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Abstract—Various learning models distinguish between an
electroencephalogram (EEG) record of a normal patient and
one having a seizure. In this paper, we propose a deep-learning
based short-term memory (LSTM) model to identify whether an
EEG record belongs to a seizure-prone patient with a non-seizure
record or to a normal patient. The study builds on two datasets,
namely the TUH Abnormal EEG Corpus (TUAB) and the
TUH EEG Seizure Corpus (TUSZ) including the classified EEG
records for seizure-prone and normal patients. We conducted
experiments on both imbalanced and balanced datasets and show
results using an LSTM model. We observed that the model
performs consistently in both balanced and imbalanced cases
using only 5 seconds of EEG data from the patient records.
We show that our proposed LSTM model gives test accuracies
up to 99.84% in case of 2-class classification between the non-
seizure and normal classes and up to 98.87% in case of 3-class
classification among non-seizure, seizure, and normal classes.
This provides a basis for making improved temporal predictions
about the occurrences of seizures.

Index Terms—seizure, deep learning, long short-term memory,
seizure-prone, seizure-free, electroencephalogram

I. INTRODUCTION

Epilepsy is a neurological disorder characterized by the
occurrence of seizures from the sudden firing of neurons. The
electrical signals of the brain are recorded using electroen-
cephalography and the corresponding record is known as an
electroencephalogram (EEG). In case of patients with seizure
disorders, the EEG shows indications of seizures which can
be evaluated by medical professionals to provide a diagnosis
for the patient and prescribe a treatment plan involving medi-
cations or surgical procedures. However, with the variations of
seizure disorders, it may be difficult for medical professionals
to constantly monitor the patient for seizures, especially in
settings where EEG recordings are carried out over several
hours. Moreover, it is tedious to view the recordings of such
patients and manually forecast the onset of a seizure.

Motivation for our research concerns the TUH EEG
Database. This dataset consists of scalp EEG recordings in-
cluding patients with seizures. The files consist of recordings
in .edf (European Data Format) with additional summary files
of any seizures.

In this study, we consider looking at EEG records of
seizure-prone and normal patients. The term ‘seizure-prone’ is
indicative of the patient’s EEG having one or more seizures. It
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is important to note that even when patients have seizures, the
frequency of seizure occurrence differs from patient to patient.
It is also possible for a patient to not have a seizure during
the time the EEG is being recorded. On the other hand, the
term ‘normal’ is indicative that the patient does not have a
seizure disorder at the time of the EEG recording nor during
the recording. In this context, it is important to note that such
patients may have had a history of seizures, which means they
may have had seizures in the past or in their childhood.

Seizures are rare events in most cases, but their occurrence
in a patient can be indicative of a long term condition that can
be detected by our algorithms. Our results show:

1) Whether a patient is seizure-prone or normal based on
a 5-second EEG sample.

2) They show that patients that have a tendency to have
seizures are distinctively recognized by the LSTM
model.

3) a foundation for a more sensitive and reliable test
of whether a seizure might occur in the near future.
This could benefit researchers who are trying to predict
seizure events [1], [2].

Our results are important from a clinical point of view
because they aid diagnosis and treatment for a useful scenario
when clinicians are seeking to record an EEG of a patient;
allowing then to record shorter EEGs or identifying potentially
the sequences leading to an actual seizure.

The rest of this paper is structured as follows: Section
II covers related work in this area, Section III explains our
experimental setup, Section IV discusses our results, and
Section V concludes the paper and discusses planned future
work.

II. RELATED WORK

Several studies used deep learning approaches for the task
of distinguishing between seizure and non-seizure records.
Golmohammadi et al. [3] compared the performance of Long
Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU) on the TUH EEG Seizure Corpus (TUSZ) for the
task of classifying seizures and non-seizures. They evaluated
the models using hybrid convolutional neural networks. They
reported that convolutional LSTMs performed better and re-
ported the best sensitivity of 30%. Shah et al. [4] have studied
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the performance of various channel selections for detection of
seizures from the TUH EEG Seizure Corpus (TUSZ). They
report the best results of 39% on using all 22 channels.

Many studies have modeled seizure prediction as a classi-
fication between interictal and preictal periods. Wei et al. [5]
proposed a long-term recurrent convolutional network (LRCN)
to detect seizures from data collected from the Xinjiang Medi-
cal University. They converted EEG recordings into images for
applying their deep learning model. They obtained an accuracy
of 93.4% with their proposed method. Cho et al. [6] proposed
a model using various filtering algorithms on the CHB-MIT
Scalp EEG Database [7], [8]. Their model using noise-assisted
multivariate empirical mode decomposition (NA-MEMD) re-
sulted in the highest accuracy of 83.17%. Another method
on the CHB-MIT Scalp EEG Database proposed by Zhang
and Parhi [9] used feature extraction as input to their support
vector machine (SVM) model. They also tested their model
on the intra-cranial EEG in the Freiburg Database [10]. They
obtained sensitivities of 98.68% and 100% on the CHB-MIT
Scalp EEG Database and the Freiburg Database respectively.

Some other seminal works in this area have been compared
in Table L.

We would like to summarize our technical contributions as
follows:

(i) We propose a long short-term memory (LSTM) [17]
based deep learning model that can classify EEGs as non-
seizure, seizure, and normal (seizure-free). We ran an addi-
tional set of experiments to determine whether the samples
are non-seizure or normal.

(i) We have used samples from TUSZ and TUAB to train
and test our proposed model. We believe our study is one of
the first attempts involving a classification model on multiple
types of corpora.

III. EXPERIMENTAL SETUP
A. Datasets

For this project, we used two corpora from Temple Univer-
sity Hospital (TUH) Dataset [18] — the TUH Abnormal EEG
Corpus (TUAB) and the TUH EEG Seizure Corpus (TUSZ).
For TUAB, we used version v2.0.0 and for TUSZ, we used
version v1.5.2. For the labels of seizure and non-seizure, we
used the reference file for the train set of TUSZ. For the
seizure-prone patients, we used the label of ‘seiz’ to indicate
a seizure period, and ‘bckg’ to indicate a non-seizure period
from TUSZ. For the normal patients, we used data from the
‘normal’ sub-folder of TUAB. The final data considered in
this study consists of the following labels:

1) non-seizure: Patients who are clinically diagnosed with
seizures where the EEG sample retrieved does not
contain seizures.

2) seizure: Patients who are clinically diagnosed with
seizures where the EEG sample retrieved contains
seizures.

3) normal: Patients whose EEG records do not show any
clinical abnormalities.

B. Preprocessing

Each EEG recording was divided into overlapping segments
of 5 seconds each. The data was extracted from the .edf files
using the Python MNE package. For this paper, we chose to
analyze records sampled at 256Hz with 26 common channels.
These channels are: FP1-REF, FP2-REF, F3-REF, F4-REF,
C3-REF, C4-REF, P3-REF, P4-REF, O1-REF, O2-REF, F7-
REF, F8-REF, T3-REF, T4-REF, T5-REF, T6-REF, T1-REF,
T2-REF, FZ-REF, CZ-REF, PZ-REF, EKG1-REF, C3P-REF,
C4P-REF, SP1-REF, and SP2-REF. Channel selection for
our experiments choose record availability for the set of n
channels. The selection of n as 26 was also challenging as we
had to select sufficient records across the two corpora. All the
data was normalized using StandardScaler from scikit-learn
[19] for the samples, and normalized using z-score for the
channels. Prior to the model training, the 5-second segments
were always shuffled along with their corresponding labels.

C. Performance Metrics

We used accuracy as the metric to determine performance.
Our main focus is the test accuracy as it helps understand the
true model performance and generalization on the test dataset.
However, we also report the confusion matrices for all the
experiments to show the model performance across all classes.

D. Training and Testing

All our experiments were run on gpuxl of the HAL cluster
[20]. This gives results on 80% of training samples and 20%
of testing samples. All experiments were coded using Python3
in Keras [21] using Tensorflow [22] as the backend.

IV. RESULTS AND DISCUSSION

We trained the LSTM model on 80% of the samples and
report test results on 20% of the samples.
The various experiments performed are discussed below:

o Imbalanced 2-class: Based on our constraints for the
number of channels, the sampling frequency, and the
metadata availability, we had 289 patients from TUSZ
and TUAB with 139,520 train and 34,816 test EEG
samples in total. In this experiment, we label samples
only as non-seizure or normal (seizure-free). We leave
out EEG samples labeled as seizures.

o Imbalanced 3-class: Based on our constraints for the
number of channels, the sampling frequency, and the
metadata availability, we had 289 patients from TUSZ
and TUAB with 151,552 train and 37,888 EEG samples
in total. In this experiment, we label samples as non-
seizure, seizure, or normal (seizure-free).

« Balanced 2-class: The first set of experiments had a larger
number of patients from TUSZ compared to TUAB. To
show the consistency in our results, we show results on
a balanced dataset with equal proportions of patients
from TUSZ and TUAB. Based on our constraints for
the number of channels, the sampling frequency, and the
metadata availability, we had 26 patients from TUSZ and
26 patients from TUAB with 40,704 train and 9,984 EEG
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TABLE I
OTHER APPROACHES RELATED TO STUDIES ON SEIZURES FROM EEG DATA
Paper Dataset Method(s) Notes Performance
[11] | TUH Abnormal EEG Corpus ID CNN Cclfﬁ;gfjed temporal to occipital 20.66% error rate
SVM, kSVM, RF, Studied both feature and deep
12l TUH EEG Corpus SCNN, DCNN learning based methods 73% accuracy
TUH Abnormal EEG Corpus (TUAB), | InstaGATs, LSTM methods had highest accuracy .
[13] | TUH EEG Artifact Corpus (TUAR), LSTM-+attention, for TUAB and TUAR, CNN ‘gfi‘;{;ctefﬁg "é%%é?’?%’sz)
TUH EEG Seizure Corpus (TUSZ) CNN-+attention methods performed better for TUSZ 007 o °
Extracted set of features for 100% of seizures detected,
(2] CHB-MIT Scalp EEG Database LSTM preictal-interictal classification 0 false alarms in 17/24 patients
HMMs, . i o e
[14] TUH EEG Corpus (TUH-EEG) HMM/deep learning Used 22 channels for experiments sensitivity >90%, specificity <5%
[15] TUH EEG Seizure Corpus Attention-gated U-nets Corqblpat1on of U-nets and LSTM for sensitivity <25%
prediction on 16 channels
[16] CHB-MIT Scalp EEG Database Deep neural network Dls_cussed bOt.h inter and intra sensitivity 85%
patient detection

samples in total. In this experiment, we label samples
only as non-seizure or normal (seizure-free). We leave
out EEG samples labeled as seizures.

o Balanced 3-class: Similar to the balanced 2-class exper-
iment, in order to show the consistency in our results,
we show our results on a balanced dataset with equal
proportions of patients from TUSZ and TUAB. Based on
our constraints for the number of channels, the sampling
frequency, and the metadata availability, we had 26
patients from TUSZ and 26 patients from TUAB with
41,472 train and 10,240 EEG samples in total. In this
experiment, we label samples as non-seizure, seizure, or
normal (seizure-free).

For each of the above experiments, we retained the same
network architecture for the long short-term memory (LSTM)
model, except for the final dense layer which had to be
changed depending on the number of classes considered for
classification (2 or 3). Based on our experiments, we obtained
consistent performance using 3 LSTM layers with 128 units
each, interleaved with dense layers containing 25 units each
and ReL.U activation. The final dense layer has 2 or 3 units de-
pending on the number of classes and softmax activation. The
stacked LSTM architecture was selected based on empirical
performance.

We used Adam for optimization with 0.001 learning rate.
In each fold, we trained for 25 epochs with a batch size of
256. All classes were weighted based on the ratio of the total
number of samples and number of samples for each class.
We used the MirroredStrategy from Tensorflow for distribution
on the GPU and adjusted our learning rate and batch size
accordingly.

Performance metrics are reported in terms of accuracy on
the test data.

As shown in Table II, we show our results are consistent in
both the balanced and imbalanced cases. This shows that an
imbalance in the number of records from the TUAB and TUSZ
corpora does not significantly affect model performance. This
is important in a clinical context because there may be dif-
ferent ratios of seizure-prone and normal patients available as

TABLE 11
PERFORMANCE OF PROPOSED LSTM MODEL
Experiment Train Test Accuracy
Imbalanced 2-class | 139520 | 34816 99.84%
Imbalanced 3-class | 151552 | 37888 98.87%
Balanced 2-class 40704 9984 97.89%
Balanced 3-class 41472 10240 98.53%

training data. While the model would be usable in the case of
imbalanced records in a clinical context, based on the results,
it is preferable to use a balanced dataset if possible. The
test accuracies for 2-class classification for both experiments
showed higher accuracy compared to the test accuracies for 3-
class classification. The confusion matrices in Table III, Table
IV, Table V, and Table VI provide further insight on the class-
wise performance of the LSTM model for the imbalanced
2-class, imbalanced 3-class, balanced 2-class, and balanced
3-class experiments respectively. In all confusion matrices, ¢
indicates the true labels and p indicates the predicted labels.

TABLE III
CONFUSION MATRIX FOR IMBALANCED 2-CLASS
Non- Normal
Label seizure (t) (t)
Non- 27321 26
seizure (p)
Normal (p) 28 7441
TABLE IV
CONFUSION MATRIX FOR IMBALANCED 3-CLASS
Label Non-seizure (t) Sel(zt;n'e No(rtr)nal
Non- 27297 170 3
seizure (p)
Seizure (p) 209 2715 0
Normal (p) 43 4 7447

V. CONCLUSION AND FUTURE WORK

In this paper, we studied two datasets, namely the TUH Ab-
normal EEG Corpus (TUAB) and the TUH EEG Seizure Cor-
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TABLE V
CONFUSION MATRIX FOR BALANCED 2-CLASS
Non- Normal
Label seizure (t) (t)
Non- 2534 167
seizure (p)
Normal (p) 44 7239
TABLE VI
CONFUSION MATRIX FOR BALANCED 3-CLASS
Label Non-seizure (t) SEI(Zt;lI‘e No(rtl)nal
Non-seizure (p) 2690 18 15
Seizure (p) 41 142 2
Normal (p) 75 0 7257

pus (TUSZ) [18] and classified EEG samples from records of
seizure-prone and normal patients. We conducted experiments
on both imbalanced and balanced datasets and show results
with a deep learning based long short-term memory (LSTM)
model. We observed that the performance is consistent for
both balanced and imbalanced datasets based on only 5 second
samples from the EEG records. We show that our proposed
LSTM model gives test accuracies up to 99.84% in case of 2-
class classification between the non-seizure and normal classes
and up to 98.87% in case of 3-class classification among non-
seizure, seizure, and normal classes.

In the future, we plan to extend this work by using other
deep learning models for performing classification tasks on
the TUH EEG database.

VI. CODE

Code for this paper is available at this link: https://github.
com/sayantanibasu/eeg-seizure-normal.
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