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Abstract

Motivation: ANOVA Simultaneous Component Analysis (ASCA) is a popular method for the analysis of
multivariate data yielded by designed experiments. Meaningful associations between factors/interactions
of the experimental design and measured variables in the data set are typically identified via significance
testing, with permutation tests being the standard go-to choice. However, in settings with large numbers
of variables, the “holistic” testing approach of ASCA (all variables considered) often overlooks statistically
significant effects encoded by only a few variables.

Results: We propose Variable-selection ASCA (VASCA), a method that generalizes ASCA through
variable selection, augmenting its statistical power without inflating the Type-I error risk. The method is
evaluated with simulations and with a real data set from a multi-omic clinical experiment. We show that
VASCA is more powerful than both ASCA and the widely-adopted False Discovery Rate (FDR) controlling
procedure; the latter is used as a benchmark for variable selection based on multiple significance testing.
We further illustrate the usefulness of VASCA for exploratory data analysis in comparison to the popular
Partial Least Squares Discriminant Analysis (PLS-DA) method and its sparse counterpart (sPLS-DA).
Availability: The code for VASCA is available in the MEDA Toolbox at
https://github.com/josecamachop/MEDA-Toolbox

Contact: josecamacho@ugr.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction blood specimens changes when altering the therapeutic strategy (i.e., the
. . . S type of drug). If a single response is considered, the classical approach to
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variation is Fisher’s analysis of variance (ANOVA) (Fisher, 1918). To

(variables) of interest. As an example, imagine that blood samples are o ; 7 )
extracted from two cohorts of cancer patients treated with two distinct assess the significance of such effect, a given test statistic (e.g., the F ratio)

drugs and characterized through chromatographic measures; one may
then want to understand if and how the chromatographic profile of these

is used to compute Fisher’s p-value, which is then compared with certain
threshold for statistical significance. For multivariate responses (current
state of the art in, e.g., omics sciences like genomics, transcriptomics,
proteomics or metabolomics), a widely adopted approach is to conduct
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multiple (univariate) tests over the individual variables, in an attempt
to identify and select the specific responses significantly affected by a
given experimental factor. A univariate test statistic (as in ANOVA) and
corresponding p-value is therefore obtained for each variable. Statistical
significance thresholds in such multiple testing are typically adjusted
(corrected) in order to identify as many significant variables as possible,
while keeping the number of false positives under control according
to some criterion; well-known examples are the Bonferroni correction
to control the family-wise error rate (FWER), and the Benjamini-
Hochberg (BH) and Benjamini-Yekutieli (BY) procedures (Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001) to control the False
Discovery Rate (FDR). FDR-controlling procedures (or simply, FDR
methods) are particularly appealing in multivariate settings with large
numbers of variables due to their increased statistical power—they allow
to identify more significant associations due to the less conservative p-
value correction compared to e.g., the Bonferroni corrrection. Thus, FDR
methods—and particularly the BH procedure—have been widely used for
multiple significance testing in omics data. However, as they are based
on univariate tests, FDR methods do not take into account the possibly
complex multivariate structure underlying the data. Indeed, the effect of
an experimental factor may be reflected as certain inter-dependencies or
combinations of several measured variables (e.g., a linear combination
of responses), rather than simply as variation within individual variables.
This limits the detection power of the FDR approach.

An alternative strategy to treat multiple responses is to apply
multivariate testing procedures, such as Multivariate ANOVA (MANOVA)
(Warne, 2014). These methods replace multiple univariate tests by a
single multivariate one to assess the statistical significance of the ANOVA
model, including all the variables in the data set. This avoids the need
for multiple-testing corrections, but suffers from the effects of statistical
noise, particularly when the number of variables is large, leading to a
remarkable lack of discriminatory power. The multivariate test statistic
often contains noisy contributions from a large number of (insignificant)
variables, and meaningful associations of factors affecting only a few
variables can potentially be buried within the overall statistical noise.

ANOVA Simultaneous Component Analysis (ASCA Smilde et al.
(2005); Jansen et al. (2005)) is one popular multivariate extension of
ANOVA, widely employed in, e.g., chemistry, biology and biomedicine
(Smilde et al., 2005; Nueda et al., 2007; Bevilacqua et al., 2013; De Luca
et al., 2016; Du et al., 2017; Firmani et al., 2020). It combines the
variance factorization and inference capabilities of ANOVA with the
exploratory power of Principal Component Analysis (PCA). In ASCA,
the statistical significance of factors’ and interactions’ effects is typically
estimated by permutation testing (Anderson and Braak, 2003; Vis et al.,
2007): basically, the data variation induced by such effects is contrasted
against an empirical null-distribution obtained by resampling. Albeit this
strategy shows notable advantages compared to other testing approaches
(Vis et al., 2007), it inherits the limitations of multivariate testing. Indeed,
the “holistic” testing approach of ASCA (all variables considered) often
fails to find any statistical significance for factors associated with only a
reduced sub-set of variables.

In this article, we propose a generalization of ASCA by introducing
a new method for variable selection, termed Variable-selection ASCA
(VASCA). The main idea is to incorporate variable selection in the
multivariate permutation testing procedure of ASCA to robustly assess the
statistical significance of the experimental model. The proposed testing
procedure attains improved detection power without compromising the
Type-1 error risk, while still being able to fully capture the inherent
multivariate nature of the data. The enhanced statistical power brought
by variable selection leads to improved ASCA modelling; for a given
effect (factor/interaction), VASCA identifies significant associations with
a selected sub-set of variables, filtering out those not accounting for the

said effect, and narrowing down the subsequent ASCA analysis to a
reduced amount of meaningful responses.

VASCA is here assessed with simulations and with a real data set from
a multi-omic clinical experiment, and compared to ASCA and the BH
(FDR) method in terms of statistical power, and to Partial Least Squares
Discriminant Analysis (PLS-DA) and its sparse counterpart (SPLS-DA) in
terms of exploratory power. We also include a comparison with an early
approach for variable selection in ASCA, the ASCA-genes method by
Nueda et al. (2007).

2 ANOVA Simultaneous Component Analysis
(ASCA)

Following the idea of ANOVA, ASCA is based on several steps:
(1) factorization of the data according to the factors/interactions of the
experimental design; (2) significance testing (based on permutation tests)
for factors/interactions; (3) visualization of significant factors/interactions
using Principal Component Analysis (PCA) to understand separability
among levels; and, optionally, (4) post-hoc testing of levels using
confidence intervals.

2.1 Factorization of the data

Let X be the N x M data matrix collected in a designed experiment.
For simplicity and without loss of generality, we will take the example of
a design with two fixed factors. The data in X can be decomposed as

X=1mT+A+B+AB+E 1)

where 1 is a vector of ones of suitable length, m represents the overall
mean (i.e., a vector with the means of all the measured variables),
A and B represent the factor matrices, AB the interaction matrix
and E the residual matrix. The idea behind this decomposition is to
partition the variance observed in the data set X, according to the
different factors/interactions of the experiment. In this paper, we use the
technique referred to as ASCA+ (Thiel et al., 2017) to account for mild
unbalancedness in the data. Basically, the decomposition is derived as the
least squares solution of a regression problem, where X is regressed onto
a coding scheme C built from the experimental design:

X=CO+E=10,+C10,4+CpOp+CuyupBOsp+E (2)

where C = [1,C 4, Cp, C4p] is defined following Thiel ez al. (2017)
and ©® = [0.,,,0 4,05, 0 4] and E are obtained as

e=(cTo)"'c™x 3)

E=X-CO “4)

Thus, the factorized data associated with a given factor/interaction Z is
computed as Z = Cz©® z. This solution minimizes the variance in the
residual matrix E.

2.2 Statistical significance testing

Permutation testing in the context of ASCA can be performed by
randomly shuffling the rows of X in Equation (3), yielding a new set
of regression coefficients:

e = (cTo)~tcTx> 6))

where superscript * stands for permuted. Then, the permuted factorized
data for any factor/interaction Z is re-computed as Z* = Cz®?7, and
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the error as E* = X* — CO®*. Equivalently, one can permute the rows
or values in C instead of those in X (Camacho et al., 2022).

Permutation tests are carried out by comparing a given statistic,
computed from the ASCA-factorized data set, with the corresponding
statistic computed from hundreds or more permutations. The p-value is
obtained as'

C#{SE > Sik=1,... K} +1
P= K+1

©)

where S refers to the statistic computed from the factorized data matrix,
S}, is the statistic corresponding to the k-th random permutation, and K
is the total number of permutations. Thus, the p-value yields an empirical
estimate of the probability of obtaining a result as (or more) extreme as
the observed one when the null hypothesis holds.

There are several choices for the ASCA test statistic—see Camacho
et al. (2022) for a recent review on the permutation approach and the
relevance of the chosen statistic. The (Type-I) sum-of-squares of the
factor matrix HZ||%, was proposed as the original one (Vis et al., 2007).
Motivated by the data visualization aspect of ASCA, which typically
uses the first 2 Principal Components (PCs), Zwanenburg et al. (2011)
proposed testing the sum-of-squares of the first 2 PCs of the factor matrix.
This is also used by Thiel et al. (2017). More recent variants of ASCA
(Marini et al., 2015; Martin and Govaerts, 2020) employ the F-ratio,
computed as the ratio of the mean sum-of-squares of the factor/interaction
and the suitable next order factor/interaction (often the residuals). Finally,
in ASCA extensions for unbalanced data (Thiel et al., 2017; Martin
and Govaerts, 2020), the Type-III sum-of-squares is proposed; this is
computed from the difference between the residuals in the reduced and
full models (see references above for more detail).

2.3 Visualization and Post-hoc tests

Several visualization methods have been proposed that combine the
ANOVA-like decomposition in Equation (2) with subspace visualization,
in particular with PCA. Among these, ASCA and ANOVA-PCA (APCA)
are closely related (Zwanenburg et al., 2011; Thiel et al., 2017) and both
share the same approach in the factorization and inference (significance
testing) steps, prior to visualization. For visualization and post-hoc
testing, APCA performs PCA on each significant factor/interaction matrix
plus the unexplained variance: Z + E. ASCA, however, carries out PCA
on Z, and then visualizes the projection of Z + E in the corresponding
score plot. In both approaches, the score-plot is used for the visualization
and possible significance testing (Liland et al., 2018) of the differences
among levels. In Figure 1, a simulated example of visualization with
confidence intervals is presented.

Since this paper is focused on the statistical significance testing aspect
of ASCA (permutation testing), the proposed solution can be applied to
both ASCA(+) and APCA(+), but we will focus only on the former.

3 VASCA

VASCA is based on breaking down the single test statistic computed
for significance testing in ASCA (all variables considered), i.e., S in eq.
(6), into variable-wise statistics SV for v € {1, .., M}. This derivation is
straightforward for any choice of the statistic (see previous discussion in
Section 2.2) based on the sum-of-squares, since this can be computed for
each variable independently, and it holds that S = > S”. Since the F

! Please, note in the equation we assume that the higher the statistic the
more significant. We will maintain this assumption during the rest of the

paper.
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Fig. 1: Example of ASCA visualization with confidence intervals in
artificial data.

ratio is also based on (mean) sum-of-squares, the computation of variable-
wise F ratios is also direct, but the previous equality does not necessarily
hold. For the rest of the paper we will refer to the standard test statistic of
ASCA, i.e., the Frobenius norm (sum-of-squares) of the factorized data
matrix ||Z||%.

VASCA starts by sorting out the variables in decreasing order of
Sv. Then, it iteratively assesses statistical significance of the data matrix
composed of the first m variables in this ordering, with m ranging from
1 to the total number of variables M. The null-hypothesis is rejected for
the largest significant data matrix, and the subset of selected variables
therein are called significant. In this regard, VASCA is at the same time
i) a multivariate version of the step-up BH (FDR-controlling) procedure
(Benjamini and Hochberg, 1995) and ii) a generalization of ASCA, since
VASCA includes the assessment of significance for the entire data set with
M variables. Therefore, VASCA is at least as powerful as ASCA.

Let us define:

d,, = arg max Z Sv 7
{v1,...,om}e{1,...,M} V=01, 0m
as the sub-set of m variables ®,, = {v1,...,vm} that maximizes

the sum statistic ZvG@m SV. We refer to S®m as the corresponding
multivariate statistic for this sub-set, i.e., that computed from the whole
data (sub)matrix rather than from individual variables. For S defined as
the Frobenius norm (sum-of-squares) of a factorized data matrix, it holds:

§Pm o= 3y~ Sv ®)

veED,,

Testing for significance in VASCA requires careful consideration of
the permutations in the selected variables. This is key to provide a
meaningful null-distribution and to guarantee the statistical power of
the approach. Rather than using multiple-testing corrections like in the
BH procedure, we embed the variable-selection mechanism within the
permutation testing. Within each permutation k£ we reorder the variables
in decreasing order of the permuted, variable-wise statistic (S”); . For a
given number of variables m, the sub-set of variables in the permutation
V=V1,..,Um (SU)Z:’ $0
that selected variables can (and will most likely) be different to those
in ®,,. Then, we recompute the corresponding statistic (Sq)m);;. The
set of statistics (S®m ). for different permutations & (and sub-sets of m

is recomputed as (., )5 = argmax,, ., >
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variables) characterizes the null-distribution and is employed to compute
the p-value for statistical significance:

_ #{(STm) = 8%k =1, K} +1

Kl (©)]

m

This means that in any given sub-set of m variables, significance is
assessed by contrasting the true S® with the permuted (S®m );» where
the specific m variables may not be the same. For some statistics, this
may require some form of normalization. In this paper we always use
|Z]|2. as the test statistic, and we auto-scale (normalize to 0 mean and
unit variance) the data so that further normalization is not necessary.

Given that we select the maximum m for which significance is found,
i.e., max(m) with p,, below the significance threshold, and due to
the multivariate nature of VASCA, (sub)matrices called significant may
indeed include some non-significant variables. This is due to the filtering
nature of multivariate models and may be seen as a disadvantage over
univariate tests such as BH (FDR). However, from the set of m selected
variables, a subsequent analysis based on PCA can help distinguishing
variables that are truly relevant from those that are not. To this end, we
propose a bootstrapping procedure to identify PCA loadings (variables)
with statistically significant values—i.e., significantly different to 0. Thus,
all variables corresponding to non-significant loadings are discarded.

3.1 Connection with the ASCA genes method

The closest approach to VASCA is the ASCA-genes method by Nueda
et al. (2007). ASCA-genes identifies relevant variables with permutation
testing, but with two main differences in comparison to VASCA. First, the
main statistic under analysis in ASCA-genes is the PCA model leverage;
the residuals, measured by the squared prediction error (SPE), are also
used to differentiate among types of variables. Most relevant variables
are expected to present a high leverage and low SPE. Variables with high
SPE and leverage are considered as poorly modelled but still potentially
interesting. High SPE variables with low leverage are considered odd.
Variables with low leverage and low SPE are considered not relevant.
Rather than splitting the variance of the model into leverage and SPE,
VASCA makes use of the complete sum-of-squares (or a similar statistic)
in the factorized matrices, which simplifies interpretation, is more flexible
(e.g., can be applied to models with 1 component) and is a more
established method for inference in ASCA. It is also more consistent with
the methodology of ANOVA: if the factor/interaction is not significant, the
comparison between levels (in this case with PCA), which often implies
multiple comparisons, is not performed. Second, and most importantly,
ASCA-genes is based on a regular permutation approach, while VASCA
is grounded on the reordering of variables within each permutation. This
extra precaution is key to avoid false positives.

4 Evaluation in simulation examples

We devised four simulated experiments in order to compare VASCA
with ASCA and the BH procedure to control the FDR, simply referred
to as FDR from now on. For simplicity and for the sake of clarity,
in the first three examples we simulate a single factor with two levels,
where each level includes 40 subjects (thus a total of 80) for which 400
variables are collected. This choice is motivated by the nature of typical
omics experiments (Tenorio-Jiménez et al., 2019). In the last example, we
consider a two factor/multi-level problem.

To simulate the background in the multivariate data X, we used the
SimuleMV tool (Camacho, 2017). SimuleMV allows to simulate a data
set with a certain level of correlation. The inputs to SimuleMV are the size
of the data matrix (number of rows and columns) and a level of correlation

between O (absence) and 10 (maximum correlation). In our simulations,
we chose level 7. Each simulated experiment is repeated 100 times and
average and standard deviation results are presented.

For comparison purposes, FDR was implemented from the (empirical)
probability distribution obtained through permutation testing, and
corrected p-values (through the BH procedure) were computed. In all
cases, the permutations used the same seed for the random generation
engine in the three methods, ASCA, FDR and VASCA. P-values are
computed with 1000 permutations.

4.1 Example 1: Non-significant relationship

The first example illustrates the case where the data matrix X and
the class coding C for the factor are unrelated. We generate X with
the SimuleMV tool. C is obtained in two steps: first, we draw 80
observations [; from a normal distribution with zero mean and standard
deviation one; second, we assign each of the 80 rows of X to one of the
classes depending on the sign of the corresponding observation /;, and
we construct C following that assignment. We repeat this data generation
procedure 100 times. Given the independent generation of X and C, we
expect no statistical significance to be found in the analysis by any of the
methods.

Results are shown in Figure S1, which depicts the ordered p-values
obtained for FDR and VASCA, and the single p-value (for the complete
matrix X) for ASCA. Average results are shown with the corresponding
lines and the shadowed areas represent standard deviations. Typically
considered thresholds for statistical significance at 0.05 and 0.01 are also
included as control limits. Note that vertical axes are in logarithmic scale.

We can see that all methods yield p-values well above the control
limits, illustrating their robustness against Type-I errors. We can also see
that VASCA generally matches ASCA in this example. Note the exact
match at 400 variables, as expected. Similar results are obtained for X
drawn at random from a multinormal distribution.

4.2 Example 2: Significant one-to-one relationships

We start by generating C and X as in the previous example. Then, we
modify three variables in X so that a significant bias is induced between
observations from the two classes.The simulation is designed to generate
a one-to-one relationship between each of the three variables and the
simulated factor in C. We expect both the FDR method and VASCA to
identify these relationships, but because they are only present in 3 out of
the 400 variables, we expect ASCA to overlook it.

Results are presented in Figure 2. As expected, FDR and VASCA
systematically identify the one-to-one relationships (p-value < 0.001 for
the first variables), while ASCA identifies the factor as non-significant,
well above the control limits. Again, we can see that VASCA exactly
matches ASCA for the complete set of 400 variables, since the former
generalizes the latter. This example illustrates the variable selection
capability of VASCA as a clear advantage over ASCA.

The zoomed image in Figure 2 reflects that VASCA identifies models
up to 6-10 variables as significant (p-value < 0.001 for 6 variables, p-
value < 0.01 for 10). Contrarily, FDR accurately identifies only three
variables as truly significant. The outcome of VASCA is a consequence
of the filtering nature of multivariate models, i.e., models with 6/10
variables are called significant, even when only 3 of these variables are
truly associated with the factor. Significance results are however refined
in the subsequent analysis step of VASCA. To see this, let us proceed
with the workflow of VASCA, by visualizing the factorized data with
PCA in Figure S2. The scores, shown in panel A, clearly distinguish
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Fig. 2: One-to-one relationships between 3 variables in X and C.
Comparison of p-values computed with FDR, ASCA and VASCA (with
bootstrapping).

the two classes, confirming the significance of the model?. The loadings
in panel B show that 3 variables are by far the most relevant of the 6
under study (shown by the magnitude of the loadings). The bootstrapping
intervals indicate that only those three variables are statistically significant
(loadings significantly different from 0). We applied the same bootstrap
approach to the 100 repetitions in the simulation, to depict a curve of
significance for VASCA + bootstrapping in Figure 2, showing the same
accuracy as the FDR method at a p-value threshold of 0.01.

Finally, we wanted to check what would happen if we repeat the same
simulation scheme of the example, but with a much smaller bias in the
three variables, so that the variance that reflects the connection between
them and the factor is 10 times smaller than in the previous case. The
result is shown in Figure S3 We can see that the FDR does not detect a
significant relationship on average anymore. VASCA, however, shows a
higher statistical power and determines on average a p-value < 0.05 for
the most significant variable. This higher power is the result of VASCA
taking advantage of the correlation between the three variables associated
to the factor.

4.3 Example 3: Multivariate relationship

In this example, we generate X with the SimuleMV tool except for
three variables that are drawn from a normal distribution with mean
zero and standard deviation one. We thus make these three variables
independent from the rest and no spurious correlation is created between
C and X. Again, C is obtained in two steps: we first obtain 80 values
l; by summing the three normal variables in X; then, we assign each
of the 80 rows of X to one of the design levels depending on the sign
of the corresponding sum, and we build C following that assignment.
With this approach, we have created an additive multivariate relationship
between the three variables in X and C. Therefore, unlike the previous
example, we need to consider the combination of the three variables to
properly differentiate the aforementioned levels. Additive multivariate
relationships are consistent with the interpretation of biomarkers in

2 Unlike Figure 1 that shows a score plot with two PCs, the present
example encompasses a factor of two levels which makes the factorized
matrix in ASCA of rank one, and only one PC can be extracted.
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Fig. 3: Multivariate relationship between 3 variables in X and C.
Comparison of p-values computed with FDR, ASCA and VASCA.

networks of pathways, where correlations are identified as paths that
jointly contribute to a response/reaction.

Results are presented in Figure 3. Overall, the FDR method does
not detect significance in this situation, which was expected due to its
univariate nature. VASCA is generally more powerful, increasing the
chances to detect significance, which on average is only found at p-value
< 0.05 and for two variables (see the zoomed detail in the figure). This
illustrates the complexity behind capturing multiple additive (possibly
cancelling) effects in high-dimensional data. The ulterior bootstrapping in
VASCA does not reduce the statistical power. ASCA once again overlooks
the relationship. This example illustrates the benefits brought by the
multivariate nature of VASCA which, as opposed to the FDR method,
is able to identify multivariate additive relationships among variables.

4.4 Example 4: Multivariate relationship in two factors and
interaction with several levels

A major strength of ANOVA, also inherited by ASCA, VASCA or
FDR, is the analysis of complex experimental designs with several factors
and interactions. In this last experiment we simulate data sets with two
significant factors, of four and three levels, respectively. Each factor is
simulated as in the previous example, so that a significant multivariate
relationship exists between the factor and three variables.

Results are presented in Figure S4. To some extent, they resemble
those in the previous example, with an increased power of VASCA
in comparison to FDR. However, in this case significance was not
systematically found: we can see that average results of the 100 simulation
repetitions are above the 0.05 significance level. This example illustrates
the cumbersome issues that may arise when trying to recognise particular
effects influencing multivariate data coming from complex experimental
designs. The methods did nonetheless find significance in a sub-set of the
100 repetitions, as shown in Table 1, where VASCA outperforms ASCA
and FDR in the number of positive identifications. We also see that the
use of bootstrapping can reduce the inferential power of the approach—
meaning that the bootstrapping test is more conservative than VASCA’s
permutation testing. This should be taken into account when permutation
testing and bootstrap yield conflicting results, e.g., for datasets with
only 1 significant variable found by VASCA and then deemed as non-
significant by bootstrap. For instance, take the example of factor 1.
Out of the 100 simulations, VASCA finds 37 with at least 1 significant
variable and 20 with at least 2. Therefore, it finds exactly 17 (which
comes from subtracting 37 minus 20) simulations with only 1 significant
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variable. When using bootstrap, this number is reduced to only 9 cases (3
subtracted by 12).

Table 1. Number of simulations (out of the total of 100) where at
least 1, 2 and 3 variables were found statistically significant in the
example with the multivariate relationship between 3 variables in
X and C (2 factors of 4 and 3 levels, respectively, are taken into
account here). Comparison of FDR, ASCA and VASCA (with and
without bootstrapping).

Method Factor | 1 variable | 2 variables | 3 variables
ASCA 1 0 0 0
ASCA 2 0 0 0
VASCA 1 37 20 10
VASCA 2 26 11 4
VASCA + bootstrap 1 12 3 0
VASCA + bootstrap 2 14 7 1
FDR 1 26 3 0
FDR 1 16 1 0

For further comparison, we illustrate the result obtained by the ASCA-
genes method by Nueda et al. (2007) in one randomly selected simulation.
To compute both leverage and residuals, the PCA model corresponding
to a factor in ASCA needs at least 2 PCs, and thus the factor needs
to include at least 3 levels. ASCA-genes is thus not applicable to the
examples described in sections 4.1 to 4.3. Results obtained with ASCA-
genes in the 2-factor (4 and 3 levels) example of the present section can
be found in Figure S5. Two of the significant variables (marked in dark
color) for Factor 1 show high leverage. The other significant variable
is found in the SPE chart. For factor 2, however, there are several non-
significant variables that exceed the leverage control limit, which should
be regarded as false positives. In this specific example, VASCA detected
two significant variables for Factor 1 (the third presented a p-value close
to 0.05) and none for Factor 2, FDR could only detect one significant
variable for Factor 1, and VASCA + bootstrap none. We can see that
VASCA and ASCA-genes yield similar results, with VASCA being more
general (i.e., it can be applied to rank-one factor/interaction matrices) and
less prone to false positives.

5 Results on real data

The BIOASMA data set (Gomez-Llorente et al., 2020) comprises
clinical, biochemical, anthropometrical parameters, inflammatory
biomarkers, metagenomic and metabolomic data for 46 children (12 girls
and 34 boys, aged 4-13 years) with an allergic asthma diagnosed based on
the Spanish Guidelines for Asthma Management (GEMA criteria 4.4)—
(Moral et al., 2016). The children were also classified into normal-weight
(n=13), overweight (n=8) and obese (n=25) according to the age and sex-
specific thresholds proposed by Cole et al. (2000). Biochemical data were
obtained by routine methods. Inflammatory biomarkers were determined
by ELISA and by XMAP Luminex technology. Metabolomic data were
obtained by one-dimensional proton nuclear magnetic resonance (1D 'H-
NMR) spectra of blood plasma samples. Short chain fatty acids were
determined by Gas Chromatography-Mass Spectrometry. Metagenomic
data were obtained by 16sRNA barcoding sequencing and the Amplicon
sequence variants (ASVs) were normalized by the rarefaction method.
Deriving potential biomarkers from this data set represents a real
challenge (Gomez-Llorente et al., 2020), given the low sample size
and the complexity of the experimental design: two potential conflicting
factors (asthma severity and weight classification/status) with three levels
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Fig. 4: Comparison of p-values computed with FDR, ASCA and VASCA
for the BIOASMA data set (persistent asthma vs the rest).

each are taken into account and the individuals distribution is significantly
unbalanced.

5.1 Factor-wise models

The statistical results obtained from the original analysis of the data
set (Gomez-Llorente et al., 2020) are based on Partial Least Squares
Discriminant Analysis (PLS-DA) (Barker and Rayens, 2003) and its
sparse variant sSPLS-DA (L& Cao et al, 2008). sPLS-DA considers
variable selection during model calibration with the idea of discarding
non-informative variables. Neither PLS-DA nor sPLS-DA models were
statistically significant to distinguish the three classes of weight status
or the three classes of asthma severity. However, for individual sPLS-
DA models for both factors it was possible to find statistically significant
differences between one of the classes vs the rest. In particular, a
sPLS-DA model with 12 variables was found statistically significant
to distinguish the persistent asthma class from the rest (occasional
and frequent asthma) with an Area Under the Receiver Operating
Characteristics curve (AUROC) of 0.66 £ 0.08 (p-value < 0.05) in double
cross-validation (Szymariska et al., 2012), and a sPLS-DA model with
three variables was found statistically significant to distinguish the normo-
weight class from the rest (overweight and obese) with an AUROC of
0.75 £ 0.09 (p-value < 0.05). The PLS-DA version of the first model
(asthma severity) with only selected variables is presented in Figure S6,
where the scores show a clear separation between persistent asthma and
the rest. The model for weight status is discussed in the Supplementary
Material.

We analyze the asthma severity in Figure 4 following the same
approach as in the simulated data, i.e., we compare the ordered p-values
obtained for FDR and VASCA, and the single p-value for ASCA. Control
limits highlighting significance for a p-value < 0.05 and a p-value < 0.01
are also shown, and the vertical axes are in logarithmic scale. Figure S7
illustrates the results when we consider the three classes (occasional,
frequent and persistent asthma), and Figure 4 when we consider persistent
asthma vs the rest. In both situations, ASCA is in agreement with PLS-DA
showing no statistical significance. VASCA is in agreement with sPLS-
DA and significance is only found for a sub-set of variables when two
classes (persistent asthma vs the rest) are considered. The FDR method
fails to find statistical significance, arguably as a consequence of not
directly accounting for the multivariate nature of the investigated data.
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Fig. 5: VASCA (6 variables) scores (a) and loadings (b) plots for the
BIOASMA data set (persistent asthma vs the rest).

Figure 5 shows the scores and loadings for the single component
in the VASCA model, which should be compared to the corresponding
sPLS-DA biplots in Figure S6. In the VASCA model, all variables present
loadings which are significantly different to O (p-value < 0.05). Looking
at the scores, both sPLS-DA and VASCA show similar separation ability,
but VASCA selects only half of the analyzed variables, those in the left
part of Figure S6.

To provide a numerical assessment of the variable selection by sPLS-
DA and VASCA, we compute the AUROC of the reduced PLS-DA
models constructed on the variables selected by each method. Note that
these AUROC values are expected to be overoptimistic, since they are
computed from the same data used for variable selection. Yet, they are
useful to compare the ability of both methods (sPLS-DA and VASCA) to
find potentially interesting biomarkers. We obtain 0.99 &+ 0.01 for sPLS-
DA with 12 selected variables and 0.93+0.02 for VASCA with 6 selected
variables.

The same analysis with the weight factor (normo-weight, overweight
and obese) can be found in the Supplementary Material (see Figures S8
and S9). In this case, ASCA does not find any significant model (just like
PLS-DA) while both FDR and VASCA find a single significant variable.

We obtain 0.73 +0.02 for PLS-DA with the 3 variables selected by sPLS-
DA (Gomez-Llorente et al., 2020) and 0.74 + 0.01 for PLS-DA with the
individual variable selected by VASCA/FDR. This shows that, beyond its
inference and variable selection capabilities, VASCA can be a competitive
exploratory tool for, e.g., biomarker identification.

5.2 Multi-factor models

In this section we consider simultaneously the two factors of the
BIOASMA data set in a single analysis. Figure S10 shows the comparison
of p-values for ASCA, FDR and VASCA for two levels in each factor:
persistent asthma vs the rest (occasional and frequent asthma) and normo-
weight vs the rest (overweight and obese). No statistically significant
results were obtained for the three levels in any of the factors. For
two factors and two levels (one class vs the rest), only VASCA found
statistically significant results. Interestingly, in the VASCA model the
second factor (the weight classification) is not significant anymore and
only the first factor is. This comes as a result of the ANOVA factorization
of both factors together, and shows that separated PLS-DA models can
lead to the double counting of variance that can hamper interpretation of
the results.

6 Conclusion

In this paper, we presented VASCA, an extension of ANOVA
Simultaneous Component Analysis (ASCA) that improves the statistical
inference of multivariate models through variable selection. VASCA is
inspired by the popular Bejamini-Hochberg (BH) step-up procedure to
control the False Discovery Rate (FDR). Its benefits are two-fold: first, by
taking on the idea of variable selection from FDR-controlling procedures,
it attains substantially improved discrimination (detection) power over
conventional ASCA; and second, based on multivariate inference (similar
to ASCA), it is able to model/capture and visualize inherent multivariate
relationships within the experimental data. Our results showed that
VASCA can outperform both the BH (FDR-controlling) procedure and
ASCA in terms of statistical power, and that it represents a competitive
exploratory approach in comparison to widely used techniques such as
Partial Least Squares Discriminant Analysis and its sparse counterpart.
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