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There is a growing interest in the medical use of psychedelic substances as preliminary stud-
ies using them for psychiatric disorders have shown positive results. In particularly, one of these
substances is N,N-dimethyltryptamine (DMT) an agonist serotonergic psychedelic that can induce
profound alterations in state of consciousness.

In this work, we propose a computational method based on machine learning as an exploratory
tool to reveal DMT-induced changes in brain activity using EEG data and provide new insights
into the mechanisms of action of this psychedelic substance. To answer these questions, we propose
a two-class classification based on (A) the connectivity matrix or (B) complex network measures
derived from it as input to a support vector machine We found that both approaches were able to
automatically detect changes in the brain activity, with case (B) showing the highest AUC (89%),
indicating that complex network measurements best capture the brain changes that occur due to
DMT use. In a second step, we ranked the features that contributed most to this result. For case
(A) we found that differences in the high alpha, low beta, and delta frequency band were most
important to distinguish between the state before and after DMT inhalation, which is consistent
with results described in the literature. Further, the connection between the temporal (TP8) and
central cortex (C3) and between the precentral gyrus (FC5) and the lateral occipital cortex (T8)
contributed most to the classification result. The connection between regions TP8 and C3 has been
found in the literature associated with finger movements that might have occurred during DMT
consumption. However, the connection between cortical regions FC5 and P8 has not been found
in the literature and is presumably related to emotional, visual, sensory, perceptual, and mystical
experiences of the volunteers during DMT consumption. For case (B) closeness centrality was the
most important complex network measure. Moreover, we found larger communities and a longer
average path length with the use of DMT and the opposite in its absence indicating that the balance
between functional segregation and integration was disrupted. This findings supports the idea that
cortical brain activity becomes more entropic under psychedelics.

Overall, a robust computational workflow has been developed here with an interpretability of how
DMT (or other psychedelics) modify brain networks and insights into their mechanism of action.
Finally, the same methodology applied here may be useful in interpreting EEG time series from
patients who consumed other psychedelic drugs and can help obtain a detailed understanding of
functional changes in the neural network of the brain as a result of drug administration.

I. INTRODUCTION

time many years later in 1956 by [9]. When administered

N,N-dimethyltryptamine (DMT) is a substance en-
dogenously produced in various mammals [I], including
humans [2], and has serotonin agonist properties. Thus,
it is able to bind to serotonin receptors, simulating the
neurotransmitter [3]. In [4] it was for the first time sug-
gested that DMT is produced by the pineal gland in stress
situations such as birth and death. In [5][6] it seems clear
that it is produced in small quantities by this gland [7].

The substance was first synthesized in 1931 [8], while
its psychoactive effects have been described for the first
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externally in large quantities, DMT can cause altered
states of consciousness [10], hallucinations [ITHI3] and
spiritual experiences such as communication with ‘pres-
ences’ or ‘entities’, plus reflections on death [I4]. An
exogenous ingestion can be done by smoking or inject-
ing. Its effect by oral ingestion depends on the inhibition
of monoamine oxidase, an enzyme that degrades the al-
kaloid DMT in the liver and intestine [12]. This enzyme
and DMT are also found in ayahuasca tea that has been
used in the Amazon for a couple of hundred years, being
part of the traditional medicine of the natives from this
region [15].

Recently, the interest in the medical use of psychedelics
has increased significantly. Only last year, in [I6]
it was identified about 100 psychedelic clinical tri-
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als currently being conducted worldwide. This shows
an increase in the number of clinical trials, compared
to 43 assisted psychedelic therapy clinical trials con-
ducted since 1999. One example is the psychedelic 3,4-
methylenedioxymethamphetamine (MDMA) which is al-
ready in phase 3 clinical trials for the treatment of post-
traumatic stress disorder (PTSD) [I7] and major depres-
sion with positive results [I8]. Another notable example
is the psychedelic psilocybin whose therapeutic use in the
U.S. has come to be considered a revolutionary therapy
for treatment-resistant depression and major depressive
disorder [19]. These first promising results suggest that
other psychedelic substances, such as lysergic acid diethy-
lamide (LSD), ibogaine hydrochloride, salvia divinorum,
5-MeO-DMT, ayahuasca and DMT, which have been less
studied so far, should be investigated in more detail [20].

Only a few studies on administration of micro- or low-
dose DMT to non-human species (predominantly rats)
have been published in the scientific literature [2I]. In
[22], a low dose of DMT was administered to rats re-
sulting in changes in frequency and amplitude of spon-
taneous excitatory postsynaptic currents (EPSCs) in the
prefrontal cortex (PFC) that lasted long even after the
drug was removed from the body. In [23], it was de-
scribed that chronic, intermittent, low doses of DMT pro-
duced an antidepressant effect and increased fear extinc-
tion learning in rats without affecting working memory or
social interaction. For a high dose of DMT (10 mg/kg),
an increase in the density of the dendritic spines in the
prefrontal cortex was found in rodents and antidepres-
sant and anxiolytic behavioral effects were observed [24].
In humans, a single dose of 0.1 mg/kg of DMT caused an
apparent anxiolytic effect shown in [25]. Other studies
using inhaled 5-MeO-DMT also observed complete mys-
tical experiences in 75% of volunteers [26] and improve-
ments in depression and anxiety, which were associated
with greater intensity of mystical experiences, with spiri-
tual and personal meaning of the experience, when using
this substance [27].

Summarizing, there is some evidence that DMT
may be effective for the treatment of depression and
post-traumatic stress disorder. However, most studies
have been conducted in animals and thus only have a
reduced power. Therefore, more in-depth studies on
DMT, its mechanisms in the brain, and its potential
clinical effects in humans are needed , since there are
few studies investigating the use of DMT in humans
through EEG [28H30] and fMRI [31].

The application of mathematical methods of graph the-
ory yielded interesting insights into the complex network
structure of the human brain. It is known from the
literature [32H37] that the topology of brain is a small
world network. Networks of this type combine completely
random structural characteristics and regular connection
topologies. They also preserve a high degree of connectiv-
ity between local neighborhoods, while allowing all their

nodes Ewhich to be connected to surprisingly short paths
[32]. Altering this topology is also associated with patho-
logical states [38H41] and the use of substances such as
psychedelics [42H44]. Notably, complex networks param-
eters have been used as biomarker for several diseases
[45, [46]. The use of complex networks is widely used in
EEG to characterize the functional networks of the Brain
[47H50].

In this context, machine learning (ML) has been
used for more accurate and automatic medical diagnosis
[GIH58]. Compared to traditional statistical techniques,
this approach has the advantage of not relying on
prior assumptions (such as adequate distribution, inde-
pendence in observations, absence of multicollinearity,
and interaction problems) and, moreover, are suited
to automatically analyze and capture non-linear com-
plex relationships in data[59, [60]. As brain data are
characterized by high complexity and highly correlated
brain regions, ML algorithms have been widely used
as a important tool capable of detecting acute and
permanent abnormalities in the brain [6IH63]. On the
other hand, ML shows a lack of interpretability and a
black box nature that is an especially disadvantageous
general limitation when it comes to understanding
medical data [64] 65]. In the last years new techniques
have emerged to help in the interpretation of machine
learning results. Most notable is the SHapley Additive
ExPlanations (SHAP)values method [66]. This metric
enables the identification and prioritization of features
and can be used with any machine learning algorithm
[67169).

The present work aims to investigate EEG data using
ML as an exploratory tool to detect temporal changes in
the brain functionality of participants after DMT con-
sumption. The study raised the following research ques-
tions:

e Can we automatically detect changes in the func-
tional network structure induced by DMT using
ML ?

e Which new insights into the mechanisms of action
of DMT can we draw when we use ML in combina-
tion with SHAP values?

To answer these questions, we propose a two-class clas-
sification based on (A) the connectivity matrix or (B)
complex network measures derived from it as input to
a support vector machine (SVM) [f0]. SVM has been
used with excellent results for the classification of com-
plex network measures before [50, [7T], [72]. Furthermore,
this ML algorithm can handle problems where the sample
size of the data is generally smaller in comparison to the

1 The network nodes can be representations from of neurons
(i1pm, microscale) to brain regions (& 10 cm, macro scale)
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dimensionality of its feature space and is therefore appli-
cable to the study of brain disorders with neuroimaging
[73], whose data have these characteristics, and also this
is the case of the data in this work (the case A with
connectivity matrix).

For a biological interpretation the DMT-induced
changes, the SHAP values method was applied to identify
the features that contributed most to the classification
(feature ranking). A robust workflow has been devel-
oped usable for medical professionals who are interested
in the interpretation of brain network modifications due
to DMT (or other psychedelics).

II. DATA

The data used for this study has been published in
[74] and is public available in a raw format | Thirty-five
healthy male and female subjects (7 women and 28 men),
volunteered to inhale, using pipes, 40 mg of free DMT
extracted from the root of Mimosa hostilis. It should be
noted that all participants had previous experiences with
ayahuasca. Recordings were made with 24 electrodes,
following the EEG electrode positions in the standard
10 — 20 location system. These channels are: Fpl, Fp2,
Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7, T8, CPz, CP1,
CP2, CP5, CP6, TP9, TP10, Pz, P3, P4, O1, and O2.
The recordings on the subjects started 10 minutes before
DMT inhalation, 5 min with eyes closed and 5 minutes
with eyes open. After DMT use, subjects were recorded
about 6 min (6 £ 1.4 min).

III. METHODOLOGY

In an earlier work of the authors [75], ML in combi-
nation with complex network measures was successfully
applied to EEG data recorded after ayahuasca consump-
tion to detect changes in brain activity. For this purpose,
different levels of data abstraction were used as input: (a)
the raw EEG time series, (b) the correlation of the EEG
time series, and (c) the complex network measures calcu-
lated from (b). Several ML algorithms were tested and
the best performance was obtained with the SVM at the
abstraction levels (b) and (c). Based on this result, we
decided to use in the present work connectivity matri-
ces (see subsection and derived complex network
measures (see subsection as input for a SVM).

More details are displayed in Figure [I] which summa-
rizes the methodology workflow. In short, EEG time se-
ries were separated by filtering in eight frequency bands.
In a next step, preprocessing of the EEG time series were
performed to obtain the connectivity matrices for each

2 Avaiable on Zenodo.
3992359

https://doi.org/10.5281/zenodo.

frequency band (and the unfiltered signal), see Figure
A and B with details of this process described in subsec-
tion [[ITA] and [[ITB] In a second step, complex networks
measures are derived from the connectivity matrices as
described in subsection [[ITC] see Figure [} C and both
types of data sets were used as input to a SVM as de-
scribed in subsection [[ITD} For interpretation of the clas-
sification results the feature ranking algorithm SHapley
Additive exPlanations (SHAP) is finally applied as de-
scribed in subsection [ITEl .

A. Data preprocessing

First, a high-pass filter with a cut off frequency of
0.5 Hz was used to remove artifacts such as electrogal-
vanic signals and motion artifacts [76]. This type of filter-
ing is widely used in the literature [T7H80]. To remove eye
artifacts, we employed an independent component analy-
sis (ICA) approach in which EEG signals are decomposed
to maximize independent components and those with eye
activity are identified and eliminated [81]. An example of
the ICA analysis for a subject using DMT can be seen in
Figure |2l This analysis was done with a python package
called MNE [82] using an algorithm based on maximum
information (Infomax) perspective [83].

In the next step, EEG time series were separated by
filtering in eight frequency bands: high alpha (10-12 Hz),
low alpha (8-10 Hz), low beta waves (12-15 Hz), mid-
range beta waves (15-20 Hz), high beta waves (18-40
Hz), gamma (30 - 44 Hz), delta (0.5 — 3 Hz) and theta
(4 - 7 Hz).

B. Connectivity matrices

Connectivity matrices were calculated by the well-
known Pearson correlation. It is a widely used and suc-
cessfully approved measure to capture the correlation of
EEG electrodes [84H89]. The Pearson correlation was
calculated for all electrode pairs and all frequency bands
(including the unfiltered signal). The connectivity matri-
ces serve as input for the following steps as described in
subsections[[ITBland[[ITC|] To input the data into the ML
algorithm, the connectivity matrices were flattened into
one vector. Then, all vectors were sequentially merged
into a 2D matrix where each column represents a con-
nection between two electrodes and each row represents
a subject. Such 2D matrices were generated for each fre-
quency band (and the unfiltered signal).

C. Complex network measures

For each connectivity matrix, a complex network graph
was generated to extract different measures. To input
the data into the ML algorithm, the complex network
measures were stored in a matrix, where each column
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FIG. 1: Diagram showing the methodology used in the present work. In (A) Data preprocessing, described in
the subsection the EEG time series are filtered to remove artifacts (in the picture the time series of a subject
at the time the DMT was used) and then separated into the frequency bands high alpha, low alpha, high beta,
mid-range beta, low beta, gamma, delta and theta (as an example in the picture the topographic map for the
frequencies high alpha and high beta for the same subject). For each band the correlation between the channels is
calculated using Pearson’s correlation to obtain a 24x24 connectivity matrix. In (B) Connectivity matrices,
described in the subsection [[TTB] where the connectivity matrices are flattened into a vector that are put into the
SVM in order to verify the most important connections with the use of DMT (in the figure the best performing
model, using the high alpha, low beta and delta bands, found TP8 and C3 as the main connections). In (C)
complex network measures, described in the subsection [[IIC| where the connectivity matrices are analyzed as
graphs (in the figure for the same subject, the graph for the frequencies high alpha and high beta, where the number
of connections in each node varies according to the color bar) and from them are extracted measures of complex
networks that are applied in the SVM and the best model found for the delta frequency found the closeness
centrality as the main measure.
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FIG. 2: Scalp topography maps generated by ICA analytics recorded from a subject shortly after inhalation of
DMT. The EEG signal was decomposed into twenty principal components. The component with ocular activity (see
ICA018 with activity in the frontal region near the eyes) is removed and an artifact-free EEG signal is reconstructed.

represents a complex network measure and each row a
subject. Such a 2D matrices were generated for all fre-
quencies bands (and the unfiltered signal).

The following complex network measures were calcu-
lated: Assortativity [90, O1], average path length (APL)
[92], betweenness centrality (BC) [93], closeness central-
ity (CC) [94], eigenvector centrality (EC) [95], diame-
ter [96], hub score [97], average degree of nearest neigh-
bors [98] (Knn), mean degree [99], second moment de-
gree (SMD) [I00], entropy degree (ED) [I01], transitiv-
ity [102 103], complexity, k-core [104] [105], eccentric-

ity [106], density [I07], and efficiency [10§]. In addition,
newly developed metrics (described in detail in [75]) re-

flecting the number of communities in a complex network
are applied. Community detection (also called clustering
graph) is one of the fundamental analyses of complex
networks aiming to decompose the network in order to
find densely connected structures, so-called communities

. However, the community detection measures
need to be transformed into a single scalar value to in-
clude them in the matrix. To this aim, we perform the
community detection algorithms to find the largest com-
munity, then calculate the average path length within
this community and receive a single value as the result.
The community detection algorithms used were: Fast-
greedy community (FC) [112], infomap community (IC)
[113], leading eigenvector community (LC) [114], label

propagation community (LPC) [I15], edge betweenness
community (EBC) [116], spinglass (SPC) [117], and mul-
tilevel community (MC) [118]. To indicate our approach,
we extended the given abbreviations by the letter ”A”
(for average path length) as follows: AFC, AIC, ALC,
ALPC, AEBC, ASPC, and AMC

D. Machine learning process

In order to classify these two levels of data abstraction,
namely the connectivity matrix and the complex network
measures, the matrices were sampled by separating them
into training (train) and test sets, with 25% of the data
composing the test set. Then, for a reliable model, a k-
cross validation was used [I19], with k = 10 (value widely
used in the literature [120H124]). For the training pro-
cess, the training sets were applied to the SVM. SVM
is based on the search for a hyperplane that geometri-
cally divides samples into two classes. Three important
hyper-parameters of the SVM have been considered in
this work:

e Kernel function: also known as kernel trick, has the
function of projecting the input vectors in higher
dimensions, because by increasing the dimension
of the problem, the probability of it becoming a
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linearly separable problem increases, which makes
it easier to solve [125] [126].

e Regularization parameter C: this is the penalty
term of the optimization problem and is an added
constant that creates flexible margins with respect
to the optimal hyperplane found.

e Gamma: defines how much influence a single train-
ing example has. When the gamma value is too
small, the model is too restricted and fails to cap-
ture the complexity of the data.

To find the best parameters, these hyper-parameters
were optimized with the grid search method, widely used
in the literature [I27HI3I]. The grid search combines
in a comprehensive way all values of the parameters
selected for the models using some metrics to evaluate
the performance of these combinations, which in the
present work was the area under ROC curve (AUC) (for
explanation see below). Here, we used the following
functions as values for the kernel: gaussian (rbf), poly-
nomial (poly), sigmoid and linear. Optimized values for
parameter C and gamma are displayed in Appendix [A]

For evaluation, the standard performance metrics ac-
curacy (Acc.) was used as described in [I32HI36]. As
we have a two-class (negative and positive) classification
problem, other metrics like Precision and Recall are con-
sidered, also common in the literature [I37H140]. Preci-
sion (also called specificity) corresponds to the hit rate
in the negative class (here corresponding no effect in-
duced by DMT). Whereas Recall (also called sensitiv-
ity) measures how well a classifier can predict positive
examples (hit rate in the positive class), here related
with an effect of DMT. Another well-known measure, see
[128] 141l [142], is the F1 score which is the harmonic
mean of the recall and precision [143]. For visualization
of these two latter measures, the receiver operating char-
acteristic (ROC) curve is a common method as it displays
the relation between the rate of true positives and false
positives. The area below this curve, called area under
ROC curve (AUC) has been widely used in classification
problems [130, 132, 144, [145]. The value of the AUC
varies from 0 to 1, where the value of one corresponds
to a classification result free of errors. AUC = 0.5 indi-
cates that the classifier is not able to distinguish the two
classes equal to the random choice. Furthermore, we con-
sider the micro average of ROC curve, which computes
the AUC metric independently for each class (calculate
AUC metric for healthy individuals, class zero, and sep-
arately calculate for unhealthy subjects, class one) and
then the average is computed considering these classes
equally. The macro average is also used in our evalu-
ation, which does not consider both classes equally, but
aggregates the contributions of the classes separately and
then calculates the average.

E. Feature Ranking

As described in [, most notable technique for inter-
preting ML results is the SHAP values method based on
the Shapley value concept which has its origin in game
theory [146] [147], where it aims to assign payoffs to play-
ers depending on their contribution to the total payoff in
the game. In addition, those who cooperate in a coali-
tion receive a certain profit from this cooperation [148§].
Applying this approach to our ML problem, each feature
corresponds to a player in a game and the prediction cor-
responds to the payoff. Thus Shapley’s values tell us how
to distribute the payoff fairly among the features [149].

Here, we used this methodology to evaluate which com-
plex network measures and which correlation between
electrodes (brain regions) contributed most to the classi-
fication result allowing for a biological interpretation of
the results obtained with our ML algorithms.

IV. RESULTS

ML was applied for two different levels of data abstrac-
tion: (A) the correlation of EEG time series (connectiv-
ity matrix) and (B) the complex network measures cal-
culated from (A). We found that both approaches were
able to automatically detect acute changes in the brain
activity induced by the inhalation of DMT. The highest
classification performance was obtained for the complex
network measures with an AUC of 89% (see Table[l). The
following subsections and [[VB]| describe the results
in more detail.

A. Connectivity matrix

EEG data recorded from subjects before DMT inhala-
tion (control with eyes closed) and those after inhalation
of DMT were filtered and divided into eight frequency
bands as described in [[ITAl Detailed results for each fre-
quency band are given in the appendix [B] The best per-
formance was achieved for the low beta frequency band
(test sample performance with mean AUC of 0.78, mean
precision of 0.78, mean F1 score of 0.78, mean recall of
0.78, and mean Acc. of 0.78) followed by the high alpha
and delta frequency bands (test sample performance for
the both frequency band was a mean AUC of 0.72, mean
precision of 0.72, mean F1 score of 0.72, mean recall of
0.72, and mean Acc. of 0.72). Clearly better results were
achieved by combining these frequency bands whose test
sample performance a mean AUC of 0.82, mean preci-
sion of 0.82, mean F1 score of 0.82, mean recall of 0.82,
and mean Acc. of 0.82. Furthermore, see appendix D] for
similarity of results obtained for each frequency.

In Figure [3] the confusion matrix (3}(a)), the learn-
ing curve (Figure B}(b)), and the ROC curve (3}(c)) are
displayed. The learning curve evaluates the predictabil-
ity of the model by varying the size of the training set
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TABLE I: Performances of the SVM classifier. The classification of complex network measures capture the changes
in the brain due to DMT slightly better than the connectivity matrix. Best performance is highlighted in bold.

Type of EE.G Subset AUC Acc. Recall Precision
data frequencies band score
Connectivity  high alpha, low beta Train 1.00 1.00 1.00 1.00 1.00
matrix and delta Test 0.82 0.82 0.82 0.82 0.82
Complex network delta Train 1.00 1.00 1.00 1.00 1.00
measures Test 0.89 0.89 0.88 0.88 0.91

[69]. Results show that the entire database is required to
achieve the highest validation accuracy.

In order to reveal the importance of the connections
between electrode pairs (brain connections) by consider-
ing the combination of the best EEG frequency bands
(high alpha, low beta and delta), the SHAP values were
calculated. The results are shown in Figure [@ Clearly,
the most important connection was between electrodes
TP8 (temporal and parietal region) and C3 (central re-
gion). In addition, the presentation of the data in Figure
[ shows that for the connection between TP8 and C3, low
values of correlation (blue dots) were important for de-
tecting the presence of DMT (positive SHAP values), and
high values of correlation (red dots) were important for
detecting the absence of DMT (negative SHAP values).
The second most important connection was between the
electrodes FC5 and P8. The corresponding brain regions
are depicted in Figure

B. Complex network measures

We received the best performance considering complex
network measures for the delta frequency band (test sam-
ple performance with mean AUC of 0.89, mean precision
of 0.91, mean F1 score of 0.88, mean recall of 0.88 and
mean Acc. of 0.89), see Table|ll The precision measure is
related to the positive class (with DMT). Thus, since the
precision was higher than the recall, we conclude that the
model slightly better detects the presence of DMT than
its absence. Furthermore, see appendix |D| for similarity
of results obtained for each frequency.

In Figure [6] the confusion matrix (Figure [6] (a)), the
learning curve (Figure[6] (b)), and the ROC curve (Figure
|§| (c)) are plotted. Again, the entire database is necessary
in order to get the highest accuracy. All the other results
can be found in the Appendix [C]

Based on the SHAP values in Figure [7] it can be seen
that the most important measure for the model was the
CCy, followed by the ALPC measure and the APL. In
addition, high values of the CC measure (pink dots) in-
dicate its importance for the detection of the absence of
DMT (negative SHAP values), see Figure [7| (b).

V. DISCUSSION

In the previous sections, we presented a computational
workflow including data preprocessing and ML algorithm
revealing acute differences in the brain activity before
and after the consumption of the psychedelic drug DMT.
As a result we achieved a classification accuracy of at
least 82%. We further showed that the classification ac-
curacy based on complex network measures (89%) was
higher than that based on the connectivity matrix alone
(see Table , suggesting that these measures are impor-
tant to capture differences in brain activity.

Further, we searched for descriptive parameters
related to changes in the functional network structure
by ranking the importance of features which contributed
to the classification result. The results are discussed in
this section with the aim to get insights into the effects
of DMT consumption on the brain in terms of EEG
frequency band (subsection , connection of the most
activated brain regions (subsection [V B|), and measures

V).

of complex networks (subsection

A. Frequency bands

With our workflow, we were able to identify these fre-
quency bands which were mostly modified after the in-
take of DMT. We found that classification results re-
ceived with the connectivity matrices and the complex
network measures are strongly based on acute changes in
the delta band. Thus, changes in the delta band were
most robust for both input data types.

This observation corresponds to what was also found
in the literature [28, [74]. Delta band activity is usu-
ally associated with states where there is no wakefulness,
such as sleep [153], [154] and coma [I55]. However, some
studies such in [I56] observed that the delta frequency is
present even when there are behavioral responses, such
as in propofol anesthesia, postoperative delirium, and in
powerful psychedelic states. Moreover, delta band activ-
ity has also been detected in studies involving spiritual
experiences [I57HI59] and meditation states [160} [T61].

Although the increase of delta band activity points
clearly to an altered state of consciousness after the in-
halation of DMT, also other frequency bands were af-
fected. We found for the connectivity matrices that in
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(after inhalation of DMT).

addition to delta, high alpha and low beta bands were
important features. This finding is supported by [74]
who describes that inhalation of DMT reduces the al-
pha band activity while increasing the delta and gamma
band at the same time [I62]. According to the authors,
the increase in gamma is associated with subjective per-
ceptions typical of mystical experiences. In our data, we
observed no changes in the gamma band.

B. Connection between brain regions

With the connectivity matrices, we found that classifi-
cation results are strongly based on a decreasing correla-
tion between the temporal/parietal (TP8) and the cen-
tral brain (C3) region after DMT uptake. These brain
areas correspond to occipitotemporal (Right BA37), pri-
mary somatosensory cortex and the motor cortex (Left

BA01/02), via Brodmann’s map [I63]. The temporal
lobe is associated with perception and production of
speech, hearing, memory and emotional processes, be-
cause it is connected to the amygdala and the limbic sys-
tem [I45]. The right temporal region, TP8 found here,
is associated with the recognition of familiar faces, with
participation from the frontal cortex [164]. Furthermore,
in humans, TP8 region contributes to the global process-
ing of visual information [165]. The connection between
this two regions, TP8 and C3, is involved in visual and
tactile perceptions, and finger movements [166], [167].

In addition, the correlation between the electrodes FC5
(frontal region) and P8 (parietal region) contributed sig-
nificantly to the classification result. These regions cor-
respond to Left BA6 and Right BA19 of Brodmann’s
map, respectively. The frontal region is involved in cog-
nitive processing, planning behavior, and has connections
to the somatosensory cortex, motor, and auditory ar-
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eas [168, 169] and limbic system, and is also involved
in emotions. The placement of FC5 electrode encom-
passes the region of the precentral gyrus in the pre mo-
tor region, which is responsible for controlling voluntary
motor movement of the body. This region also includes
a portion of the supplementary motor cortex, respon-
sible for planning the voluntary movement of the limbs
[I70]. The P8 region, on the other hand, is located in the
lateral occipital cortex, responsible for integrating differ-
ent types of information so that our interaction with the
environment is efficient, forming representational spaces
through perception, semantics, through perception, se-
mantics, and motor functions [I71].

Studies using other psychedelics, such as LSD, have
found reduced functional connectivity in the anterior me-
dial prefrontal cortex, and time-specific effects were cor-
related with different aspects of subjective experiences
under the effect of psychedelics [I72]. Psilocybin con-

sumption, on the other hand, was related to decreased
functional connectivity between the medial temporal lobe
and high-level cortical regions. The changes found in the
cortical regions reported above, are related to the visual,
sensory, perceptual, and motor type experiences experi-
enced by the volunteers during the during the use of these
two psychedelics (LSD and Psilocybin). Correlating our
findings with previous studies, the FC5 and P8 regions
also found here are part of the cortical region and a possi-
ble inference is that they are related to the participants’
experience with DMT in [74] in which it was reported
that 13 of 35 participants (equivalent to 37%) accessed a
complete mystical experience [’ Although these two cor-
tical regions, FC5 and P8, may be related to the partici-

3 According to [74], there was a significant positive correlation
between items of the following scales, used with the volunteers
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pants’ sensory and visual experiences when using DMT,
no interpretation of the connectivity between these two
regions has been obtained, since there is no information
in the literature.

C. Complex network measures

Concerning the measures of complex networks, the
most important was the CC. CC is a centrality measure
which is defined as the inverse of the average length of
the shortest path from one node to all other nodes in
the network [I73]. The idea is that important nodes par-
ticipate in many shortest paths within a network and,
therefore, play an important role in the flow of informa-
tion in the brain [94]. ALPC was the second important

in this study: the 5D altered states of consciousness scale (5D-
ASC), mystical experience scales such as the affective compo-
nent of the NDE scale and MEQ-30, and the social interactions
on the psychedelic experience (post- experience questionnaire).
Among the experiences accessed by the volunteers during the use
of DMT, the scores with the highest percentages (mean; SD) for
the 5D-ASC scale were: elementary imagery (85.27%; 20.72%),
blissful (61.77%; 25.9%), complex imagery (50.21%;20.4%), spir-
itual (49.61%; SD 29%) and disembodiment (47.58%; 31.3%).
For the NDE scale, related to positive mood, it was 60.94%
(26.39%) for affect experience. For MEQ-30 scale, was found
awe, with 46.29% (14.57) and for post-experience questionnaire
scale, setting (76.48%; 25.38) and social (61.79; 3.91%)

measure, which is associated to the size of the largest
community found by the label propagation community
(LPC) detection algorithm. Increased values (compared
to controls) of this metric are associated with the effect
of DMT (see Figure [7] (b)) indicating communities with
increased average path lengths after the use of DMT, in
other words, larger communities. The third important
metric was the APL which is the average of all shortest
paths. The shortest path d;; (also known as the geodesic
path) between two nodes i and j, is defined as the short-
est of all possible paths between these vertices. Increased
values for APL were associated with the presence of DMT
(Figure[f(b)).

In the brain of large vertebrates there are two contrast-
ing concepts: functional segregation (or specialization)
and integration (or distributed processes) [I74]. Anatom-
ical and functional segregation refers to the existence of
specialized neurons and brain areas organized in mod-
ules [I75] which correspond to communities where their
members have high connectivity among themselves and
few connections with members of other modules [I76].
As opposed to segregation, neuron units don’t operate in
isolation [I75], there are regions of the brain (distributed
system of the cerebral cortex) capable of combining spe-
cialized information, characterizing the concept of inte-
gration [I73]. These regions have an executing function,
benefiting from a high global efficiency of information
transfer throughout the entire network [I77]. The fact
that we found larger communities and a longer average
path with the use of DMT and the opposite in its ab-
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sence, indicates a decrease of the brain integration, which
might slow down the distribution of information. Larger
brain communities were also found in [44] after the use
of ayahuasca, a mixture containing DMT.

Furthermore, when looking at the transitivity, which
is a measure of the propensity of nodes to be grouped
together, and efficiency measure, which is a measure of
how effective the exchange of information within a net-
work is, both also presented in the rank of the most
important measures for the model in Figure [7| (b), the
presence of DMT decrease the values of these two mea-
sures. The transitivity is a measure of the efficiency of
information transfer between all pairs of nodes in the
graph [I78] and a higher value of these measures indi-
cates greater segregation [I79]. On other hand, higher
values of efficiency indicates greater integration of net-
works. Thus, we can infer that the integration and seg-
regation decreased with the use of the DMT considering
the delta frequency. A decrease in brain segregation has
been found in studies using other psychedelics such as
LSD [42, 172 [180]. Specifically in [I80], the authors con-
cluded that the use of LSD caused a decrease in the inte-
gration and segregation of brain networks, supporting the
idea that cortical brain activity becomes more “entropic”
under psychedelics [I8T]. However, as pointed out in [42],
psychedelics not only render the brain more random, but
with normal organization disruption, they also produce
strong functional and topologically far-reaching connec-
tions not seen in the normal state. Thus, even though our
results show that integration and segregation have been
disrupted, further experiments should be conducted to
verify if there have been new long-distance connections
as shown in the literature.

VI. CONCLUSION AND FUTURE WORK

In summary, our results demonstrated that the appli-
cation of ML methods was able to automatically reveal
changes in brain functional connectivity induced by DMT
consumption considering a two-class classification based
on (A) the connectivity matrix or (B) complex network
measures. The workflow developed here was indeed pow-
erful for detecting the brain changes caused due to the
psychedelic substance, with case (B) showing the high-
est AUC (89%), indicating that complex network mea-
surements best capture the brain changes that occur due
to DMT use. In terms of frequency, the workflow em-
ployed here detected that the delta frequency was most
associated with DMT. Although DMT induces an altered
state of consciousness with the presence of delta, other
frequencies were important for recognizing the pattern
of brain activity with the use of this substance, such as
high alpha and low beta, through the connectivity ma-
trix. This may suggest that the combination between
the brain frequencies may represent an important point
to be investigated, to further define the altered state of
consciousness induced by DMT.
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Furthermore, by using the SHAP value it was possible
to interpret the results of the ML algorithms with a bio-
logical interpretation associated with the use of DMT on
EEG data. The most important connections found with
the use of DMT were between the temporal (TP8) and
central cortex (C3) regions, followed by the connection
between the precentral gyrus (FC5) and the lateral oc-
cipital cortex (T8). The connection between regions TP8
and C3 has been found in the literature associated with
finger movements that might have occurred during DMT
consumption. However, the connection between cortical
regions FC5 and P8 has not been found in the literature
and is presumably related to emotional, visual, sensory,
perceptual, and mystical experiences of the volunteers
during DMT consumption.

Concerning the measures of complex networks similar
to what was found with the use of ayahuasca in [75], the
most important was the centrality measure CC. Also, the
fact that we found larger communities and a longer av-
erage path with the use of DMT and the opposite in its
absence, indicates that this balance between functional
segregation and integration was disrupted. This suggests
that the distribution of information is slower. This find-
ings supports the idea that cortical brain activity be-
comes more entropic under psychedelics. However, from
the literature, psychedelics don’t simply make the brain
more random, but after the normal organization is dis-
rupted, strong and topologically far-reaching functional
connections emerge that are not present in the normal
state. Therefore, we would like to investigate in the long
term how psychedelics change the functional connectivity
of the brain using our workflow. Overall, a robust compu-
tational workflow has been developed here with an inter-
pretability of how DMT (or other psychedelics) modify
brain networks and insights into their mechanism of ac-
tion. Finally, the same methodology applied here may be
useful in interpreting EEG time series from patients who
consumed other psychedelic drugs and can help obtain a
detailed understanding of functional changes in the neu-
ral network of the brain as a result of drug administra-
tion. Thus, in future work we intend to use this method-
ology on the psychedelic drug called ketamine [182].
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Appendix A: Grid search hyperparameter tuning

The Figure [8| contains the values used in the present work where for one of the models (considering all frequencies
and comparation of dmt and open eyes control) the combination of hyperparameter values and the grid search was
plotted in relation to the AUC metric.
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FIG. 8: Figure containing the values of each hyperparameter of the SVM varied with the grid search. In (A) for the
model considering all frequencies and comparing the subject DMT and without DMT with the eye closed, the
two-dimensional plot with the x-axis being the values of the parameter C and the y-axis being the values of the
kernel and gamma function. For each combination of values and hyperparameters, AUC performance was obtained
(whose obtained values are illustrated in the color table). In (B), the three-dimensional plot of (A) in which each
hyperparameter corresponds to an axis.
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Appendix B: Results comparing different band frequencies

Band frequencies Subset AUC Acc. sclz)i'e Recall Precision
Train 0.90 0.90 0.90 0.90 0.90

Test 0.67 0.67 0.67 0.67 0.68

All frequencies

Low Train 1.00 1.00 1.00 1.00 1.00
alpha Test 0.67 0.67 0.67 0.67 0.67
High Train 1.00 1.00 1.00 1.00 1.00
alpha Test 0.72 0.72 0.72 0.72 0.73
Low Train 0.98 0.98 0.98 0.98 0.98
beta Test 0.78 0.78 0.78 0.78 0.78
Mid Train 0.98 0.98 0.97 0.98 0.98
beta Test 045 0.47 040 0.45 0.42
High Train 1.00 1.00 1.00 1.00 1.00
beta Test 0.56 0.56 0.45 0.56 0.76

Train 0.67 0.67 0.67 0.67 0.67

Gamma

Test 044 0.44 0.42 044 0.43
Train 1.00 1.00 1.00 1.00 1.00
Test 0.72 0.72 0.72 0.72 0.73
Train 0.61 0.61 0.61 0.61 0.61
Test 0.50 0.50 0.50 0.50 0.50

Delta

Theta

Appendix C: Results considering complex network measures and different frequencies band

Band frequencies AUC Acc. F1 Recall Precision
score
Train 1.00 1.00 1.00 1.00 1.00

Test 0.69 0.69 0.68 0.69 0.73

All frequencies

Low Train 1.00 1.00 1.00 1.00 1.00
alpha Test 0.72 0.72 0.70 0.72 0.82
High Train 1.00 1.00 1.00 1.00 1.00
alpha Test 0.61 0.61 0.54 0.61 0.76
Low Train 1.00 1.00 1.00 1.00 1.00
beta Test 0.56 0.56 0.56 0.56 0.56
Mid Train 0.98 0.98 0.98 0.98 0.98
beta Test 0.45 0.47 0.40 0.45 0.42
High Train 1.00 1.00 1.00 1.00 1.00
beta Test 0.56 0.56 0.45 0.56 0.76
Train 1.00 1.00 1.00 1.00 1.00

Gamma

Test 0.17 0.17 0.14 0.17 0.13
Train 1.00 1.00 1.00 1.00 1.00
Test 0.89 0.89 0.88 0.88 0.91
Train 1.00 1.00 1.00 1.00 1.00
Test 0.50 0.50 0.33 0.50 0.25

Delta

Theta
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FIG. 9: Cluster map with the Euclidean distance of each band SHAP value vector. The delta bands and low beta
frequency are the closest frequencies, forming in the cluster map a connection.

Appendix D: Similarity of results obtained for each frequency

The SHAP value calculated for each frequency band was also considered. For each band a vector of connection
between electrode pairs and its respective SHAP value found by the model is generated. For each of these vectors
the Euclidean distance between them is then calculated generating a distance matrix of these vectors. This aims to
quantify how close resulting vectors are. The distance matrix is displayed in form of a cluster map, see Figure [J]
where vectors with a distance less than 0.2 are connected hierarchically in a dendrogram indicating clusters. Here,
the cluster is most prominent between the low beta and the delta frequency band vector.

The same was made for the complex network measure and, then, a cluster map with the Euclidean distance between
vectors containing SHAP values for each complex network measure is generated (see Figure . All vectors, except
low beta, are very close to each other. This proximity indicates that the results obtained were similar, with other
words the connections between the electrodes and their respective SHAP value were similar for all frequency bands.
Thus, it can be seen that the results of the SHAP value vectors of each frequency, with the exception of the low beta
frequency, were very close, which means that they show a great similarity between them.
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FIG. 10: Cluster map showing the Euclidean distance of the SHAP value vectors for different frequency bands.
Frequency band vectors, except low beta, are very close to each other, indicating great similarity.
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