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Abstract 
 20 
Eating a varied diet is a central tenet of good nutrition. Here, we develop the first molecular tool to quantify 

human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 

1,001 fecal samples from 310 participants across four cohorts.  The number of plant taxa per sample (plant 

metabarcoding richness, or pMR) correlated with recorded intakes in interventional diets (=0.31) and with 

indices calculated from a food-frequency questionnaire in freely-chosen diets (=0.40-0.63). In adolescents 25 

unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 

consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by 

>70% of individuals. Adolescent pMR was associated with age and income, replicating prior epidemiologic 

findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types 

of plants consumed that is applicable to diverse human populations.  30 
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Introduction 
 

The recommendation to “eat a variety of foods” is a well-known component of public health 

nutrition guidance in the United States1. This advice reflects the fact that foods vary in their macro- and 

micronutrient content, and diets that include a range of foods are more likely to be nutritionally adequate. 45 

Empirical support for this recommendation was first produced in the early 1990s, when studies conducted 

in the US and globally demonstrated that counts of individual foods or food groups could serve as proxies 

for nutrient adequacy2–4 or overall health5; these findings prompted the introduction of dietary diversity-

specific measurement tools by the Food and Agriculture Organization6.  Since the 2000s, diversity metrics 

have continued to be applied in studies of the relationship between overall dietary patterns and health 50 

outcomes7–9.   

However, a unified framework for the impact of dietary diversity on health has been hampered by 

the enormous range of species included in human diets, the number of possible diversity metrics, and 

weaknesses in available dietary assessment tools.  Considering plant foods alone, lists of consumed species 

range from the hundreds (354 of commercial importance10; 866 crops11) to the thousands (4,079 compiled 55 

from published lists12) out of tens of thousands of theoretically edible wild plants.  To make this complexity 

manageable, most existing dietary diversity assessments query a small number of locally important foods 

or aggregated food groups.  This selection can be done in many ways, leading to a proliferation of disparate 

tools: for example, the Dietary Diversity Score (DDS) has 6-, 9-, 13-, and 21-food group formulations4; the 

Food Variety Score (FVS) totals items from a restricted 45-item list2; and species richness (SR) enumerates 60 

unique plant, animal, or fungal sources of consumed foods13.  Diversity scores rely on self-reported dietary 

data, which have well-characterized random and systematic errors14: individuals can forget roughly 20% of 

the foods they eat when completing diet recalls15, survey tools incompletely capture ethnic or minority 

foods16, and social desirability bias leads to underreporting of intake17. Self-reported meals must be 

disaggregated into ingredients and manually mapped onto selected food groups or species of origin by 65 

researchers, which often requires local expertise or direct observation of cooking and eating6. Together, 
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these challenges emphasize a need for objective, standardized diversity assessment tools that collect data 

that can be readily compared across studies3.  

Objective dietary biomarkers are alternatives to or validation for survey-based dietary diversity 

assessment. Biomarkers have been developed for total energy intakes18, individual nutrients (e.g. protein18), 70 

and food groups (e.g. whole grains19).  However, to our knowledge no biomarkers for dietary diversity exist. 

“Omics”-scale methods are well-suited for this type of comprehensive dietary assessment20,21 but have not 

been developed for dietary diversity because many metabolite or protein signals do not uniquely identify 

food items or are transformed by the body prior to detection. In contrast, DNA sequencing methods can be 

applied to non-invasively collected samples from the digestive tract (i.e., stool) to identify food items with 75 

specificity that ranges from the phylogenetic family to species level. Relying on the fact that nearly all 

foods are derived from once-living organisms whose tissues contain DNA, variable regions in food 

genomes serve as molecular “barcodes” that can be amplified and sequenced from stool.  Such “DNA 

metabarcoding” methods have been widely applied to study the diets of wild animals22,23 and in proof-of-

concept work to human stool24 and stomach contents25. However, they have not been applied at scale in the 80 

setting of nutrition research, nor have they been used to calculate within-sample diversity, a practice 

commonplace in ecosystem and animal studies (where within-sample diversity is termed “alpha diversity” 

and species counts are termed “richness”)26.  

To meet the need for a standardized biomarker for dietary diversity, we develop here DNA 

metabarcoding with the chloroplast trnL-P6 marker27 as a tool for dietary plant diversity assessment in 85 

humans and measure its performance in four distinct cohorts. We first report several protocol adaptations 

that make trnL metabarcoding more reliable in human samples. Next, we test the relationship between trnL 

metabarcoding-based plant diversity and (1) recorded plant diversity of interventional diets and (2) indirect 

measures of dietary diversity from validated dietary self-reports. Finally, we transition to proof-of-concept 

testing to show that trnL metabarcoding measures are a valuable tool for testing epidemiological hypotheses 90 

and exploratory analysis of cohorts with limited dietary data. 
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Results 

 

trnL METABARCODING PROTOCOL DEVELOPMENT 

 95 
We developed a molecular approach for measuring dietary plant diversity by amplifying and 

sequencing residual DNA from human stool samples using the trnL-P6 region of the chloroplast genome 

(“trnL metabarcoding”). To accurately measure plant metabarcoding richness (pMR, the number of plant 

taxa detected per sample with trnL metabarcoding; Fig. 1a), we followed recommendations for microbiome 

metabarcoding studies28 to refine to our prior trnL metabarcoding protocol24, which was capable of 100 

 
Figure 1. Calculation and dietary scope of plant metabarcoding richness (pMR).  (a) Conceptual overview of 

trnL metabarcoding protocol and pMR calculation. Conserved primers (F, R) flank a variable trnL region, allowing 

amplification of a mixed pool of plant food-derived DNA from stool.  (b) The reference trnL sequence database 

had broad representation (black and gray tick marks in outer ring) of food crop species11 (full phylogenetic tree) 

and included multiple sequences for 27% of plant taxa, which indicates within-food genetic variation at the trnL-

P6 locus. Leaves in the crop tree terminate at the species level, though 70 subspecies- and 52 variety-level taxa 

were included in the full reference. Major plant crops were more likely to be included in the reference (Chi-square 

188.94, df = 2, p < 10-15).  Example plants from each clade are shown in silhouette.  Clockwise from legend, these 

are: apple, pumpkin, cucumber, walnut, chickpea, cassava, starfruit, orange, okra, mango, grape, bell pepper, chili 

pepper, potato, carrot, kiwi, beet, rice, wheat, corn, onion, banana, pineapple,  and avocado.  
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detecting dietary plant taxa but limited by a low PCR success rate (~50%). We moved from a standard- to 

a high-fidelity polymerase to reduce PCR errors and facilitate accurate taxonomic assignment of trnL 

sequence variants, and switched from a one-step to a two-step amplification protocol to avoid bias from 

barcode differences in the primary amplification and reduce primer synthesis costs. In the primary 

amplification, we adjusted reaction annealing temperature from 55 to 63C to reduce formation of non-105 

specific products and maximize amplification and sequencing yields (Fig. S1a-c), which further improved 

when template volume was quadrupled (Fig. S1d-f). In the second amplification step, an increase from 8 

to 10 barcoding PCR cycles improved yields a further 3.4-fold.  In samples tested pre- and post-

optimization, these changes collectively resulted in median increases of 2.2 ng/μl in amplified DNA, 18,600 

trnL sequencing reads, and 4 additional plant taxa detected per sample (n=199, Fig. S1g-i). Overall, the 110 

optimized protocol had a PCR success rate of 92%.   

Bioinformatically, our optimization focused on assigning trnL sequencing reads to a more extensive 

reference database. In our previous work, 27% of reads did not have an exact match to a sequence in the 

reference database and could not be included in subsequent analyses.  We therefore expanded our reference 

database of dietary plants from 185 sequences (representing 72 species) to 853 sequences (470 species 115 

covering 62% of all families and 83% of major crop families from a recent food plant phylogeny11, Fig. 

1b).  To reduce the percentage of unassigned reads and improve dietary diversity estimates, we shifted from 

grouping similar DNA sequences into operational taxonomic units to inferring exact amplicon sequence 

variants (ASVs), which enabled diversity estimation independent of a reference assignment and 

straightforward merging of metabarcoding datasets from multiple sequencing runs29.  In concert, our 120 

expanded reference database and new pipeline reduced the percentage of unmapped reads to 0.9% (per-

sample median 0.2% and median absolute deviation 0.3%; Fig. S2). 

 

trnL METABARCODING VALIDATION FOR INTERVENTIONAL DIETS 

 125 
With our optimized experimental and bioinformatic protocols, we examined the potential for trnL 

metabarcoding to capture recorded dietary plant diversity using a cohort of individuals undergoing a 
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targeted dietary intervention (“Weight Loss”; Table 1; n=41 samples from 4 individuals). Members of the 

Weight Loss cohort were clients of a residential-style, medically supervised weight loss center, with all 

their weekday meals prepared in the center’s cafeteria and consumed on site. Meal recipes and participant 130 

orders were logged by a digital menu system, which allowed us to specify a plant taxon for 96% of the 425 

unique plant-derived food items consumed, including those from complex meals (e.g., “Mushroom Wild 

Rice Pilaf” could be separated into wild rice, white rice, portobello mushrooms, onion, pecans, thyme, 

parsley, and sage). 

Median pMR ranged from 13.5 to 26 taxa in Weight Loss participants, which encompassed the 135 

median range of 22 to 26 plants per individual per day expected from diet records. On a per-sample basis, 

pMR was positively correlated with the number of food species calculated from coded menu data on the 

day prior to stool collection (Spearman ⍴=0.31, p=0.04, Fig. 2a), and unrelated to tomorrow’s menu or a 

randomly selected menu day (Fig. S3a,b).  pMR estimates of dietary plant diversity were slightly higher 

than menu data, with an average error of 4 taxa (average absolute error 7 taxa) above the recorded value.  140 

This difference could indicate that pMR may measure >1 day of food intake (i.e. if gastrointestinal transit 

time is >24h) or report food not captured by digital menus, including a daily fruit offering, selections from 

the cafeteria salad bar, or off-menu eating that occurred when clients were not at the center.  Thus, in a 

small, controlled setting with high-quality dietary data available for comparison, our data indicated that 

pMR measured from stool was related to recorded dietary plant diversity.   145 

 

trnL METABARCODING VALIDATION FOR FREELY-CHOSEN DIETS 

 

Because the Weight Loss cohort consumed an interventional health-promoting diet and dietary 

diversity measurement is of importance across the real-world spectrum of intakes, we next extended pMR 150 

to extracted fecal DNA available from two larger, free-eating adult cohorts that completed food-frequency 

questionnaires (FFQs), a standard dietary assessment tool in nutritional epidemiology (“Adult-1” and 

“Adult-2,” n=28 and n=32, respectively; Table 1). Both cohorts30,31 were recruited for studies testing the 

impact of fiber supplementation on the gut microbiota. Participants ate their typical diets and collected 
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multiple stool samples per week over a 6- or 3-week period (median of 16 and 6 samples/person for Adult-155 

1 and Adult-2, respectively).  

To assess the degree of alignment between pMR and FFQ data, we summarized reported foods into 

dietary indices. We included a dietary diversity score, which counted unique food items, and two dietary 

quality scores, which weighted food items or groups based on amount consumed and health benefit or harm.  

For a diversity index, we selected the Food Variety Score (FVS), a score with a twenty-year history3 that 160 

correlates with nutrient adequacy2 and reduced risk of coronary heart disease and all-cause mortality32. For 

quality scores, we evaluated the Healthy Eating Index 2015 (HEI), which indicates adherence to US dietary 

guidelines, and the healthy, unhealthy, and overall Plant-based Dietary Indices (hPDI/uPDI/PDI), which 

assess plant presence and quality in the diet. We chose HEI and hPDI/uPDI because they have been 

previously linked to reduced risk of chronic disease morbidity or mortality33–36 and demonstrated to 165 

correlate tightly (⍴>0.7) with predictions based on microbiome composition37, which, like pMR, is a stool-

based molecular measurement. Because HEI and FVS both include animal components, we used only the 

portion of the score that referenced plants, and because FVS scores scaled linearly with dietary calories, we 

used energy-adjusted residuals in place of the raw score (see Methods). 

We identified significant, positive correlations between pMR and FFQ-based dietary indices in 170 

both Adult-1 and Adult-2 cohorts. Mean pMR per participant was positively correlated specifically with 

the plant component residuals of the Food Variety Score (FVS) (Fig. 2b; Adult-1 Spearman =0.62, 

p=0.002, Adult-2 =0.51, p=0.008); with the healthful component of the PDI (hPDI) (Fig. 2c; Adult-1 

=0.52, p=0.01, Adult-2 =0.63, p=0.0005); and with the plant-based component score of the Healthy 

Eating Index 2015 (HEI-2015) (Fig. 2d; Adult-1 =0.42, p=0.05, Adult-2 =0.40, p=0.04). Correlations 175 

were absent or negative when tested against animal-based or unhealthy component scores alone (Fig. S4).  

All results except that for HEI-2015 were robust to rarefaction, a statistical downsampling to estimate 

richness in samples of varying sequencing depth (see additional details in  Methods, Table S2). These 

findings indicate that pMR, a molecular dietary diversity measure with distinct sources of error from self- 
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report instruments, can nevertheless rank individuals in a significantly similar way to multiple validated 180 

diversity and quality indices based on FFQ data.  

Given the dense stool sampling protocols of the Adult-1 and Adult-2 cohorts, we next sought to 

determine the minimum number of samples per participant necessary to capture a comprehensive view of 

dietary plant diversity. We generated collector’s curves, an ecological tool used to assess richness as a 

function of sampling effort, for each participant (Fig. S6a). Unlike the average pMR calculated above, 185 

 
Figure 2. pMR is associated with independent measures of dietary diversity and quality. (a) Correlation between 

pMR and number of plant taxa from recorded menus of Weight Loss participants from the day prior to stool 

collection. The red dotted line denotes a theoretical perfect correspondence between the two measures. (b-d) 

Correlations between mean pMR (pMR averaged across all available stool samples per participant) and dietary 

diversity (b) and quality (c, d) indices derived from FFQ data in Adult-1 and Adult-2 participants. (e) Correlations 

from upper panels of (b-d) re-tested under candidate sampling schemes with mean pMR derived from a smaller 

number of stool samples. The “two samples (3-10d apart)” is the current dietary assessment protocol used by the 

National Health and Nutrition Examination Survey (NHANES)38. All boxplots represent ~100 random subsamples 

at each strategy, and color indicates the percentage of iterations reaching the statistical significance threshold of 

p<0.05. Spearman correlations are one-tailed in (a), and two tailed in (b-e). 
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collector’s curves provide a running tally of the number of unique plant taxa detected as samples from the 

same individual are successively pooled.  Curves were well-fit by a logarithm function, indicating that 

cumulative pMR plateaus with sufficient sampling. Consistent with prior work in diet records, which 

detected a plateau in “food repertoire” after 10 to 15 days of recorded intake39, the early plateau phase was 

often reached by individuals with >15 samples in the Adult-1 cohort, but rarely in Adult-2 participants, who 190 

collected at most 6 stool samples. 

Even though a dozen stool samples may be required to observe an individual’s total potential 

dietary diversity, we found that averaged pMR from fewer samples could still reproduce the significant 

associations with dietary indices described above. Subsampling each participant recapitulated the 

significant correlation with hPDI at least 80% of the time and with FVS at least 50% of the time under at 195 

least one reduced sampling strategy in both cohorts (100 iterations at each strategy, unless fewer unique 

combinations were possible; Adult-1 in Fig. 2e; Adult-2 in Fig. S7 due to more limited subsampling). The 

relationship to the HEI-2015 plant component score was not robust to subsampling, likely because it 

measures adequate intake of only five highly summarized food categories (e.g. “total vegetables”) and thus 

is better approximated by average pMR derived from larger number of samples. These results indicate that 200 

pMR from as few as three samples per person approximates the ranking of individuals by both a traditional 

dietary diversity index (FVS) and a dietary quality index (hPDI). 

 

trnL METABARCODING IN SETTINGS WITHOUT AVAILABLE DIETARY DATA 

 205 
We next applied DNA metabarcoding in a setting where traditional dietary assessment measures 

were not collected. In a pediatric study of gut microbiota in adolescents with and without obesity from 

racially, ethnically, and socioeconomically diverse backgrounds (“Adolescent,” n=246, 79% with BMI 

>95th percentile, 53% Black, 18% Hispanic, and >40% with household income <$50,000/year; Table 1), 

dietary assessment was limited to a custom 7-question survey. Two lengthier assessments had been 210 

eliminated within the first ten enrolled participants as they proved too cumbersome for families to complete. 
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 Because no data on specific food items were available for the Adolescent cohort, we leveraged the 

taxon-level food identifications of trnL metabarcoding to identify plants included in participant diets.  

Across the cohort, we detected 111 unique trnL sequence variants, which came from 45 plant families, 89 

plant genera, and 84 plant species.  The most frequently observed food items were wheat or rye (the detected 215 

trnL sequence variant being the same for both foods; 96% of participants), chocolate (88%), corn (87%), 

and members of the potato family (a trnL sequence variant shared by potato, tomatillo, tamarillo, goji berry, 

cutleaf groundcherry, and edible nightshades; 71% of participants).  However, the vast majority of trnL 

sequence variants had low prevalence across the pool of subjects, indicating that a small set of foods were 

commonly consumed and many more were unique to the diets of only a handful of individuals (Fig. S8a). 220 

The types of plant foods detected in the Adolescent cohort did not differ widely from the Weight Loss, 

Adult-1, or Adult-2 cohorts (Fig. S8b), contributed to a wide pMR range across the cohort (median 12 plant 

taxa per sample, median absolute deviation 4.4; Fig. 3a), and the presence or absence of foods in the diet 

indicated a spectrum of intakes rather than a partitioning of distinct eating patterns (Fig. S8c).   

The Adolescent cohort was more racially and ethnically diverse than the Weight Loss, Adult-1, and 225 

Adult-2 cohorts, and this enabled us to explore whether demographic variables were associated with pMR.  

In a multiple regression, pMR was negatively associated with age (̂=3.9 [95% CI -7.1 to -0.7], p=0.02), 

positively associated with higher income categories (̂=2.2 [0.03 to 4.4], p=0.05 for $25,000-49,000/year 

and ̂=3.0 [0.1 to 5.9], p=0.04 for $100,000/year, both relative to lowest bracket of <$25,000/year), trended 

higher with obesity status (̂=1.8 [-0.1 to 3.7], p=0.06), and lower with food insecurity (̂=-1.7 [-3.7 to 0.3], 230 

p = 0.09), and was unrelated to sex, race, and ethnicity (all with p>0.28; fitted coefficients in Fig. 3b, raw 

relationships in Fig. 3c). The negative association between pMR and age is consistent with data that 

American adolescents are less likely to eat dinner with their families as they age, which is associated with 

lower intakes of fruit, vegetable, and whole grain foods40. The trend between pMR and obesity status 

supports a recent recommendation to reduce emphasis on dietary diversity in adult populations8 given 235 

inconsistent associations with lower adiposity41,42 and positive relationships to total energy intake43,44, 
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obesity32,43, and body fat percentage44 detected in some studies. Finally, the positive association between 

pMR and higher income categories aligns with epidemiologic studies within and outside the United States, 

which report increased dietary diversity in households with higher socioeconomic status2,45–47. We 

performed a comparable literature review for covariates for which we did not detect a significant association 240 

and found both concordant (ethnicity48) and discordant (sex5,32, race32,46) results, although all were derived 

from non-adolescent cohorts.  Thus, dietary plant diversity measured by pMR recapitulates the majority of 

known epidemiological findings from studies that used self-report-based diversity measures.  

 

 
Figure 3. pMR detects known relationships between dietary diversity and demographic, health, and 

socioeconomic variables. (a) Histogram of pMR across Adolescent samples. (b) Visualization of linear model 

output, showing effect sizes and 95% confidence intervals of associations of demographic, clinical, and 

socioeconomic covariates with pMR as a response variable. Coefficient estimates with p≤0.05 are indicated in red, 

0.05<p≤0.1 in yellow, and p>0.1 in gray. For categorical variables shown, the reference category is as follows: 

white for race, non-Hispanic ethnicity for ethnicity, control (healthy body weight) for case-control status, self-

reported income <$25,000 annually for income, and no occurrence of food running out for food insecurity. Income 

and food insecurity both also included an “Unknown” category to accommodate missing responses, which we do 

not interpret and are not shown. (c) Raw data underlying significant or trend covariates from (b). 
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Discussion 245 
 

In this study, we establish that dietary plant diversity assessment with trnL metabarcoding, a 

sequencing technique applied to non-invasively collected biological specimens, reliably reports the number 

of plant foods consumed by individuals. pMR as determined by trnL metabarcoding aligns well with diet 

records, validated survey tools, and demographic variables. This work, in which all but 4 of the 310 250 

participants were consuming their typical diets, is the first large-scale application of trnL metabarcoding to 

free-eating individuals, who are difficult to reliably survey with existing dietary assessment instruments.  

In total, we detected 187 unique trnL sequence variants representing 146 taxa, including plants 

from 73% of major food crop families present in the reference database.  This expands from two prior trnL 

metabarcoding studies conducted in humans that detected 47 unique plant taxa across 11 individuals’ fecal 255 

samples24 and 124 across 48 individuals’ stomach contents25. The strength of positive correlations 

(Spearman ~0.3-0.6) between pMR and indices calculated from validated survey tools falls within a range 

that is a workable proxy in dietary research: for example, the use of a simplified survey specifically for 

dietary diversity measurement is supported by Pearson correlations to nutrient adequacy from a more 

complex tool ranging from r=0.3-0.62,4,49. Further, our findings suggest that pMR combines elements of 260 

existing dietary diversity and quality indices, which may indicate that food features like amount and quality 

are implicitly incorporated in pMR measurement (i.e., due to a detection bias in favor of items consumed 

in large quantities or without DNA degradation from industrial processing).  This is useful given recent 

concern that strict definitions of dietary diversity do not discriminate against unhealthy eating: in studies of 

adults not at risk of nutrient inadequacy, increased dietary diversity associates with greater intake of 265 

processed foods, refined grains, and sweetened drinks50.  

No dietary assessment technique is universal in scope and without limitations. pMR does not 

capture processing or cooking techniques used to prepare foods. Still, some existing dietary diversity 

measures do not consider food preparation (species richness13) or track prepared items without counting 

them towards the final score (e.g., “Oils and fats” and “Sweets” in the measurement of the Women’s Dietary 270 
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Diversity Score6); as is, pMR correlates with measures of healthy eating that incorporate food preparation 

(Fig. 2b).  Our definition of pMR as the number of plant food taxa per sample differs from conventional 

dietary diversity, which is calculated as number of foods or food groups over a reference period (usually 

24h). Due to interindividual differences in gastrointestinal transit time, pMR could summarize food intake 

over a period from 24 hours to multiple days. Pairing trnL metabarcoding with transit time indicators (edible 275 

dyes or proxies like Bristol stool scale scores) to adjust for this effect may reveal even more robust 

associations between pMR and independent diversity metrics.  As a strict measure of richness, pMR also 

leaves out much of the detail in raw metabarcoding data, including abundance and identity of each trnL 

sequence variant.  Future work will focus on identifying foods that can be reliably quantified with trnL 

metabarcoding and implementing internal standards to make quantitative estimates more reliable51,52. 280 

Abundance data can then be used to calculate alternative diversity measures like dietary evenness and 

dissimilarity8,9. With 99.1% of reads in the data presented here assigned to a food taxon, we estimate the 

trnL reference database provides nearly complete coverage of foods consumed in Western diets, but its 

performance for global cohorts is likely lower and will be the target of future updates. Finally, we have 

characterized only plant diversity, omitting animal and fungal sources of dietary variation. As for trnL, 285 

animal and fungal DNA metabarcoding markers can be adapted to human diet to provide a comprehensive 

view of intakes. 

Together, these findings position trnL metabarcoding as a candidate genetic biomarker of food 

intake, and support its use to derive pMR prospectively from any individual able to provide a stool sample 

and retrospectively from biorepositories. Unlike dietary surveys, trnL metabarcoding provides data in the 290 

conserved language of DNA sequence, which overcomes challenges of manual food item identification, 

grouping, and nomenclature53 and permits immediate harmonization of data across global studies.  In 

practice, pMR can complement self-report tools by providing an alternative means of assessment in 

populations for whom validated dietary assessments do not exist or in settings where self-reports are limited 

by participant burden or resource constraints, as in the Adolescent cohort. Our trnL metabarcoding 295 

experimental protocols, bioinformatic pipeline, and reference database are publicly available and actively 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.22276343doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276343
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

maintained (https://github.com/bpetrone/mb-pipeline). Estimated reagent costs per sample are $25 for 

laboratories with PCR capability and access to high-throughput sequencing technology and $85 for samples 

sent for sequencing at a core facility or commercial provider, competitive with diet survey costs (an 

interviewer-administered 24-hour recall costs $90 from a university-based provider). trnL metabarcoding 300 

therefore has the potential to be as widely available and accessible as 16S sequencing technology is for gut 

microbiome profiling from stool samples.  

 

Methods 
 305 

Study populations. Samples were drawn from three clinical trials and one sample biorepository, all based 

at Duke University in Durham, NC. The clinical trials consisted of a behavioral intervention that returned 

gut microbiome data to participants (NCT04037306, here “Weight Loss”) and studies assessing the impact 

of fiber supplementation on the gut microbiota30 (NCT03595306, “Adult-1”) and on human cognition, 

behavior, and physiology31 (NCT04055246, “Adult-2”). The sample biorepository was collected from 310 

adolescents with obesity and their healthy-weight siblings54 (NCT02959034, “Adolescent”). Application of 

trnL metabarcoding was a secondary analysis and determined exempt by the Duke Health Institutional 

Review Board (Pro00100567). Study characteristics and participant demographics are summarized in 

Table 1.  

 315 
Stool sample collection, processing, and DNA extraction. Stool samples were collected, stored, and DNA 

extracted as part of each primary study protocol.  In all studies, stool was immediately frozen on collection 

by participants and transported frozen to a laboratory freezer.  DNA extraction relied on versions of the 

PowerSoil kit system (QIAGEN, Hilden, Germany) following the manufacturer’s instructions.  Briefly, 

Weight Loss, Adult-1, and Adult-2 samples were extracted with the DNeasy PowerSoil or MagAttract 320 

PowerSoil kit, depending on number of samples per processing batch; Adolescent samples were extracted 

with the DNeasy PowerSoil Pro kit.  For Weight Loss, Adult-1, and Adult-2 samples, 1 to 1.5 grams of 

stool was slurried in PBS at a 10% weight-to-volume ratio in sterilized filter bags with a 0.33 mm pore size 
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(Whirl-Pak, Madison, WI) using a Stomacher 80 Biomaster (Seward Limited, Worthing, United Kingdom).  

750 μl was added to tube-based (PowerSoil) and 200 μl to plate-based (PowerSoil MagAttract) extractions.  325 

For Adolescent samples, whole stool was added directly to the extraction (PowerSoil Pro).  Extracted DNA 

within each cohort was randomized and stored at -20C prior to trnL metabarcoding. 

 

trnL metabarcoding. We performed trnL metabarcoding using a two-step PCR protocol.  Primary PCR 

amplification of trnL used the KAPA HiFi HotStart PCR kit (KAPA Biosystems, Woburn, MA) in a 10 μl 330 

volume containing 0.5 μl of 10 μM forward and reverse primers (IDT, Coralville, Iowa), 2 μl of 5X KAPA 

HiFi buffer, 0.3 μl of 10 mM dNTPs, 0.1 μl of 100X SYBR Green I (Life Technologies, Carlsbad, CA), 0.1 

μl KAPA HiFi polymerase, 3.5 μl nuclease free water, and 3 μl of extracted DNA template.  The primers 

were trnL(UAA)g and h27 with Illumina overhang adapter sequences added at the 5′ end (Table S1).  

Cycling conditions were an initial denaturation at 95C for 3 minutes, followed by 35 cycles of 98C for 335 

20 seconds, 63C for 15 seconds, and 72 for 15 seconds.  Each PCR batch included a positive and negative 

control, and samples were only advanced to the secondary PCR if controls performed as expected 

(otherwise, the entire batch was repeated).  Secondary PCR amplification to add Illumina adapters and dual 

8-bp indices for sample multiplexing was performed in a 50 μl volume containing 5 μl of 2.5 μM forward 

and reverse indexing primers (Table S1), 10 μl of 5X KAPA HiFi buffer, 1.5 μl of 10 mM dNTPs, 0.5 μl 340 

of 100X SYBR Green I, 0.5 μl KAPA HiFi polymerase, 22.5 μl nuclease free water, and 5 μl of primary 

PCR product diluted 1:100 in nuclease-free water.   

 

Sequencing library preparation. Amplicons were cleaned (Ampure XP, Beckman Coulter, Brea, CA), 

quantified (QuantIT dsDNA assay kit, Invitrogen, Waltham, MA), and combined in equimolar ratios to 345 

create a sequencing pool.  If samples could not contribute enough DNA to fully balance the pool due to low 

post-PCR DNA concentration, they were added up to a set volume, typically 15-20 μl.  Libraries were then 

concentrated, gel purified, quantified by both fluorimeter and qPCR, and spiked with 30% PhiX (Illumina, 

San Diego, CA) to mitigate low nucleotide diversity.  Paired-end sequencing was carried out on an Illumina 
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MiniSeq system according to the manufacturer’s instructions using a 300-cycle Mid, 150-cycle High, or 350 

300-cycle High kit (Illumina, San Diego, CA, USA), depending on the number of samples in each pool. 

 

Reference database construction. A list of edible plant taxa was compiled from US food availability data55, 

global surveys13, and reference volumes10.  DNA sequences likely to contain trnL were downloaded from 

two sources within NCBI: GenBank (all publicly available DNA sequence submissions) and the organelle 355 

genome resources of RefSeq (a curated, non-redundant subset of assembled chloroplast genomes).  To 

obtain GenBank sequences, we used the entrez_search function of rentrez 1.2.356 to submit separate queries 

for sequences containing “trnL” in any metadata field and each plant taxon name in the Organism field (e.g. 

“Zea mays[ORGN] AND trnL" to pull data for corn, or Z. mays).  Sequences with an “UNVERIFIED:” 

flag were discarded.  To obtain RefSeq sequences, the plastid sequence release current as of June 2021 was 360 

downloaded and subset to only those accessions including an edible taxon name.  Results from either source 

were then filtered to sequences containing primer binding sites for trnL(UAA)g and trnL(UAA)h in the 

correct orientation. Binding sites were identified using a custom R script with a mismatch tolerance of 20% 

(3 mismatches for trnL(UAA)g and 4 for trnL(UAA)h), and sequence outside the primer binding sites 

removed.  Identical trnL sequences from different accessions of the same taxon were de-duplicated, but we 365 

preserved distinct trnL sequences within taxa (indicating genetic variability) and identical trnL sequences 

from different taxa (indicating genetic conservation). The taxonomic tree of possible identifications in 

comparison to a plant food phylogeny (Fig. 1b) was visualized with ggtree v. 2.2.457. 

 

Bioinformatic analysis. For each sequencing run, raw sequencing data were demultiplexed using bcl2fastq 370 

v2.20.0.422.  Read-through into the Illumina adapter sequence at the 3’ end was detected and right-trimmed 

with BBDuk v. 38.38. Using cutadapt v. 3.4, paired reads were filtered to those beginning with the expected 

primer sequence (either trnL(UAA)g for the forward read or trnL(UAA)h for the reverse) and then trimmed 

of both 5’ and 3’ sequences using a linked adapter format with a 15% error tolerance. Reads were quality-

filtered by discarding reads with >2 expected errors and truncated at the first base with a quality score 2. 375 
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Amplicon sequence variants (ASVs) were inferred using DADA2 v 1.10.0. Taxonomic assignment was 

done with DADA2’s assignSpecies function, which identified ASVs by exact sequence matching to the 

custom trnL reference database, with multiple matches allowed. If multiple matches occurred, reads were 

assigned to the taxon representing the last common ancestor of all matched taxa (e.g. an ASV matching to 

both wheat [Triticum aestivum] and rye [Secale cereale] was relabeled as Poaceae, the family shared by 380 

both genera).  Sequence data were screened for contamination on a per-PCR batch basis using decontam v. 

1.8.0 using DNA quantitation data from the library pooling step, and suspected contaminants were removed.  

ASV count tables, taxonomic assignments, and metadata were organized using phyloseq v. 1.32.0.    

Prior to calculating plant metabarcoding richness (pMR), ASVs identified to the same food taxon 

at the species, subspecies, or variety level were merged to make pMR representative of food identity, rather 385 

than trnL sequence variation.  ASVs representing distinct subsets of species in the same family or genus, 

which occur due to the last common ancestor method above, were identified and preserved as distinct (e.g. 

in the family Rosaceae, the rosids, one sequence variant indicates apple and pear intake and a second 

identifies strawberries and raspberries, so these were not merged). Plant metabarcoding richness (pMR) 

was then calculated as the number of unique taxa observed with at least one read count in each sample. 390 

 

Dietary data collection and processing.  

Digital menus (Weight Loss). Complete menu data for each participant was exported from RealChoices 

menu software (SciMed Solutions, Durham, NC) and linked to ingredient names from recipe source files.  

Ingredient common names were then manually identified to plant species using the NCBI Taxonomy 395 

Browser and Integrated Taxonomic Information System databases. For ingredients that were themselves 

composite foods (e.g., “whole wheat bread”), we identified a primary ingredient using either provided brand 

information or the USDA FoodData Central database, which includes taxon mapping under the “Other 

information” header. 

Dietary surveys (Adult-1 and Adult-2). Habitual dietary intake over the past 1 month was assessed by 400 

administration of National Cancer Institute Diet History Questionnaire III (DHQ3), a 135-item, semi-
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quantitative food frequency questionnaire (FFQ). FFQ data were quality checked by estimating participant 

basal metabolic rate (BMR) using the Harris-Benedict equation58, calculating the ratio of reported calorie 

intake to estimated BMR, and excluding FFQs where this ratio was greater than two absolute deviations 

outside the median of the full dataset (corresponding to a ratio of <0.22 or >1.75) from further analysis, as 405 

done in a prior study37. This criterion preserved 87% of completed FFQs in the dataset (excluded responses 

were all for suspected underreporting). 

Food variety score (FVS). The Food Variety Score (FVS) was calculated as the number of unique food 

items consumed at least once per week. After summing daily intake frequencies within each food item, we 

tallied items with a daily frequency of consumption 0.14 (equivalent to 1/7, or a weekly frequency, as 410 

previously done for calculating FVS from frequency data32).  The plant component of the overall FVS was 

calculated using the same procedure after manually labeling food items derived from plants or including a 

plant ingredient. Total and plant component FVS were then adjusted for overall calorie intakes using the 

nutrient residual method59: briefly, a linear regression model was used to fit FVS to overall energy intake 

in kilocalories, and the residuals from the model were used in place of raw FVS values.  415 

Healthy Eating Index 2015 (HEI-2015). The HEI-2015 and its component scores were calculated 

automatically by the DHQ3. We defined a plant HEI score as the sum of exclusively plant-based adequacy 

components (Total Vegetables, Greens and Beans, Total Fruits, Whole Fruits, and Whole Grains), which 

give higher scores to higher intakes of encouraged plant food groups.  Conversely, we defined a non-plant-

based HEI score as the sum of components with exclusively non-plant-based items (Dairy, Sodium, Added 420 

Sugars, and Saturated Fat).  Saturated Fat may contain plant items like palm oil or coconut, but we expect 

this category is largely reflective of meat and dairy intake. Though meat and seafood are included in HEI 

component scores, their categories also include plant-based items (legumes for “Total Protein” and 

legumes, nuts, seeds, and soy for “Seafood and Plant Protein”). We therefore did not include these 

categories in either score definition above.  425 

Plant-derived dietary index (PDI). The PDI and its variations, healthy PDI (hPDI) and unhealthy PDI 

(uPDI), were calculated from DHQ3 data by manually assigning food items to specified food groups (n=18), 
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splitting participants into quintiles based on gram weight of intake of each food group, and then scoring the 

quintiles from either 5 to 1 or 1 to 5, depending on the index being calculated. Food group scores were then 

summed within each participant to give the overall score. In rare cases, enough participants did not report 430 

consuming the food that they could not all be accommodated by the first quintile of the data; in this case, 

all participants with zero intake were assigned to the first quintile, and the remainder of the data split into 

quartiles and assigned to the 2nd to 5th intake categories. 

 

Statistical analysis. 435 

Weight loss cohort. One-tailed Spearman correlation between pMR and menu plant taxa was computed 

using the cor.test function from R stats v. 4.1.3. Average and absolute error were computed by subtracting 

the number of plant taxa recorded in the menu from the number detected by trnL metabarcoding and taking 

the mean or the absolute value of the difference, respectively.  Samples collected on days following a 

weekend day (i.e. Sunday or Monday; n = 8) were excluded from the paired analysis because the on-site 440 

cafeteria only provided breakfast on weekends, and digital menus had to be supplemented with less accurate 

self-reports.     

 

Adult-1 and Adult-2 cohorts. Two-tailed Spearman correlations were calculated between mean pMR 

(averaged across all samples for each participant) and FFQ data.  For each subsampling scheme, samples 445 

that fit each strategy were randomly selected from the total available for each participant, and Spearman 

correlations were calculated using the mean pMR of only those samples.  100 subsampling iterations were 

performed for each scheme, unless fewer unique combinations were available or duplicate subsamples 

occurred by chance (this resulted in a loss of no more than three iterations from any combination of study, 

dietary index, and sampling scheme).    450 

 

Adolescent cohort. Demographic, health, and socioeconomic status variables were included as covariates 

in a linear model with pMR as the outcome variable. All covariates were checked for completeness and 

missing entries coded as “Unknown” (n=62 for income, and n=28 for food insecurity) so as not to exclude 
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missing data. We chose not to impute missing values because we hypothesized that missing responses to 455 

socioeconomic questions likely violated assumptions that data are missing completely at random (i.e., 

individuals in lower income or food-insecure categories would be more likely to leave the question blank).  

Because only 138 of 246 subjects (56%) had two timepoints, we used a linear model of pMR from the 

“Entry” timepoint alone rather than a mixed-effects model with repeated measurements. The distribution 

of pMR was approximately normal (tested with the descdist function of fitdistrplus v. 1.1.8), so we tested 460 

both a linear model using the lm function of R stats v. 4.1.3 and a negative binomial family generalized 

linear model (GLM) using the glm function, which as a discrete distribution is a theoretically better 

approximation of pMR.  Both yielded similar results and we present the findings of the linear model here 

for simpler interpretation of the magnitude of fitted coefficients.  We screened for, but did not detect, 

collinearity amongst model predictors using the function vif of car package 3.0.12.  Observed versus 465 

predicted pMR and residual versus predicted pMR plots were generated to check model validity. 

 

Rarefaction. Rarefaction was performed using vegan v. 2.5.7 and statistical tests above repeated using 

rarefied pMR in place of raw pMR. Rarefaction provides a statistical estimate of richness that adjusts for 

variation in sequencing depth, which we first noted in the Adult-1 and Adult-2 cohorts (range 1-150,330, 470 

Fig. S5a) despite experimental strategies to balance samples within each sequencing batch. Because 

richness scales with sampling effort26 (Fig. S5b), we tested whether using rarefaction (statistical 

downsampling to a shared read depth) to adjust for differences in sequencing depth affected relationships 

between pMR and dietary data. Rarefaction strengthened the correlation between pMR and recorded menus 

in the Weight Loss cohort; in the Adult-1 and Adult-2 cohorts, rarefaction retained the positive correlations 475 

to FVS and hPDI at only slightly weakened magnitude, but rendered the relationship to HEI-2015 plant 

component score insignificant (Table S2).  One interpretation of these findings is that read depth may 

indicate plant content of the diet rather than technical variation in sample preparation.  In support of this 

hypothesis, FVS plant residuals, overall PDI, and HEI-plant component scores were all significantly lower 

for Adult-1 and Adult-2 samples with fewer than 1,000 reads, indicating reduced plant intake by an 480 
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independent measure (Fig. S5c). Therefore, we continued subsequent analyses without rarefaction (while 

monitoring its effects in Table S2). 

 

Data and code availability. trnL metabarcoding data for all samples will be deposited to the European 

Nucleotide Archive prior to publication.  De-identified clinical metadata associated with this study are 485 

available upon request and will be shared when consistent with applicable study agreements, regulations, 

and ethical standards.  R scripts to reproduce results from raw phyloseq objects are available on GitHub 

(https://github.com/bpetrone/plant-richness).   
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Extended data 

 

 
Figure S1. Experimental optimization of a prior trnL metabarcoding protocol improves dietary DNA 

amplification and sequencing. (a) Non-specific product formation (>143 bp, the upper limit of trnL length, 

indicated by arrow) is reduced at higher annealing temperatures. (b) Samples amplified with a 63C annealing 

temperature have higher trnL sequencing read depth.  Lines connect identical samples tested under either condition 

(n=28). (c) More food ASVs (identified by the trnL reference) were detected in samples amplified at 63C despite 

no significant difference in total ASVs, indicating a reduction in non-specific amplification (n=15). (c) trnL PCR 
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 655 
 

 

 

product formation (arrow) is increased with addition of more template volume to the reaction.  (d) Samples with 

higher template volume added to the primary PCR have higher trnL sequencing read depth (n=23).  (e) Higher 

template volume in the primary PCR increases the number of detected trnL ASVs (n=23).  (f-h) Collectively, the 

suite of protocol changes improved (f) DNA concentrations after the primary amplification, (g) trnL reads by 

sequencing, and (h) the number of trnL ASVs per sample (n=199 samples evaluated pre- and post-optimization). 

All statistical tests shown are paired-sample Wilcoxon signed rank tests. * p < 0.05, ** p < 0.01, *** p < 0.001, 

and n.s., not significant. 

 
Figure S2. Total and identified sequence reads by sample and study. Sequence reads were assigned to a plant 

taxon by exact matching to sequences in the custom trnL reference (see Methods).  The red dashed line indicates 

a complete mapping (i.e., all reads in a sample are identified by at least one sequence in the trnL reference and 

assigned to a plant taxon).   

 

 
Figure S3. pMR is unrelated to menu data from days with no biological connection to tested stool samples in the 

Weight Loss cohort. One-tailed Spearman correlations between pMR and menu data from (a) the day after stool 

sample collection or (b) a random menu day. 
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Figure S4. Correlations between pMR and animal-based or unhealthy plant component scores are absent or 

negative in the Adult-1 and Adult-2 cohorts. Correlations between mean pMR (pMR averaged across all available 

stool samples per participant) and animal- or unhealthy plant-based dietary diversity (b) and quality (c, d) indices 

derived from FFQ data in Adult-1 and Adult-2 participants.   

 

 
Figure S5. pMR scales with sequencing depth, which is influenced by biological factors. (a) trnL sequencing 

depth in Adult-1 and Adult-2 cohort samples. (b) Relationship between pMR and sequencing depth. (c) Survey-

based measures of consumed plant diversity or plant-based diet quality by trnL sequencing depth. Statistical tests 

in (a, c) by Mann-Whitney U.  ** p < 0.01, *** p < 0.001. 
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Figure S6. Sampling of Adult-1 and Adult-2 participants affects cumulative pMR. Cumulative pMR (# of unique 

trnL taxa observed across all samples) was calculated from each participant’s samples in consecutive order.  Each 

facet represents one participant.  Overlaid red curves are fits for the regression of cumulative pMR on log(sample 

number).  Adult-1 participants collected at most 18 samples, and Adult-2 participants at most 6.  
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Figure S7. Subsampling of pMR-dietary index relationships in Adult-2 participants. Correlations from lower 

panels of (Fig. 2b-d) re-tested under candidate sampling schemes with mean pMR derived from a smaller number 

of stool samples.  All boxplots represent ~100 random subsamples at each strategy, and color indicates the 

percentage of iterations reaching the statistical significance threshold of p<0.05. Results are from two-tailed 

Spearman correlations. 

 

 
Figure S8. Dietary landscape of Adolescent participants. (a) Histogram of participant prevalence of plant taxa 

detected by trnL metabarcoding in the Adolescent cohort.  Most foods were shared by a relatively small number of 

subjects (distribution skewness=1.84). (b) UpSet plot (an scalable alternative to Venn diagrams for visualizing 

intersecting sets60) indicating overlap of plant taxa detected by trnL metabarcoding in the Adolescent cohort and 

those detected in adult cohorts (Weight Loss, Adult-1, and Adult-2). The largest intersection is made up of plant 

foods detected across all four cohorts, and the second largest of plant foods detected in all free-eating cohorts. (c) 

Principal components analysis of presence-absence data of each trnL taxon in Adolescent samples.  Each point 

indicates an individual sample projected onto the first two principal components, which capture 10.4% and 5.1% 

of the variance of the overall data, respectively. 
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Table S1. Baseline characteristics of trnL metabarcoding cohorts. All values are reported as mean  670 
standard deviation except samples per individual, which is given as median  median absolute deviation. 

Entries for Adult-1 and Adult-2 race do not sum to 100% due to missing raw data (i.e. individuals that did 

not indicate a response).  

 

 Weight Loss Adult-1 Adult-2 Adolescent 

n     

  Individuals 4 28 32 246 

  Samples/individual 11.52.2 16.03.0 6.00.0 2.00.0 

  Total samples 41 387 189 384 

Diet     

  Type Interventional 

reduced calorie 

Free-eating with 

fiber supplement 

Free-eating with 

fiber or placebo 

snack bar 

Free-eating 

  Assessment Digital menu 

system 

FFQ (NCI DHQ3) FFQ (NCI DHQ3) Custom survey 

Demographics     

   Age, years 58.58.8 33.312.0 25.65.2 13.32.3 

   Sex, % female 50 39 59 60 

   Race, %     

      Black 0 4 3 53 

      White 75 68 44 38 

      Asian 0 11 38 2 

      American Indian/ 

        Alaska Native 

25 0 0 0 

      Multiple 0 7 9 7 

   Ethnicity, % Hispanic 0 11 13 18 

Health     

   BMI 35.54.6 24.72.4 22.92.3 31.810.1 

 675 
 

Table S2. Primers used in this study. trnL-specific sequences are bolded and Illumina adapters are in 

standard typeface.  

 

Name Sequence 
trnL(UAA)g TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGCAATCCTGAGCCAA 

trnL(UAA)h GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCATTGAGTCTCTGCACCTATC 

i7 indexing 

primer1 

CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG 

i5 indexing 

primer1 

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC 

 680 
1 XXXXXXXX denotes 8-bp barcode sequences, available from Illumina (“Illumina Adapter Sequences,” 

https://support-docs.illumina.com/SHARE/AdapterSeq/illumina-adapter-sequences.pdf). 

 

 

Table S3. Impact of rarefaction on key study results.  pMR was estimated at a shared read depth of 1,000 685 
reads and any samples below that threshold excluded from the analysis.  Color indicates impact of 

rarefaction: dark green, strengthened; light green, attenuated but still significant; red, not significant after 

rarefaction; gray, not significant and unchanged from raw result. Weight Loss participants, who ate diets 

designed to be healthful and high in plant foods, had no low read depth samples among those amplified, 
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and thus rarefaction served exclusively to remove variation in pMR signal due to read depth, strengthening 690 
the detected relationship to menu data.  In contrast, Adult-1, Adult-2, and Adolescent samples below the 

rarefaction threshold may convey meaningful information on low plant intake and attenuate relationships 

when excluded. * p < 0.10 (trend), ** p < 0.05.  

 

Cohort Test Result  

(raw data) 

Result  

(rarefied data) 

Effect 

Weight 

Loss 

Paired sample comparison 

(Fig. 2a) 
Spearman ⍴=0.31, 

p=0.04 

Spearman ⍴=0.47, 

p=0.003 
 

Adult-1 Correlation to FVS plant 

residual (Fig. 2b) 
Spearman =0.62, 

p=0.002 

Spearman =0.52, 

p=0.01 
 

Correlation to FVS animal 

residual (Fig. S4a) 

n.s. n.s.  

Correlation to hPDI (Fig. 2c) Spearman =0.52, 

p=0.01 

Spearman =0.47, 

p=0.03 
 

Correlation to uPDI (Fig. 

S4b) 

n.s. n.s.  

Correlation to HEI plant 

component (Fig. 2d) 
Spearman =0.42, 

p=0.05 

Spearman =0.31, 

p=0.16 
 

Correlation to HEI animal 

component (Fig. S4c) 

n.s. n.s.  

Adult-2 Correlation to FVS plant 

residual (Fig. 2b) 
Spearman =0.51, 

p=0.008 

Spearman =0.46, 

p=0.02 
 

Correlation to FVS animal 

residual (Fig. S4a) 

n.s. n.s.  

Correlation to hPDI (Fig. 2c) Spearman =0.63, 

p=0.0005 

Spearman =0.60, 

p=0.001 
 

Correlation to uPDI (Fig. 

S4b) 
Spearman =-0.54, 

p=0.005 

Spearman =-0.45, 

p=0.02 
 

Correlation to HEI plant 

component (Fig. 2d) 
Spearman =0.40, 

p=0.04 

Spearman =0.34, 

p=0.09 
 

Correlation to HEI animal 

component (Fig. S4c) 

n.s. n.s.  

Adolescent Model coefficients (Fig. 3c) Participants in model: 

240 

Coefficient fit (95%CI, 

p): 

ageDecades 

-3.9 (-7.1–-0.7), p = 

0.02)** 

sexFemale 

0.4 (-1.1–1.8, p = 0.60) 

raceBlack 

0.3 (-1.7–2.3, p = 0.78) 

raceAsian 

3.0 (-2.7–8.6, p = 0.29) 

raceMultiple 

0.6 (-2.4–3.7, p = 0.67) 

ethnicityHispanic 

1.1 (-1.3–3.6, p = 0.36) 

casecontrolCase 

1.8 (-0.1–3.7, p = 0.06)* 

income25-49K 

Participants in model: 

223 

Coefficient fit (95%CI, 

p): 

ageDecades 

-2.3 (-4.7–0.1), p = 

0.06)* 

sexFemale 

0.8 (-0.3–1.9, p = 0.14) 

raceBlack 

0.8 (-0.8–2.3, p = 0.32) 

raceAsian 

2.0 (-2.1–6.1, p = 0.33) 

raceMultiple 

1.5 (-0.8–3.8, p = 0.19) 

ethnicityHispanic 

-0.0 (-1.9–1.8, p = 0.97) 

casecontrolCase 

0.7 (-0.7–2.2, p = 0.33) 

income25-49K 

1.3 (-0.4–2.8, p = 0.13) 
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2.2 (0.03–4.4, p = 

0.05)** 

income50-74K 

1.6 (-1.0–4.1, p = 0.23) 

income75-100K 

0.0 (-3.1–3.1, p = 0.97) 

income>100K 

3.0 (0.1–5.9, p = 0.04)** 

incomeUnknown 

2.5 (0.26–4.7, p = 

0.02)** 

foodinsecYes 

-1.7 (-3.7–0.3, p = 0.09)* 

foodinsecUnknown 

-1.5 (-3.9–0.8, p = 0.18) 

income50-74K 

1.8 (-0.1–3.8, p = 0.07)* 

income75-100K 

2.1 (-0.4–4.5, p = 0.09) 

income>100K 

2.1 (0–4.2, p = 0.05)** 

incomeUnknown 

1.9 (0.24–3.5, p = 

0.02)** 

foodinsecYes 

-0.9 (-2.4–0.6, p = 0.25) 

foodinsecUnknown 

-1.1 (-2.8–0.6, p = 0.21) 

 695 
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