

intraretinal neovasculaturisation and/or retinal vasculature or from diffusion through the outer retina due to changes

within the external limiting membrane [51]. In contrast, subretinal fluid formation likely results from malfunction of the

retinal pigment epithelium with reduced removal rates [51]. Due to the partially different pathophysiology, intra- and

subretinal fluid can occur simultaneously as well as independently from each other [51].

Treatment with intravitreal anti-VEGF agents can efficiently restore the balance between liquid formation and retinal

removal and are standard of care for nAMD, when sub- or intraretinal fluid are detected via OCT [41]. Since delay of

treatment is associated with vision loss [25, 55, 3], treatment has to be initiated promptly. Also, therapy monitoring

using OCT has to take place on up to four-weekly basis in some cases until the end of life. Due to this high frequency

of visits, the therapy has put a considerable burden on patients, their families and ophthalmological care since its

initial approval in 2006 [14, 2, 42, 50]. Additionally, a future increased need for AMD care has to be expected, since

the number of patients suffering from AMD are thought to rise from 196 million in 2020 to 288 million in 2040 [60].

Hence, automated solutions making the diagnostic processes more efficient have considerable appeal. For example,

deep neural networks (DNNs) have been used for automatic referral decisions [15] and predicting disease conversion to

nAMD [62]. Automated algorithms have been shown to detect both sub- and intraretinal fluid more reliably than retinal

specialists especially in less conspicuous cases [26]. DNNs have been shown to be able to accurately detect retinal

fluids caused by various diseases with OCT scans acquired from different devices [46, 26]. Ideally, such automated

tools serve to support retinal specialists in their decision making. To this end, computational tools need to explain their

decisions and communicate their uncertainty to the treating ophthalmologist [20, 21]. In collaboration, a retina specialist

assisted by an artificial intelligence (AI) tool can outperform the model alone, e.g. for the task of diabetic retinopathy

grading [45].

Here, we develop a convolutional deep learning model based on the concept of multi-task learning [10, 58], that

simultaneously detects intra-, subretinal fluid and disease activity in nAMD. The localization of the fluid plays a decisive

role in the treatment outcome [47, 31, 44] with the simultaneous presence of intra- and subretinal fluid being associated

with the worst prognosis [55]. To this end, we visualize the representation driving the DNN-based decisions using

t-distributed stochastic neighbor embedding (t-SNE) [57, 28] and investigate the model’s decisions using clinically

validated saliency mapping techniques [6]. Thus, our work provides an interpretable tool for the ophthalmologist to

rapidly access the neural network’s decision process both on a population-based as well as an individual-patient level

as a prerequisite for clinical application.

2 Methods

2.1 Data Collection

We acquired 3762 B-scans (2011 right eye, 1751 left eye) of 440 x 512 pixels from 70 patients (46 females, 24 males) at

the University Eye Hospital Tübingen with Heidelberg Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany).

A retina specialist (WI) assessed the presence of intraretinal and subretinal fluid as well as disease activity on each

individual image (Fig. 1). Disease activity was also graded by an ophthalmologist resident (GA). The degree of inter-
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a b c d

Figure 1: Exemplary retinal images (B-scans) with neovascular age-related macular degeneration (nAMD).
Solid and dotted arrows indicate subretinal and intraretinal fluid, respectively. (a): no nAMD activity. (b):
nAMD activity due to subretinal fluid (arrow). (c): nAMD activity due to intraretinal fluid (dotted arrow). (d):
nAMD activity due to both subretinal (arrow) and intraretinal fluid (dotted arrow).

Table 1: OCT Data distribution of subretinal fluid, intraretinal fluid and active nAMD in B-Scans in training,
validation and test sets, respectively. Absolute and relative numbers are shown.

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Ye
s 639 286 848 69 58 101 161 153 269

(0.232) (0.104) (0.308) (0.170) (0.143) (0.248) (0.267) (0.253) (0.445)

N
o 2112 2465 1903 338 349 306 443 451 335

(0.768) (0.896) (0.692) (0.830) (0.857) (0.752) (0.733) (0.747) (0.555)

annotator agreement according to Cohen’s kappa statistic was 0.86. B-scans were assigned to a training, validation or

test set (Table 1), where care was taken to assign all images from one patient to one of the sets to avoid information

leakage. The relationship between the nAMD activity and sub- or intraretinal fluid were captured by Cohen’s kappa

statistic (Table 2), which indicated the independence of the two retinal fluid types. Ethical approval was granted by the

local institutional ethics committee of the University of Tübingen. Due to the retrospective character of the study, the

requirement for patient consent was waived by the ethics committee. The study was conducted in accordance with

the tenets of the Declaration of Helsinki.

Table 2: Agreement of task-specific labels across training, validation and test sets, measured via Cohen’s
kappa statistic, which is essentially a number between -1 and 1. While 1 indicates a full agreement, lower
scores mean less agreement. Negative scores indicate disagreement.

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

n.a. -0.02 0.79 n.a. 0.26 0.75 n.a. -0.02 0.59

Intraretinal
fluid

-0.02 n.a. 0.37 0.26 n.a. 0.65 -0.02 n.a. 0.57
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Figure 2: A deep neural network for simultaneous detection of subretinal and intraretinal fluid as well as
the nAMD activity from OCT B-scans. Given a B-scan, convolutional stack of the InceptionV3 architecture
extracts 2048 feature maps. These are average and max pooled, and fed into a fully connected (dense)
layer with 1024 units for shared representation. Then, task-specific heads specialize into individual tasks
and single units with sigmoid function achieve binary classification based on 256 task-specific features.

2.2 Diagnostic Tasks, Network Architecture and Model Development

We developed a multi-task DNN to detect the presence of subretinal and intraretinal fluid as well as the nAMD activity

from OCT B-scans. While these tasks could have been performed by different networks trained for each particular task,

we adopted a multi-task learning approach and trained a single network to perform these tasks simultaneously (Fig. 2).

As backbone, we used the InceptionV3 architecture [53] via Keras [13]. The backbone was pretrained on ImageNet

[43] for 1000-way classification via a softmax function. We used the InceptionV3 DNN’s convolutional stack as is but

adapted the deeper layers to our multi-task scenario as follows. First, we linked max pooling and average pooling to

the end of convolutional stack. They were followed by a dense layer, which yielded a shared representation with 1024

features. Following the shared representation we added task-specific heads with 256 units. These specialized into their

respective tasks and extracted their own 256-dimensional feature representations. Then, task-specific binary decisions

were achieved by single units equipped with sigmoid functions.

We trained our networks with equally weighted cross-entropy losses for all tasks on the training images: D =

{xn,yn}Nn=1, where yn was a vector of binary labels indicating nAMD activity and the presence of sub- or intraretinal

fluid in an image xn. Parameterized by θ, a DNN fθ(·) was optimized with respect to the total cross-entropy on the

training data: L(D, fθ(·)) = 1
N

∑N
n=1 l(yn, fθ(xn)), where l(yn, fθ(xn)) = −

∑T
t=1 yn,tlog pn,t + (1 − yn,t)log (1−

pn,t), pn was a list of probabilities estimated via the sigmoid functions for different tasks and t was an index into T tasks.

ForT = 1, multi-task learning reduced to single-task learning. To address the class imbalance in data (Table 1), we used

random oversampling (see Section 2.2.2 for details). We also used Stochastic Gradient Descent (SGD) with Nesterov’s

Accelerated Gradients (NAG) [35, 52], minibatch size of eight, a momentum coefficient of 0.9, an initial learning rate of

5 · 10−4, a decay rate of 10−6 and a regularization constant of 10−5 for 120 or 150 epochs (see Section 2.2.1 for longer

training). During the first five epochs, the convolutional stack was frozen and only dense layers were trained. Then, all

layers were fine-tuned to all tasks. The best models were selected based on total validation loss after each epoch and

used for inference on the test set.

2.2.1 Data augmentation and preprocessing

First, we used mixup [64] for data augmentation during training. Mixup generates artificial examples through the convex

combinations of randomly sampled data points. We adapted mixup to our multi-task learning scenario as follows:
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Table 3: Accuracy of ensembles for various degrees of mixing (indicated by α). Gray row indicates the
ensemble of choice for further analysis based on the validation performance for the activity detection task.

Single task

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

Subretinal
fluid

Intraretinal
fluid

Active
AMD

α = 0 1.000 1.000 1.000 0.988 0.971 0.958 0.924 0.950 0.914
α = 0.05 0.983 0.994 0.975 0.971 0.963 0.951 0.906 0.919 0.909
α = 0.1 0.978 0.994 0.948 0.948 0.919 0.929 0.868 0.891 0.856
α = 0.2 0.983 0.991 0.851 0.975 0.946 0.853 0.881 0.909 0.702

Multiple tasks

α = 0 1.000 0.995 0.998 0.973 0.973 0.961 0.914 0.935 0.940
α = 0.05 0.999 0.998 1.000 0.971 0.971 0.966 0.917 0.937 0.942
α = 0.1 1.000 0.997 0.998 0.983 0.968 0.966 0.916 0.957 0.939
α = 0.2 1.000 0.998 1.000 0.971 0.966 0.966 0.894 0.937 0.906

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj , λ ∈ [0, 1]. (1)

Mixing was controlled by λ ∼ Beta(α, α), where α ∈ (0,∞). For α = 0, λ is either 0 or 1, and there is no mixing.

Typical values to enable mixing are in [0.1, 0.4]. While large values may lead to underfitting, longer training aids in

mixing for large α [64]. We used 0, 0.05 0.1, and 0.2 for α and trained networks for 120 epochs when not mixing and

150 epochs when mixing. Also, to allow for a warm-up period when mixing [64], we set α = 0 for the first five epochs.

As a second step in data augmentation, we applied common data augmentation operations such as adjustment

of brightness within ±10%, horizontal and vertical flipping, up and down scaling within ±10%, translation of pixels

horizontally and vertically within ±30 positions and random rotation within ±45 degrees. After all data augmentation

operations, we used an appropriate preprocessing function1 from the Keras API [13].

2.2.2 Quantification of uncertainty via mixup and Deep Ensembles

Quantification of diagnostic uncertainty is crucial for treatment decisions. With a proper management of uncertainty,

diagnostic errors, delays or excess healthcare utilization can be minimized [8]. However, DNNs are typically over-

confident about their predictions and they do not generate well-calibrated and reliable uncertainty estimates for their

decisions [22, 27, 29, 32, 16]. mixup [64] improves the calibration of DNN outputs by smoothing labels through their

convex combinations (Eq. 1) [54]. On top of mixup, we used Deep Ensembles [29] consisting of multiple DNNs. These

DNNs are randomly initialized and then allowed to follow different optimization trajectories to explore different modes

in function space [29, 18]. The ensemble, then, exploits the diversity of multiple predictors in decision-making and

improves upon the single network performance both in accuracy and calibration, even with small numbers of DNNs

trained on standard datasets [29, 18, 39]. Also in a DR detection scenario [5], an ensemble of three DNNs already

performed well in both aspects.

Using the network architecture, hyperparameters and training procedures described above, we constructed our

ensembles with three DNNs. During their training, we also used oversampling with a twist. For each DNN, we over-

sampled training images with respect to a particular task’s labels. This enabled DNNs to train on a balanced dataset

1keras.applications.inception_v3.preprocess_input

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.22276315doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276315
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.5 1.0
Recall

0.0

0.5

1.0
Pr

ec
isi

on
Subretinal fluid

Training: 1.000
Validation: 0.965
Test: 0.922

0.0 0.5 1.0
Recall

Intraretinal fluid

Training: 1.000
Validation: 0.969
Test: 0.957

0.0 0.5 1.0
Recall

Active AMD

Training: 1.000
Validation: 0.979
Test: 0.982

Figure 3: Precision-recall curves for the selected ensemble model. Area under the curve (AUC) values given
for partitions also summarize the overall performance into one number (higher is better).

for their respective tasks while also learning about other tasks, even though the data was not balanced for the other

tasks. Overall, this contributed to the diversity of DNNs, which is essential for ensemble models. DNNs were further

diversified by the randomness in the initialization of dense layers, shuffling of training examples as well as mixing and

data augmentation. In the end, we used the ensemble’s mean output for predictions and quantified uncertainty in terms

of entropy, given the average predictive probabilities.

2.3 Low-dimensional embedding of images

We used t-SNE [57] to obtain further insights into the decision-making process of our ensemble model. t-SNE is a non-

linear dimensionality reduction method, that embeds high-dimensional data points into a low-dimensional space. To

evaluate ensemble-based representations, we concatenated features from ensemble members’ predetermined read-

out layers and performed t-SNE based on them, embedding each B-scan into the two-dimensional plane. We used

openTSNE [40] with PCA initialization to better preserve the global structure of the data and improve the reproducibility

[28]. We used a perplexity of 200 for 1500 iterations with an early exaggeration coefficient of 12 for the first 500

iterations, according to best-practice strategies [28]. Similarities between data points were measured by Euclidean

distance in the feature space.

2.4 Saliency Maps

We used Layer-wise Relevance Propagation (LRP) [7] to compute saliency maps, to highlight the regions in the OCT

images which contributed to the DNN decisions. We have recently shown that a propagation rule known as LRP-

PresetBFlat performs best in obtaining clinically relevant saliency maps from InceptionV3 networks trained to detect

active nAMD from OCT B-scans [6]. Using this rule, we created three saliency maps for each OCT slice, namely, one

for each task: subretinal (cyan), intraretinal (magenta) and diesease activity in nAMD (yellow) (Fig. 6). To improve the

visualization of the salient regions, saliency maps were postprocessed and the maps of each task were combined into

one [6]. Saliency maps were only shown for predictions with an estimated probability greater than 0.5 since previous

work has shown, that especially in absence of disease, saliency maps can lead physicans to overdiagnosis [45].
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Figure 4: Visualization of data via t-SNE of ensemble-based representations. (a) Low dimensional embed-
ding of images based on the penultimate layer features from single-task networks. Training, validation and
test data aligned together and colored with respect to the task-specific labels. (b) Same as in (a) but w.r.t.
features from the shared representation layer of multi-task networks. (c) Same map as in (b) but colored
w.r.t. correct and wrong predictions. (d) Same map as (b) but colored w.r.t. uncertainty min-max normal-
ized to [0, 1].
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Figure 5: Layer-wise visualization of data via t-SNE. Starting just before the first Inception module (a) and
reading out feature representations yielded by every other module (b-f) along with the last Inception mod-
ule (g), the shared representation layer (h) and the nAMD activity detection head’s penultimate layer (i), we
performed t-SNE with the aforementioned settings. Useful representations emerged towards the end of
convolutional stack and the task-specific representation allowed the best separation of nAMD active cases
from those inactive. Exact read-out locations can be found in Appendix (Fig. 7).
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3 Results

We developed an ensemble of three multi-task DNNs to simultaneously detect subretinal fluid, intraretinal fluid and

activity of nAMD on OCT B-scans (Fig. 1). Each DNN consisted of a shared convolutional core combined with pooling

operations which yielded a shared representation (Fig. 2). This representation served as the basis for the decision of

the three task heads. The idea behind this approach is that the DNN can benefit from the shared general purpose

representation induced by combining information from different tasks. We first investigated the performance of the

multi-task model in the three tasks. To this end, we compared the multi-task model with more specialized single

task models, where we constructed three DNNs, one for each task, which did not share any representation but were

trained independently. All DNNs were trained on a training set acquired during clinical routine at the University Eye

Hospital in Tübingen (see Table 1 and Methods). We selected the multi-task model with the best accuracy for the activity

detection task on the validation set and report accuracy values computed on an independent test set (Table 3). Overall,

we found the multi-task model to be well calibrated on the test set (Adaptive expected calibration error [16] of 0.0147

for subretinal fluid, 0.0104 for intraretinal fluid and 0.0263 for active AMD), suggesting that uncertainty reported for the

decisions of the DNN-based ensemble reflect the true model uncertainty.

We found that the performance of the multi-task model surpassed the single-task model performance in disease

activity detection, reaching an accuracy of 94.2 % for the multi-task model vs. 91.4% for the single task model (Table 3,

Fig. 3). Interestingly, this multi-task model optimized for AMD activity detection performed slightly worse than the

single-task models for the two tasks of detecting sub- and intraretinal fluids (subretinal fluid: accuracy of 0.917 vs.

0.924 for multi-task vs. single-task; intraretinal fluid: 0.937 vs. 0.950). This suggests that the representations learned

by the multi-task DNNs are indeed a trade-off between achieving high performance on all three tasks, and as a result

on activity detection, but somewhat sacrifice single-task detection performance.

We thus further studied the representations learned by the multi-task model to gain insight into its decision making-

process. To this end, we extracted the representation of individual OCT scans at various levels of processing throughout

DNNs (Fig. 7) and created two-dimensional embeddings of these via t-SNE (Fig. 4 and 5). In these visualizations, each

point in two-dimensions corresponds to an individual OCT scan. OCT scans, which are similar to each other according

to the learned representation, are mapped to nearby points. While t-SNE representations are generally useful for

exploratory analysis if some guidelines are followed, one should be careful interpreting distances in the embedded

space — e.g. the size of the white space between clusters is rather an effect of the algorithm not the data [28, 9].

We first investigated the final representation based on which the single task DNNs and the individual task heads of

the multi-task DNNs make their decision (Fig. 4). We colored the individual points according to whether the OCT scan

was labeled as containing evidence for subretinal or intraretinal fluids, as well as overall AMD activity. Reflecting the

high task accuracy, most inconspicuous OCT scans were placed in a clearly separated island, clearly distinct from the

OCT scans with any of the disease labels (Fig. 4a, b). For the single-task DNNs, additional well-separated clusters were

found, indicating the learned task-label (Fig. 4a). For example, OCT scans with subretinal fluids present formed a single

cluster, clearly distinct from the OCT scans without this label. Interestingly, this was also the case for the active AMD

task, for which no clearly distinct subclusters could be seen.

In contrast, for the embedding extracted from the shared representation of the multi-task model, OCT scans labeled

with subretinal fluid formed a well-separated cluster at the bottom right, as did scans with intraretinal fluid labels at

the top right (Fig. 4b). Interestingly, there was a small cluster in between these two which contained scans labeled

with both. Consequently, OCT scans labeled with active AMD encompassed all three of these major disease related

clusters, suggesting the multi-task DNNs indeed learned separate representations of the two fluid types which were

then used by the individual task heads. The few incorrectly classified OCT scans could be found within their clusters to

be placed close towards other clusters (Fig. 4c) in areas where we also found examples with high classifier uncertainty.

Thus, decisions were more uncertain e.g. for inactive OCT scans that were more similar to OCT scans with signs of

sub- or intraretinal fluid, sometimes leading the DNN to incorrect decisions (Fig. 4d). In clinical application of such

an algorithm, high uncertainty could thus be used to select individual B-scans warranting further scrutiny through

experienced clinicians.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.22276315doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276315
http://creativecommons.org/licenses/by-nc-nd/4.0/


We next studied how the multi-task representation emerged through processing in the network (Fig. 5). While in

the initial layers data points representing active nAMD were still uniformly distributed (Fig. 5, a-c), a clear separation

of active nAMD cases developed gradually in later layers of the DNN (Fig. 5, d-g), leading to best separation in the

shared representation (Fig. 5, h). The decision head for active AMD refined this representation only very little (Fig. 5,

i). This analysis is in agreement with previous work showing that lower layers in DNNs typically extract very general

task-independent image features that are gradually refined to disentangle the representation of the task-relevant image

classes [63, 19].

We next analyzed if well known saliency maps can also be used in case of the multi-task DNNs to identify which

image regions in individual OCT scans were relevant for the decision. Specifically, we were interested in whether

the saliency maps for the subtasks of sub- and intraretinal fluid detection obtained from the multi-task model allowed

reasoning about evidence specific to these tasks. To this end, we generated saliency maps on four exemplary OCT scans

using LRP [7] (Figure 6). For each OCT scan, we generated three maps, one for each of the three tasks, propagating the

task-information back from the task head.

We first analyzed an OCT scan with clearly active AMD and both sub- and intraretinal fluid present (Figure 6a). The

active AMD saliency map focused on intraretinal fluids, which were also clearly visible in the task-specific saliency map,

and faintly highlighted regions with subretinal fluids. The subretinal fluid saliency map, however, clearly highlighted

subretinal fluids. In two further example scans with either intra- or subretinal fluid, respectively, active AMD saliency

maps clearly corresponded to the individual task maps (Figure 6b,c), indicating that the saliency maps obtained from the

multi-task DNN can support clinical decision making about active AMD, but also allow clinicians to identify evidence

in the relevant sub-tasks of finding sub- and intraretinal fluids. We also identified rare failure cases of the obtained

saliency maps (Fig. 6d): In one example, an OCT scan was falsely classified positive for subretinal fluid with a confidence

of 0.614, because intraretinal fluid was falsely classified as subretinal fluid. We hypothesize that the DNN misclassified

the superior border of the intraretinal fluid as photoreceptor layer detached from the retinal pigment epithelium. The

assumption, that the DNN primarily recognizes contrast-rich interfaces such as sub- and intraretinal fluid is further

supported by the false labeling of cystoid spaces within choroid in Fig. 6b and d, while in a smoother, lower-contrast

choroid saliency maps do not highlight any structures (Fig. 6. This suggests that beyond such proof of principle studies,

larger and more variable datasets will be needed to train multi-task DNNs to more completely rule out such artefacts.

We additionally generated saliency maps from the single task DNNs (Fig.8). Compared to the saliency maps gen-

erated from the multi-task models, those saliency maps appear slightly more defined, but highlighted similar regions,

indicating that single task relevant information could be extracted from the multi-task DNN. Interestingly, Fig.8)d pro-

vides additional support for the multi-task DNNs, showing that independently trained single task DNNs can make seri-

ous mistakes in the lack of information shared between diagnostic tasks. Multi-task networks are more informed about

their tasks (Fig. 6d).

4 Discussion

In this study, we developed a machine learning model based on the concept of multi-task learning to simultaneously

detect subretinal fluid, intraretinal fluid as well as disease activity in OCT B-scans of nAMD patients. We showed

that a multi-task model, which takes the presence of intra- and subretinal fluid into account to detect disease activity

in nAMD, surpassed a single task model regarding accuracy in this task. Furthermore, our visualization of the multi-

task model’s decision-making process via t-SNE demonstrated that in later layers of the multi-task model, inactive and

active nAMD B-scans increasingly formed different clusters. Additionally, within the active AMD B-scans, we observed

a growing separation in three distinct clusters, each containing OCT B-scans with either subretinal, intraretinal or both

fluid types. In contrast, this separation could not be seen in the single task models of the respective tasks. Saliency maps

of exemplary individual B-scans of the three tasks further corroborate that task-relevant information can be extracted

from the multi-task networks, suggesting that a multi-task DNN can serve as a basis for an explainable clinical decision

support system for nAMD activity.

Overall treatment burden of nAMD measured in disability-adjusted life years as well as the economic burden have
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Active AMD due to 
subretinal and intraretinal fluid Subretinal fluid: 0.953 Intraretinal fluid: 0.998Active AMD: 1.000

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.373 Intraretinal fluid: 0.976Active AMD: 0.950

Active AMD due to 
subretinal fluid Subretinal fluid: 0.987 Intraretinal fluid: 0.005Active AMD: 0.992

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.614 Intraretinal fluid: 0.890Active AMD: 0.721

a

b

c

d

Figure 6: Exemplary saliency maps for four optical coherence tomography (OCT) images. The first column
displays the OCT B-scan with the corresponding labeling of a retinal specialist. Second to fourth column
show saliency maps and the network’s confidence for active AMD (yellow), subretinal fluid (cyan) and
intraretinal fluid (magenta). Note, that saliency maps are only shown in case of confidence > 0.5. Supple-
mentary saliency maps obtained from single-task models can also be found in Fig.8.
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decreased since the approval of anti-VEGF [61, 33]. However, there is still a high number of patients who discontinue

treatment [59]. Patients named the need for assistance, either in the form of a travel companion or a family member,

as the main reason for dropping out of therapy [50], and quoted traveling illness as a major reason for therapy discon-

tinuation [24]. Additionally, recurrence of quiescent disease requiring prompt treatment is common, making life-long

monitoring necessary [4]. For these reasons, automated solutions allowing monitoring close home or even at home are

promising technologies to increase treatment rates, even more in a patient population, that has difficulties seeing an

ophthalmologist [49, 12]: They provide easier access and reduce the disease burden on the individual [34]. Automated

solutions for fluid detection have further gained popularity during the Covid-19 pandemic, which showed the devas-

tating effects of delay or interruption in VEGF treatment of nAMD on visual function [4, 55]. However, despite promising

results in laboratory settings, real-world data revealed significantly lower performance rates of home-based OCT with

in particular subretinal fluid being overlooked by the system [30]. This shows the necessity of further developments on

the machine learning side to guarantee reliable use, with multi-task learning as suggested in this study being a viable

option.

Beyond that, a recent meta-analysis provided evidence of varying influences of subretinal and intraretinal fluid on

the visual outcome in nAMD patients [11]. Stable subretinal fluid might not affect visual outcome, while fluctuations in

intraretinal fluid during treatment seem to negatively influence visual acuity [11]. For this reason, treatment decisions in

nAMD solely on a yes/no basis may not meet future treatment guidelines, which might rather require a sophisticated

decision depending on the present fluid type for or against an anti-VEGF injection. Our analysis shows that this insight

is not provided by single task DNNs for nAMD activity detection and thus argues for multi-task DNNs as backbone in

clinician support system.

Ophthalmology has recently seen a development of various artificial intelligence systems, yet their use in clinical

routine remains rare, despite a few systems now being available on the market [1, 37]. One big barrier is the concern

of potential harm of the patient-physician relationship going hand in hand with the lack of trust in those systems [23].

Here, we combined multi-task DNNs with different visualization methods to give an insight into the DNNs’ reasoning

and increase transparency. First, we used t-SNE as visualization method for high-dimensional data [57, 28] (Fig. 4) to

present the decision-making process of the model. We showed that the two-dimensional embedding of the shared

representation of the multi-task model nicely separated OCT B-scans in distinct clusters according to the presence of

subretinal or intraretinal fluid or both fluid types (Fig. 5). In comparison, single task DNNs for active nAMD detection

only separated two clusters of OCT-scans, indicating absence or presence of disease (Fig. 4). The visualization of the

multi-task learning via t-SNE provides thus a rationale for why certain OCT B-scans were graded as active for nAMD,

which cannot be seen in a visualization of the single task algorithm (Fig. 4). It suggests that in concurrently learning basic

features of nAMD activity, namely intra- and subretinal fluid [51], multi-task learning increases prediction accuracy for

the main task of active AMD. Multi-task learning therefore potentially increases ophthalmologist’s confidence in an

algorithm since visualization via t-SNE shows, that reasoning resembles their own (Fig. 5). In the future, the multi-task

system could also be extended for other signs indicative of active nAMD such as hard exsudates, pigment epithelial

detachment or hyperreflective foci, which we did not study here due their comparably rare occurrence [51].

Overall high accuracy and reliability of a DNN might not be sufficient for trust and use in clinical routine, since best

medical advice has to be given to an individual patient. In a second step, we therefore analyzed the multi-task model’s

decision on saliency maps of individual OCT-scans. Saliency maps highlight critical regions for the model’s decision

and thus allow a quick visual control of its reasoning. However, it needs to be kept in mind, that first various methods

of saliency map generation exist with different degrees of agreement with clinical validation [6, 48, 56] and secondly,

saliency maps can lead to overdiagnosis [45], while some methods have also been shown to generate maps indepen-

dent of the final decision of the algorithm [36]. Therefore we only displayed saliency maps in case of a confidence of

the algorithm > 0,5. Compared to saliency maps of single task DNNs, multi-task saliency maps seem to draw slightly

less sharp contours, however, there is good overlap between regions used for active AMD detection and those for

subretinal and intraretinal fluid.

Future studies will need to assess how well these multi-task learning results transfer from the our homogeneous

data sample acquired at one tertiary center in Germany with one single OCT device (Spectralis (Heidelberg Engineering).

The generalization to other populations as well as OCT devices from other device manufactures, and in particular

recently developed mobile devices, needs to be assessed. However, we show as a proof-of-principle study that multi-
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task learning increases performance in a complex main task, namely activity recognition in nAMD and at the same time

increases overall explainability of the neural network’s decision-making as well as the interpretability of the DNN’s

decision on patient’s individual results. It thus helps to overcome barriers to clinical application by mimicking the

human process of making a diagnosis taking into account several disease features.
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Appendix

Figure 7: Read-out locations within the convolutional stack of the InceptionV3 architecture (indicated by
big black arrows). In addition to these, we used the shared representation layer and task-specific layers
of our multi-task networks (see Fig. 2). Base figure was obtained from https://cloud.google.com/tpu/
docs/inception-v3-advanced .
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Active AMD due to 
subretinal and intraretinal fluid Subretinal fluid: 0.998 Intraretinal fluid: 1.000Active AMD: 0.995

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.205 Intraretinal fluid: 1.000Active AMD: 0.951

Active AMD due to 
subretinal fluid Subretinal fluid: 1.000 Intraretinal fluid: 0.000Active AMD: 1.000

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.161 Intraretinal fluid: 0.993Active AMD: 0.361
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Figure 8: Supplementary saliency maps for the OCT images shown in Fig.6. These were obtained from
single-task models.
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