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Abstract 
Purpose: To determine real life quantitative changes in OCT biomarkers in a large set of 
treatment naive patients undergoing anti-VEGF therapy. For this purpose, we devised a 
novel deep learning based semantic segmentation algorithm providing, to the best of our 
knowledge, the first benchmark results for automatic segmentation of 11 OCT features 
including biomarkers that are in line with the latest consensus nomenclature of the AAO for 
age-related macular degeneration (AMD).  
Design: Retrospective study.  
Participants: Segmentation algorithm training set of 458 volume scans as well as single 
scans from 363 treatment naive patients for the analysis. 
Methods: Training of a Deep U-net based semantic segmentation ensemble algorithm 
leveraging multiple deep convolutional neural networks for state of the art semantic 
segmentation performance as well as analyzing OCT features prior to, after 3 and 12 months 
of anti-VEGF therapy.  
Main outcome measures: F1 score for the segmentation efficiency and the quantified 
volumes of 11 OCT features. 
Results: The segmentation algorithm achieved high F1 scores of almost 1.0 for 
neurosensory retina and subretinal fluid on a separate hold out test set with unseen patients. 
The algorithm performed worse for subretinal hyperreflective material and fibrovascular 
PED, on par with drusenoid PED and better in segmenting fibrosis. In the evaluation of 
treatment naive OCT scans, significant changes occurred for intraretinal fluid (mean: 
0.03µm3 to 0.01µm3, p<0.001), subretinal fluid (0.08µm3 to 0.01µm3, p<0.001), subretinal 
hyperreflective material (0.02µm3 to 0.01µm3, p<0.001), fibrovascular PED (0.12µm3 to 
0.09µm3, p=0.02)   and central retinal thickness C0 (225.78µm3 to 169.40µm3).The amounts 
of intraretinal fluid, fibrovascular PED and ERM were predictive of poor outcome. 
Conclusions: The segmentation algorithm allows efficient volumetric analysis of OCT 
scans. Anti-VEGF therapy provokes most potent changes in the first 3 months and 
afterwards only acts as a stabilizing agent. Furthermore, a gradual loss of RPE hints at a 
progressing decline of visual acuity even beyond month 12. Additional research is required 
to understand how these accurate OCT predictions can be leveraged for a personalized 
therapy regimen. 
 
 
 
 
 
 
 
 
 
 
 
Précis (35 words max): Novel high performance segmentation algorithm shows most 
volumetric changes under anti-VEGF therapy in oct biomarkers occur in the first 3 months. 
Afterwards the injections seem only to serve as a stabilizing agent. 
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Introduction 
 
Vascular retinal diseases represent a heterogeneous field with multiple etiologies. In many 
countries age related macular degeneration (AMD) and diabetic retinopathy are the leading 
causes of blindness and are therefore of high socioeconomic importance1,2,3. Western lifestyle 
and the aging population are expected to contribute to a strong increase in the incidence of 
these diseases4.  
While there are only limited therapeutic options for the dry form of AMD (dAMD), the 
pharmacological inhibition of the vascular endothelial growth factor (VEGF) has revolutionized 
treatment of neovascular AMD (nAMD) in the past two decades and has therefore become 
the gold standard in treatment. The intravitreal injection of anti-VEGF agents such as 
Ranibizumab (Lucentis®), Aflibercept (Eylea®), Bevacizumab (Avastin®) and the just newly 
approved Brolucizumab (Bevou®) targets the VEGF-guided growth of pathological choroidal 
nevovascularisations that would normally lead to excessive intraretinal and subretinal fluid or 
excessive subretinal hemorrhages and lastly to the development of fibrotic tissue or 
geographic atrophy leading to high visual defects and central scotomas. While large pivotal 
studies for Lucentis® (MARINA-Study) and Eylea® (VIEW-Study) showed a visual acuity gain 
of 7.2 to 9.3 EDTRS letters after one to two years5,6, follow up studies observed a mean loss 
in visual acuity of 8.6 ETDRS letters after 7 years7. The major cause for this seems to be the 
development of retinal fibrosis in the context of a wound healing reaction that is shown to occur 
in approximately 50% of all patients after two years8. Apparently, a big part of the scar consists 
of fibrotically changed vascular membranes due to anti-VEGF therapy9,10. In addition to the 
limitations mentioned above, the high therapy intensity of the established anti-VEGF agents 
with monthly to bimonthly injections over several years poses a major challenge for both 
patients and the health care system. A recent study by Chopa et al shows an 11-fold increase 
in annual intravitreal injection from 2009 to 2019 and is projected to continue to rise11. 
Besides fibrosis there are several other OCT biomarkers that seem to play an important role 
in determining the course of disease, the progression into advanced stages and response to 
treatment12–15. Generally, the influence or the importance of OCT biomarkers for visual acuity 
progression or progression into fibrosis in neovascular AMD is not fully understood. For 
example, recent studies have shown that ignoring subretinal fluid (<200µm at the foveal 
center) does not change outcome in visual acuity for patients under anti-VEGF therapy but 
can lessen their treatment burden16. Other studies by Christenbury et al and Dhrami-Gavazi 
et al have shown that a relatively stable fibrovascular pigment epithelial detachment may 
correlate with protection for the development of macular atrophy17,18. This shows that new 
findings in further analyzing morphologic features in these patients can give new insights to 
“older” treatment regimens. To understand changes in these features a basic descriptive 
understanding of biomarkers in treatment naive patients in a real life setting is crucial. Study 
conditions can lead to “selection bias” (i.e. through inclusion criteria) and can not offer the 
same insight into the variety of patients or their compliance as do real field studies. Manually 
analyzing these treatment naive biomarkers and their changes over time becomes difficult and 
time consuming once we want to study a greater set of patients. Additionally, the variety of 
morphologic features in AMD add much to the complexity of the scan and generate high 
volume data making the manual process close to impossible. Hence, the use of automatic 
segmentation can offer a great deal of help in analyzing, describing and understanding the 
changes of the OCT biomarkers as well as their influence on the overall therapeutic outcome.  
In this respect, deep learning algorithms have already been shown to successfully automate 
tasks such as disease classification of color fundus photographs and retinal OCT images, a 
key non-invasive imaging modality in Ophthalmology, as well as support medical decision 
making in many other medical fields 19–23. Further, in the field of deep semantic segmentation, 
the task of classifying individual pixels in an image with numerous applications in medicine, 
many advances have been made in both natural scenes as well as biomedical applications 24–

27. In this project we propose a deep learning based semantic segmentation algorithm trained 
with 458 manually annotated macular OCT scans, to allow automatic segmentation, and thus 
automatic labeling, and volumetric analysis of clinical features of a large series of treatment 
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naive patients eyes undergoing anti-VEGF treatment. It furthermore allows us to give a one-
of-a-kind extensive description on the distribution of morphologic features as well as disease 
biomarkers of that patient group in a real life setting. To the best of our knowledge, we are the 
first to present an extensive AMD segmentation algorithm including disease biomarkers and 
other common morphological OCT features as well as validate this on independent test sets 
of previously unseen patients combined with detailed analysis of the inter-annotator variance 
for ambiguous and hard to annotate features.  
 
 
Methods 

 
This case series included patients with newly diagnosed treatment naive neovascular age 
related macular degeneration in the study eye and had a follow up observational period of at 
least three and twelve months. Treatment naive was defined as never having had any form of 
intravitreal injection (anti-VEGF or other) in our institution or elsewhere. The first intravitreal 
injection was received at time of diagnosis. Exclusion criteria were comorbidities such as 
central retinal vein occlusion, retinal branch occlusion, diabetic macular edema, uveitis and 
other conditions that can lead to the development of intra- or subretinal fluid such as macular 
telangiectasia, central serous chorioretinopathy and intravitreal injection of any other drug than 
anti-VEGF. The study was approved by the institutional review board of our institution and 
adhered to the tenets of the Declaration of Helsinki. Written informed consent was obtained 
from each participant prior to the intervention and all testing outlined herein. 

 
Treatment regimen 
Patients received an upload of three monthly injections of any of the anti-VEGF agents 
(Ranibizumab, Aflibercept or Bevacizumab) and were then treated according to the Treat and 
Extend regimen: They were either extended for two weeks or continued on a monthly injection 
routine28. 

Patient identification 
To identify patients suffering from a neovascular AMD, we queried our data warehouse for all 
patients receiving intravitreal Injections of anti-VEGF between 2013/03/11 and 2020/07/09. 
Diagnosis of neovascular AMD was confirmed after proof of choroidal neovascularization in 
initial Fluorescein angiography. We interpolated the data set to 3 measurement points: Start 
date is the time of the first intravitreal injection. Next monitoring point is after 3 months and 
lastly after 12 months of treatment.   
 
Preoperative examinations 
Examinations before intravitreal injections included testing best corrected visual acuity using 
standard ETDRS chart at testing distance of 4 meters, intraocular pressure using non contact 
tonometry, dilated indirect fundoscopy as well as spectral-domain optical coherence 
tomography of the macula (Spectralis; Heidelberg Engineering GmbH, Heidelberg, Germany). 
The metrics “counting fingers”, “hand movement” were converted to 1.98 and 2.28 logMar 
respectively as previously described by Lange C et al and Schulze-Bonsel et al29,30.  There 
were no patients included with the metric “light perception”. All visual acuity values in this study 
are given in logMAR units. 
 
 
 
 
 
Segmentation data sets 
To create the segmentation algorithm, a set of 458 macular OCT scans, each from a different 
patient, were annotated by ophthalmological residents with a fellowship in medical retina (B.A., 
J.B.S. and M.H.) using the annotation tool LabelMe31. They were then validated by three retinal 
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experts (J.S., C.K. and T.H.) and re-labeled in case of any discrepancies. Each fellow was 
assigned his or her own set, roughly a third of the 458 scans, randomly. In this process, we 
followed the Consensus Nomenclature for Reporting Neovascular Age-Related Macular 
Degeneration of the AAO (American Academy of Ophthalmology) for disease biomarkers and 
used 11 different OCT labels32 also including other common morphological features giving us 
the possibility to analyze the scan as a whole and not exclusively for the biomarkers. The 
annotation was made pixel wise, i.e. each pixel in the image was assigned one of the 11 
classes: Epiretinal Membrane (ERM), Neurosensory Retina (NR), Retinal pigment epithelium 
(RPE), Intraretinal fluid (IRF), Subretinal fluid (SRF), Subretinal hyperreflective material 
(SHRM), Drusenoid pigment epithelial detachment (DPED or Drusenoid PED), Fibrovascular 
pigment epithelial detachment (FPED or Fibrovascular PED), Fibrosis, Choroid, Posterior 
hyaloid membrane (PHM). For annotation examples as well as exact class distribution 
statistics see supplement. Further the class camera effect and the vitreous cavity were 
automatically labeled. For camera effect this was derived as completely black regions in the 
OCT images and for vitreous cavity as background above the neurosensory retina. The central 
retinal thickness C0 was defined as the quantification (in µm3) of the labeled neurosensory 
retina in that region according to the ETDRS grid33.  
 
An additional data set of 30 scans were sampled and then annotated to measure the inter 
annotator variation between the three annotators for a selection of ambiguous features. To 
quantify feature ambiguity as well as establishing an upper bound for how well these features 
can be expected to be segmented, the ophthalmological fellows all annotated the same scans. 
After doing so, a consensus annotation was produced by a panel including the retinal experts 
by either annotating a new scan or selecting one of the annotated scans from the annotators. 
In total, each of the 30 scans in the second data set had three annotations from the three 
fellows in medical retina as well as a fourth annotation produced by consensus voting. 
 
 
 
Model architecture 
The model used is a deep ensemble34 of networks, for increased generalization in the 
presence of limited number of samples35, for segmentation. Each network in the ensemble is 
the same, just trained with different random weight initializations. The architecture used for 
the models in the ensemble is described below. 
 
The algorithm used for segmenting the retinal OCT scans is a deep convolutional neural 
network (CNN)36 of a U-net type architecture24. Specifically the network consists of  eleven 
convolution layers followed by batch normalization37 and relu activation functions38. The 
convolutional layers use padding so as to not alter the dimensions of the feature maps and 
have kernel size set to three throughout the network. Each convolutional layer is initialized 
using the He normal initialization39 at the start of the training. In the encoder, every two 
convolutional layers are followed by a max pooling operation making a total of five max 
poolings, reducing the resolution size of the input from 256 to 8 for the feature maps. Here, 
the original images are linearly resized from 512 to 256 pixels heigh and width. The first 
convolutional layer is set to have 64 filters and this number is doubled after every max pooling 
layer yielding a maximum of 1024 filters in the bottleneck of the architecture. The number of 
filters are then halved after every transposed convolution in the decoder. Between the encoder 
and the decoder a dropout layer with probability 0.2 is applied for regularization. In the 
decoder, transposed convolutions as well as two layered convolutional blocks as described 
above are applied consecutively until the original input dimension is reached. Finally, a 
convolutional layer with kernel size one and a softmax activation function is applied to achieve 
the final output of the network. 
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Model training 
The models were trained using the Adam optimizer using the categorical cross entropy loss, 
with an initial learning rate of 0.001, found to be optimal through hyper parameter tuning on a 
validation set. In total, each network was trained for 2000 epochs. During training, random 
flipping, rotation, brightness and gaussian noise, with a scale of (2.5, 12.75), were used to 
augment the data. Each with a probability of 0.2 of being applied to an image or image and 
mask, except for rotation which was assigned a probability of 0.5 of occurring. The images 
and annotation masks were split into a train, validation and test set consisting of 338, 84 and 
36 images respectively. Further, an ensemble of networks was created for each image in the 
36 image test set using a leave-one-out validation scheme and adding the remaining test 
images to the training data set. In total five models were trained for each test image resulting 
in 180 different models. At inference time, the softmax outputs for each class and pixel, from 
all five models, were averaged to obtain an ensemble prediction. The class with the highest 
average softmax score yielded the final prediction. For the inter doctor variance data set the 
10 models, out of 180, with the best validation scores were selected to form an ensemble from 
which the predictions were obtained in the same way as for the test set.  
 
Model evaluation 
The segmentation model is evaluated using the F1 score, i.e. the harmonic mean between 
precision and recall, a standard evaluation metric for semantic segmentation tasks. The score 
is then presented for each class. Further the inter doctor variance is presented as the F1 score 
between each annotator retinal expert, also called annotator and the 10 model ensemble 
against the consensus annotation. As all pixels are concatenated for all images, as typically 
done in semantic segmentation tasks, no standard deviation metrics between images are 
provided. The statistically evaluated model was then used for automatic segmentation of 
18522 OCT scans from 378 eyes enabling the statistical analysis of morphological OCT 
features including nAMD biomarker distribution on treatment naive patients and how they are 
affected by anti-VEGF injections. 

 
Statistical analysis 
All statistical analysis was performed using the python programming language with the scipy 
stats software package40. Normality of data was assumed due to sufficiently large sample 
sizes well above 30 as specified by the central limit theorem41. We applied the independent 
samples t-test for parametric comparisons. The level of statistical significance was defined as 
p<0.05. 
 
The code for the models and training procedures as well as result analysis will be made 
available through the public Github repository upon publication. 
 
 
Results 
 
Deep learning segmentations accurately quantifies presence of clinical features in 
retinal OCT images. The segmentation algorithm was trained using 338 doctor-annotated 
OCT scans from AMD patients to infer the volumes of 11 different clinical retinal features (See 
Methods). The segmentation algorithm segmented the clinical features with a top 
performance of 0.98 F1-score for features neurosensory retina and subretinal fluid. The lowest 
F1-scores were observed for features epiretinal membrane, drusenoid PED and subretinal 
hyperreflective material (see Fig. 1a). Test set examples of the segmented features can be 
seen in figure 1b, showing the variety of features accurately segmented in unseen patients. 
The annotators, on the other end, highly agreed on subretinal hyperreflective material, 
fibrovascular PED and drusenoid PED, while largely disagreeing  in the case of fibrosis (see 
Fig. 1c). Overall, the segmentation algorithm performed worse than the annotators on 
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subretinal hyperreflective material and fibrovascular PED, on par with respect to drusenoid 
PED and better than all annotators when segmenting fibrosis (see Fig. 1c). In figure 1d we 
see examples of consensus, annotator and segmentation algorithm predicted segmentations 
for example OCT images. One can clearly see how fibrosis is annotated as fibrovascular PED 
by annotators II and III and while detected, subretinal hyperreflective material is overall 
segmented differently by the algorithm than the annotators and consensus segmentations.  
 

 
Figure 1: Deep learning segments clinical features on par with human experts from 
retinal OCT images. (a) F1 scores for 11 clinical features segmented on a test set from 37 to 
the algorithm previously unseen patients. (b) Example of OCT images selected to illustrate 
various segmentation classes with ground truth and predicted segmentation maps (c) F1 
scores for subretinal hyperreflective material, fibrovascular PED, drusenoid PED as well as 
fibrosis on 30 challenging test patients containing these features. (d) Example OCT images 
with consensus ground truth, annotations from three different annotators as well as predicted 
segmentation maps displaying segmentation of multiple features. 
 
 
Most morphological changes of treatment naive patients occur during the first three 
months of anti-VEGF therapy. Through our data warehouse we identified 592 eyes of 536 
patients, out of 1656 AMD patients in total, that were treatment naive and had the necessary 
follow up visits to fit the study. After filtering for the inclusion criteria as described in the 
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methods sections (i.e. follow-up time) a total of 378 eyes consisting of 18522 OCT scans from 
339 different patients were segmented and analyzed. Of those patients 144 were male and 
234 female with an average age of 82 ± 8 years. Pathological biomarkers in treatment naive 
patients that were most prominent on initial presentation were by far fibrovascular pigment 
epithelial detachment  (Mean: 0.12 µm3, SD: 0.19 µm3), followed by subretinal fluid (Mean: 
0.08 µm3, SD: 0.26 µm3), intraretinal fluid (Mean 0.03 µm3, SD 0.08 µm3) and subretinal 
hyperreflective material (Mean: 0.02 µm3, SD: 0.05 µm3, see Fig 2). The mean central retinal 
thickness C0 (CRT) was 225.78 µm with SD 90.36 µm in the cohort of treatment naive patients. 
After 3 and 12 months of intravitreal treatment the CRT decreased compared to baseline (3 
months: mean 169.40 µm, SD 64.50 µm, p-value < 0.001; 12 months:  mean 169.42 µm, SD 
59.03 µm, p-value < 0.001) which is mostly related to the resolution of fluids. Mean number of 
injections was 3.8 ± 1.5 after 3 months and 8.3 ± 3.5 after 12 months, meaning that on average 
the therapy regimen was extended at some point during the observed time frame.  
After 3 months of intravitreal treatment there was little but significant change in fibrovascular 
PED from 0.12 µm down to 0.09 µm (p-value = 0.02) but no difference afterwards (mean 12 
months: 0.10, p-value from month 3-9: 0.62). The overall change of this marker over the course 
of twelve months was barely not statistically significant (p-value: 0.05) meaning that therapy 
in general did not lead to real regression of the fibrovascular PED over a long term treatment 
regimen but rather contributes to a stabilization of this biomarker. 
  
Difference in means as tested by t-tests showed a statistical significant change in IRF (p < 
0.001), SRF (p < 0.001), SRHM (p < 0.001) and CRT C0 (p < 0.001) after 3 months of anti-
VEGF therapy but no significant improvement or change after that initial upload of 3 injections 
until month 12 occured, meaning setbacks under therapy were uncommon and no further 
improvement could be reached. This was on par with the observed changes in visual acuity. 
Significant improvement was achieved from before treatment during the first 3 months (mean 
VA on month 1: 0.59 logMAR, mean VA on month 3: 0.50 logMAR; p-value: 0.003) but no 
significant change occurred afterwards up until month 12. The distribution of these and the 
other morphological features including disease biomarker amongst treatment naive patients 
is summarized in Figure 2 and Table 1. The RPE feature changed from initially 0.192 µm3 to 
0.185 µm3 after 3 months ( p < 0.01) and lastly 0.181 µm3 after 12 months (p-value month 3-
12: 0.01) meaning there was a significant loss of RPE therefore hinting at a steady increase 
in atrophy. However, the cause-relationship between intravitreal injections and atrophy 
remains unclear as the resulting loss of RPE could be attributed to a natural disease 
progression. There was no change in choroidal thickness in 12 months even though there was 
a gradual loss in RPE. 

 
 
 
 

Table 1. Mean volumetric values before (mean 1), three months (mean 3) and twelve months after initiation of 
anti-VEGF therapy. All values are in µm3. 

 erm irf srf srhm rpe fvped drusen phm choroid fibrosis crt 
mean 1 0.01 0.03 0.08 0.02 0.19 0.12 0.01 0.02 0.93 0.02 223.82 
mean 3 0.01 0.01 0.01 0.01 0.19 0.09 0.01 0.02 0.96 0.02 169.65 
mean 12 0.01 0.01 0.01 0.00 0.18 0.09 0.01 0.02 0.95 0.03 172.62 

sd 1 0.02 0.08 0.25 0.05 0.02 0.18 0.01 0.03 0.41 0.06 88.29 
sd 3 0.02 0.07 0.09 0.02 0.02 0.15 0.01 0.03 0.41 0.06 64.11 
sd 12 0.02 0.04 0.04 0.01 0.02 0.15 0.01 0.03 0.41 0.08 63.76 

p-value (1-3) 0.62 0.00 0.00 0.00 0.00 0.02 0.44 0.39 0.33 0.59 0.00 
p-value (1-12) 0.38 0.00 0.00 0.00 0.00 0.05 0.82 0.24 0.50 0.15 0.00 
p-value (3-12) 0.70 0.94 0.86 0.32 0.01 0.59 0.30 0.74 0.76 0.05 0.52 
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Figure 2. Volumetric changes of treatment naive OCT biomarkers under anti-VEGF treatment. 
Significant reduction was seen in IRF, SRF, SHRM, RPE and central foveal thickness.  
 
We additionally used linear regression to model the interdependence between the different 
biomarkers and visual acuity outcome in 12 months. In treatment naive patients there was a 
negative correlation (meaning more of the feature was correlated with poor visual acuity 
outcome) between visual acuity and intraretinal fluid (p < 0.001), epiretinal membrane (p = 
0.013), fibrovascular PED (p = 0.009) and fibrosis (p = 0.049). Since most of these features 
are most prominent in the active disease state (excluding epiretinal membrane) and bring 
immense structural changes to the retina, this finding does not deem very surprising. 
Interestingly, subretinal fluid had no correlation with a worse outcome in visual acuity, 
supporting the thesis of being protective against retinal atrophy and further decline of vision. 
Other findings are summarized in Table 2. 
 
Table	2.	Results from multiple regression analysis of oct markers and their effect on 12 
month visual acuity (n=336).	
Model	predictors	 b	 SE	b	 t	 p	

intercept	 0.64*	 .23	 2.82	 .01	
erm	 2.5**	 0.90	 2.51	 0.01	
irf	 1.24***	 0.29	 4.32	 0.00	
srf	 -0.15	 0.09	 -1.73	 0.08	
srhm	 0.64	 0.47	 1.35	 0.18	
rpe	 -1.58	 1.25	 -1.26	 0.21	
fvped	 0.37*	 0.14	 2.64	 0.01	
drusen	 -1.19	 2.06	 -0.58	 0.56	
phm	 -0.36	 0.57	 -0.63	 0.53	

choroid	 0.02	 0.05	 0.55	 0.59	
fibrosis	 1.03	 0.52	 0.05	 0.05	
crt		 0.17	 0.38	 0.65	 0.65	

Adj.	R2	 .189	 	 	 	
F	 8.08***	 	 	 	

Note. * p < .05, ** p < .01, *** p < .001. 
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Discussion 
 
Structural changes and understanding of OCT images have been part of many major studies 
in the past. OCT imaging has changed AMD diagnostics and shaped the way patients are 
introduced into their treatment plans. To our knowledge, there is still missing an extensive 
morphologic description including disease biomarkers of never before treated nAMD patients. 
Most studies lack a full volumetric/quantitative interpretation of the images as manual 
segmentation seems unfeasible with high volume data. Therefore, in this study we introduced 
and showed the feasibility of a novel and high performing segmentation algorithm to present 
a thorough descriptive analysis of biomarkers in treatment naive nAMD patients in a real life 
setting and their overall plasticity after anti-VEGF treatment. Furthermore we identified several 
biomarkers that seem to contribute to a reduced prognosis in best corrected visual acuity after 
12 months giving us a glance at predicting disease outcome.  
 
Contribution to the application of deep learning algorithms in understanding the Retina. 
Semantic segmentation of fluids, PEDs as well as retinal layers in retinal OCT images has 
been studied before42–45. To the best of our knowledge, this is the first project aiming to 
segment features as defined in the latest Consensus Nomenclature for Reporting Neovascular 
Age-Related Macular Degeneration of the AAO (American Academy of Ophthalmology) and 
uses 11 different OCT labels32. The only similar segmentation algorithm to our knowledge was 
developed by De Fauw and colleagues22 which used a similar segmentation network as a pre-
processing method for predicting retinal disease. Our work differs with regards to two main 
aspects. First, we include the latest consensus nomenclature as specified by the AAO, and 
second, we provide an in-depth analysis of feature ambiguity by inter annotator variation 
analysis and test performance metrics reporting on a large number of unseen test patients. 
We show that segmentation of the above features is indeed possible to a high degree of 
accuracy (see Fig. 1a). While the algorithm segments at a similar proficiency as the annotators 
and even outperforms the retinal experts at segmenting fibrosis, we also clearly show the 
current limitation of segmentation of the retina by quantifying the ambiguity of the features 
fibrosis, drusen and subretinal hyperreflective material (see Fig. 2).  
These features, which mainly occur in the subretinal region, can often, due to lower image 
quality, be hard to distinguish as they often share hyperreflective parts that can be mistaken 
for one another. These difficulties specifically present in transitions from fibrovascular PED to 
fibrosis as they would appear very ambiguous on OCT scans. For example, Ohayon et al 
segmented fibrovascular PED into three layers with a more hyperreflective layer 2 that did not 
respond as efficiently as the other layers following anti-VEGF treatment being suggestive of a 
fibrotic component in the PED46. Interestingly in accordance to that, the segmentation 
algorithm presented in this study occasionally segmented the fibrovascular PED into a fibrotic 
sub-compartment as well, making the segmentation process in this case potentially more 
accurate then the training set provided by the retinal fellows as they had to make a definite 
decision on which biomarker was present for the whole structure. However, this warrants 
further investigation. Lastly, due to the lower quality in some of the scans, it seemed difficult 
to precisely isolate the borders between the different OCT classes on a pixel-wise level in this 
OCT region. Quality issues in OCT-scans can have a variety of reasons and are a very 
common phenomena as already described by Domalpally et al47. For the purpose of this 
segmentation algorithm, it was crucial to be able to handle difficult images (quality-wise) as 
well, so we did not exclude scans with a lower image quality in the training sets. 
Future work should aim to expand the number of features, such as adding Serous PED, 
segmented by the algorithm by collecting and annotating more data. Further, to deal with the 
difficulty of hard to annotate examples and annotator disagreement, future data sets should 
contain even more annotators and retinal experts annotating all the images in order to model 
the feature uncertainty. 
 
Distribution of Biomarkers and their overall plasticity on treatment naive patients. After 
proving the efficacy of the automatic deep segmentation algorithm, we described and 
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examined the quantitative volumetric change over 12 months of therapy in OCT biomarkers in 
a large series of treatment naive nAMD patients after anti-VEGF therapy in a real life setting 
down to the microscopic level. We show that the most prominent change was to be seen in 
the first three months suggesting the initial upload phase of three injections as being the most 
potent for morphological changes to the retina. Interestingly, almost no changes could be 
determined afterwards until month 12, revealing that any further injection past the initial 
monthly upload phase only functioned as a stabilizing agent. The biomarkers most sensitive 
to change were usually the ones that have been most prominent at the beginning: IRF, SRF, 
SHRM, RPE and fibrovascular PED alongside CRT. 
We showed that of those markers only intraretinal fluid and fibrovascular PED were predictive 
of a generally worse visual acuity outcome after 12 months. Although this seems logical, as 
higher amounts of those markers would indicate higher disease activity, we couldn’t find any 
prior evidence that would necessarily link the actual volumetric amount of fluid to a different 
outcome in contrast to fibrovascular PED for which there was prior evidence for example as 
described by Boyer et al48. One reason would be that patients with an abundance of these 
markers might have generally presented later after the first onset of symptoms and thus 
natural progression of the disease would have led to more irreversible retinal damages. Delay 
to treatment is a significant factor for poorer outcomes as previously described by Lim et al 49. 
Other than these, fibrosis significantly contributes to a worse outcome (which is again a marker 
of a progressed disease state) and interestingly epiretinal membrane. This is in direct 
contradiction to earlier findings by Alkin et al, where they concluded comparable results 
between patients with ERM and without ERM that were treated with bevacizumab50. However, 
reasons for our different findings could be a much higher number in investigated patients and 
the actual volumetric quantification of the observed epiretinal membranes in our oct scans. An 
increase of ERM did not necessarily mean more traction but it seems as simply a volumetric 
increase of this feature was enough to be predictive of a poorer outcome. It remains unclear 
why this would be the case. A possible explanation, at least in part, could be an increased 
traction over time (although in this work not possible to quantify) and thus more damage to the 
rpe and photoreceptor cells. However a missing increase in intraretinal fluid would contradict 
this. In additional contrast to Alkin et al. we did not solely include patients treated with 
bevacizumab, but rather conglomerated the different anti-VEGF injections alltogether. 
Although highly unlikely, this might be part of the reason for different findings in our work.  
 
Similar descriptive studies have been done in the past but with a much smaller case series, 
manual segmentation and only some of the biomarkers segmented in this study which in 
general led to various findings46,48,51,52.  
Lai et al observed treatment response for intraretinal cysts (IRC), subretinal fluid, pigment 
epithelial detachment and their correlation with BCVA changes for a time period of a year 
whilst setting similar time points as in our study (month 1, 3, 6 and 12)51. In 126 eyes only 
33.3% showed a resolution of their PED whereas IRC resolved in 53.8% and SRF in 51.6% 
of cases51. In correlation with that we saw a statistically significant and prominent volumetric 
reduction in IRF and SRF, whilst the decrease in Fibrovascular PED was barely significant. 
This supports the findings of an actual lower resolution of PEDs that were observed in the 
aforementioned study. This could mean that while anti-VEGF may be sufficient in controlling 
the PED, it lacks strong efficacy in decreasing its size or making it disappear. Other 
observations by Golbaz et al demonstrated that intraretinal fluid and subretinal fluid 
immediately responded to anti-VEGF treatment albeit the overall plasticity of the 
morphological changes declined over time which surely corroborates with our findings. 
Interestingly the sub-RPE compartments showed the least or no changes to anti VEGF 
therapy52. The high immediate effect of anti-VEGF on especially IRF or SRF is all in all well 
documented in several other studies in the literature. Bolz et al for example showed a 
significant effect of anti-VEGF on retinal fluid compartments as early as one week after the 
injection whilst there was no significant change after the second and third injection 53. While 
this might be suggestive of cutting the loading dose to just one injection, the small number of 
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cases (n=29) and missing long term observation of relapsing cases in that study warrants 
caution.  
 
Our study is mainly limited by its retrospective nature. A true randomized, double blind 
prospective study would give us much more reliable information to what effect anti-VEGF 
actually influences all the OCT biomarkers but it would not be feasible to include controls 
groups as it warrants many ethical concerns. However, given the high number of real 
treatment naive patients in this study, the findings can more or less be very suggestive on the 
effect of anti-VEGF treatment. Moreover, it gives us a general idea on a broad population of 
patients, and what morphological properties they present upon first presentation. Other 
limitations obviously include the discussed feature ambiguities and the lower F1 scores for 
some of the biomarkers. While this could lead to some changes being misinterpreted, the F1 
numbers are still quite high in general. In some cases they can be artificially lower as for 
certain features (especially membranes) it is difficult for manual annotators to segment 
correctly down to a pixel level with the precision that an automatic segmentation algorithm 
would. These micro-differences negatively impact F1 scores, albeit the algorithm being able 
to handle real segmentation perfectly. 
Another limitation is that a steady decrease of RPE is not a real marker of “atrophy” or 
“geographic atrophy” and just gives us the idea or a hint towards such a feature. 
An adequate definition of atrophy in OCT volume scans is provided by Sadda et al where 3 
criteria have to be met54: choroidal hyper transmission, attenuation of the RPE band, collapse 
or thinning of the outer retinal layer. A new training set for atrophy would be required that 
includes all three previously described properties to safely detect it as a biomarker for age-
related macular dege 
neration.  
 
To conclude, our study shows the feasibility of a high-performing segmentation algorithm, 
trained with a fixed set of 458 macular OCT scans, to quantitatively segment the whole region 
of a much larger number of OCT volume scans and thereby enable precise determination of 
volumetric changes down to a microscopic level. With that we were able to present a general 
description of the volumetric distribution of biomarkers in treatment naive patients and confirm 
that the most significant plasticity in biomarkers happens during the first 3 months of therapy 
with changes coming to a halt afterwards. For future work, this algorithm and findings could 
be used to analyze larger time series data sets and possibly predict the best possible therapy 
for each individual patient leading the way to a more personalized approach in treatment 
regimens. 
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