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Abstract 

The mechanisms of incomplete penetrance of risk modifying impacts of apolipoprotein E (APOE) ε2 and 

ε4 alleles on Alzheimer’s disease (AD) have not been fully understood. We performed genome-wide 

analysis of differences in linkage disequilibrium (LD) patterns between 6136 AD-affected and 10555 AD-

unaffected subjects from five independent studies to explore whether the association of the APOE ε2 

allele (encoded by rs7412 polymorphism) and ε4 allele (encoded by rs429358 polymorphism) with AD was 

modulated by autosomal polymorphisms. The LD analysis identified 24 (mostly inter-chromosomal) and 

57 (primarily intra-chromosomal) autosomal polymorphisms with significant differences in LD with either 

rs7412 or rs429358, respectively, between AD-affected and AD-unaffected subjects, indicating their 

potential modulatory roles. Our Cox regression analysis showed that minor alleles of four inter-

chromosomal and ten intra-chromosomal polymorphisms exerted significant modulating effects on the 

ε2- and ε4-associated AD risks, respectively, and identified ε2-independent (rs2884183 polymorphism, 

11q22.3) and ε4-independent (rs483082 polymorphism, 19q13.32) associations with AD. Our functional 

analysis highlighted ε2- and/or ε4-linked processes affecting the lipid and lipoprotein metabolism, and 

cell junction organization which may contribute to AD pathogenesis. These findings provide insights into 

the ε2- and ε4-associated mechanisms of AD pathogenesis, underlying their incomplete penetrance. 

Keywords: Dementia; Aging; LD; Cox Regression; Compound Genotype; Genetic Heterogeneity.  
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Introduction 

The apolipoprotein E (APOE) gene is the strongest Alzheimer's disease (AD)-associated genetic factor [1–

3], which can explain 13.4% of phenotypic variance and 25.2% of genetic variance of AD [4]. Minor alleles 

of the exonic single-nucleotide polymorphisms (SNPs) rs429358 and rs7412 in the APOE gene encode the 

ε4 and ε2 alleles, respectively. The ε2 allele is considered as a protective factor against AD, whereas the 

ε4 allele is advocated to be a major variant predisposing to AD [3,5].  

The APOE gene encodes a lipoprotein mainly involved in lipid transfer and metabolism. Nevertheless, its 

functional impacts are not limited to lipid profile alterations and related vasculopathies [6]. The APOE 

involvement in AD pathogenesis has been widely studied, revealing various molecular and biological 

processes differentially impacted by different APOE alleles. For instance, the ε4 allele has been linked to 

increased production and decreased clearance of β-amyloid, stress-mediated increased tau 

hyperphosphorylation, accelerated cortical atrophy (e.g., in the medial temporal lobe), baseline neuronal 

hyperactivity (e.g., in the hippocampus), reduced cerebral glucose metabolism, damaged synaptic 

structure and function, increased cytoskeletal and mitochondrial dysfunction, and abnormal hippocampal 

neurogenesis [7].  

Despite strong associations between APOE and AD, neither the ε2 nor ε4 allele is considered as a causal 

factor for AD development [5,8–10]. Addressing the mechanisms of actions of the ε2 and ε4 alleles is 

essential for understanding AD pathogenesis and AD risk assessment. The complex regional interactions 

and haplotype structures in the APOE locus (19q13.3) have been emphasized by a growing body of studies 

[11–19]. These studies indicate the potential roles of nearby polymorphisms in modulating the impacts of 

the APOE alleles on AD risks in the form of haplotypes and combinations of genotypes (called compound 

genotypes). The analyses of haplotypes leverage the idea that AD can be affected by haplotypes driven by 

genetic linkage between nearby SNPs [20]. The functional linkage may drive, however, compound 
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genotypes consisting of not only local but also distant variants [21].  

In this study, we used a comprehensive approach to examine intra- (cis-acting) and inter- (trans-acting) 

chromosomal modulators of the impacts of the APOE rs7412 or rs429358 SNPs on the AD risk in the ε4- 

or ε2-negative sample. We leveraged samples of the AD-affected (N=6136) and unaffected (N=10555) 

subjects from five studies: (i) to perform a comparative analysis of LD between rs7412 or rs429358 and 

other autosomal SNPs in the human genome in the AD-affected and unaffected subjects, (ii) to examine 

AD risks for carriers of compound genotypes comprised of rs7412 or rs429358 and the identified intra- 

and inter-chromosomal SNPs in LD with them, and (iii) to identify biological functions and diseases 

enriched by genes harboring these SNPs. 

Methods 

Study Participants 

We used data on subjects of European ancestry from (Table S1): three National Institute on Aging (NIA) 

Alzheimer's Disease Centers data (ADCs) from the Alzheimer's Disease Genetics Consortium (ADGC) 

initiative [22], whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project 

(ADSP-WGS) [23,24], Cardiovascular Health Study (CHS) [25], Framingham Heart Study (FHS) [26,27], and 

NIA Late-Onset Alzheimer's Disease Family Based Study (LOAD FBS) [28]. The ADSP-WGS’s subjects who 

were also present in other datasets were excluded to make datasets independent. The APOE genotypes 

were either directly reported by original studies (ADGC, ADSP-WGS, FHS) or were determined based on 

the rs429358 and rs7412 genotypes (CHS and LOAD FBS). The diagnoses of AD cases in the five analyzed 

datasets were mainly based on the neurologic exams [29,30], and the AD status was reported either 

directly (ADGC, ADSP-WGS, FHS, LOAD FBS) or in the form of ICD-9 (International Classification of Disease 

codes, ninth revision) codes (CHS).  

Genotype Data and Quality Control (QC) 
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We used whole-genome sequencing (ADSP-WGS) and genome-wide data from different array-based 

platforms (ADGC, CHS, FHS, LOAD FBS). SNPs were first imputed to harmonize them across analyzed 

datasets [31]. Low-quality data were excluded using PLINK [32] as follows: 1) SNPs and subjects with 

missing rates >5%, 2) SNPs with minor allele frequencies (MAF) <5%, 3) SNPs deviated from Hardy-

Weinberg with P<1E-06, and 4) SNPs, subjects, and/or families with Mendel error rates >2% (in ADSP-

WGS, FHS, and LOAD FBS which include families). In addition, imputed SNPs with r2<0.7 were filtered out 

(ADGC, CHS, FHS, LOAD FBS). Selecting SNPs presented at least in one study resulted in a set of 1,645,025 

SNPs for the analysis. 

Two-stage LD Analysis 

Design. Our analyses were performed separately in stratified samples obtained by dividing each dataset 

into four groups based on the APOE genotypes and AD status. First, we determined ε4-negative (ε2ε2, 

ε2ε3, and ε3ε3 genotypes) and ε2-negative (ε4ε4, ε3ε4, and ε3ε3 genotypes) subsamples. Then each 

subsample was divided into AD-affected and unaffected groups (herein referred to as AD and NAD groups, 

respectively). We evaluated LD between the APOE rs7412 or rs429358 SNP and each SNP in the genome 

in two stages.  

Stage 1: LD Analysis in Individual and pooled Datasets. We examined LD (i.e., r statistics) using the 

haplotype-based method [33–35] in each of the four selected subsamples in each dataset individually and 

combined. The statistically significant LD estimates were determined using a conservative chi-square test 

χ2=r2n [35], where n is the number of subjects rather than gametes to address the uncertainty in inferring 

haplotypes from unphased genetic data [16,18,36,37]. The variances of the r statistics were calculated 

using the asymptotic variance method detailed in [37]. The LD analysis was performed using haplo.stats r 

package [38].  

Stage 1 provided two sets of SNPs in LD with the APOE SNPs in each subsample. The first set was generated 
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following the discovery-replication strategy (herein referred to as replication set). In this case SNPs were 

selected if their LD with the APOE SNP attained: 1) genome-wide (P < 5E-08) or suggestive-effect (5E-08 ≤ 

P < 5E-06) significance in any of the five datasets, which was considered as a discovery set, and 2) 

Bonferroni-adjusted P<0.0125 (=0.05/4, where 4 is the number of potential replication sets) in at least 

one of the other four datasets [31]. The second set included SNPs in significant LD with the APOE SNPs at 

genome-wide or suggestive significance in the pooled samples of all five datasets that were not in the 

replication set. 

Stage 2: Group-Specific LD. We examined whether SNPs identified in stage 1 had group-specific LD by 

contrasting r between pooled AD and NAD groups, Δr=rAD-rNAD, using a permutation test [39,40]. 

Significant Δr indicated SNPs in group-specific LD with rs7412 or rs429358. Bonferroni-adjusted 

thresholds, accounting for the number of tested SNPs, were used to identify significant findings. 

Analysis of the AD risk 

For each group-specific SNP, survival-type analysis was performed to examine the impact of a compound 

genotype variable (CompG) on the AD risk. The CompG included four compound genotypes comprised of 

rs7412 or rs429358 genotypes and genotypes of a group-specific SNP (Table 1). 

We fitted the Cox regression model ( coxme and survival R packages [41,42]), considering the age at onset 

of AD as a time variable. We used sex, the top five principal components of genetic data and ADC cohorts 

(in ADGC) as fixed-effects covariates, and family IDs (LOAD FBS, FHS, ADSP-WGS) as a random-effects 

covariate. The results from five datasets were combined through inverse-variance meta-analysis using 

GWAMA package [43]. The CompG1 compound genotype was the reference factor level. We used a chi-

square test with one degree of freedom [44] to estimate the significance of the difference between the 

effect sizes for CompG3 and CompG4:  
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𝜒2 =  
(𝑏𝐶𝑜𝑚𝑝𝐺3 − 𝑏𝐶𝑜𝑚𝑝𝐺4)

2

𝑠𝑒𝐶𝑜𝑚𝑝𝐺3
2 +  𝑠𝑒𝐶𝑜𝑚𝑝𝐺4

2   

Here, bCompG3 (seCompG3) and bCompG4 (secompG4) are the beta coefficients (standard errors) corresponding to 

the CompG3 and CompG4 genotypes in the Cox model, respectively. Significant findings were identified 

at the Bonferroni-adjusted levels correcting for the numbers of ε2- and ε4-associated group-specific SNPs. 

Functional enrichment analysis 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) [45] and Metascape [46] 

web tools were used to identify gene-enriched REACTOME pathways [47] and DisGeNET diseases [48]. 

The analysis was performed for genes harboring SNPs in group-specific LD with rs7412 or rs429358 

separately. We used false discovery rate (FDR) adjusted significance cut off at PFDR<0.05 [49] to identify 

significantly enriched terms by two or more genes. 

Results 

SNPs in LD with rs7412 (APOE ε2 allele) 

In stage 1, we found that 306 SNPs mapped to 27 loci were in LD with rs7412 at P<5E-06 in the AD group 

(21 SNPs in 9 loci, Table S2), the NAD group (198 SNPs in 20 loci, Table S3), and both AD and NAD groups 

(87 SNPs, all in the APOE locus, Table S4). Of them, we identified LD of rs7412 with 58 SNPs not in the 

APOE locus (or other loci on chromosome 19) in the AD (19 SNPs in 8 loci) or NAD (39 SNPs in 19 loci) 

groups. For most SNPs, 219 of 306, the magnitudes of LD (i.e., |r|) were smaller in the pooled AD than 

NAD group (181 of 248 SNPs in the APOE locus and 38 of 58 inter-chromosomal SNPs). We also observed 

that the r signs were the same in these two groups for 272 of 306 SNPs.  

In stage 2, we found 24 SNPs (Table S5) having group-specific LD with rs7412 at a Bonferroni-adjusted 

significance P<1.63E-04 (=0.05/306). Of them, 16 SNPs were mapped to 6 non-APOE loci. All of them were 
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identified in the pooled sample of either the AD (14 SNPs) or NAD (2 SNPs) group. LD estimates for 14 of 

these 16 SNPs were characterized by opposite signs of r in these groups (Figure 1). Also, 15 of them had 

larger magnitudes of r in the AD group than NAD group. The remaining 8 SNPs were in the APOE locus, of 

which only rs11669338 (NECTIN2) attained significance only in NAD group, whereas all the others in both 

groups. All 8 SNPs had the same signs of r in the AD and NAD groups, whose magnitudes were smaller in 

the AD than NAD group (Figure 1). 

SNPs in LD with rs429358 (APOE ε4 allele) 

In stage 1, we found that rs429358 was in LD with 801 SNPs (143 loci) at P<5E-06 in the AD group (301 

SNP in 73 loci, Table S6), the NAD group (351 SNP in 81 loci, Table S7), and both AD and NAD groups (149 

SNP; all in the APOE locus, except 2 SNPs, Table S8). In the AD and NAD groups, we identified LD of 

rs429358 with 159 (72 loci) and 344 (80 loci) SNPs not in the APOE region, respectively, totaling 503 SNPs. 

Of all 505 SNPs (154 loci) not in the APOE locus in AD, NAD, and AD&NAD groups, one locus harboring 

FXYD5 and FAM187B genes (11 SNPs, NAD group) was on chromosome 19, and the other 494 SNPs (153 

loci) were not on chromosome 19. The LD magnitudes were smaller in the pooled AD than NAD group for 

370 of 801 SNPs (270 of 296 SNPs in the APOE locus and 161 of 505 SNPs in the non-APOE loci). The r signs 

were the same in these two groups for 711 of 801 SNPs. 

In stage 2, we identified 57 SNPs with group-specific LD at a Bonferroni-adjusted significance P<6.24E-05 

(=0.05/801). As seen in Table S9, 17 of 57 SNPs were mapped to 11 non-APOE loci. All of them were 

identified in the pooled sample of either the AD (10 SNPs) or NAD (7 SNPs) group. The magnitudes of r 

were larger in the pooled AD than NAD sample for SNPs whose significant LD was identified in the AD 

group and vice versa. The r signs for 13 of these 17 SNPs were opposite in these AD and NAD samples. The 

other 40 SNPs were located in the APOE locus. Magnitudes of r for all SNPs, except rs769449 (APOE), were 

larger in the pooled AD than NAD sample. For all SNPs, except rs11083767 (EXOC3L2), the r signs were 
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the same in these AD and NAD samples (Figure 2). 

AD risk for carriers of compound genotypes 

We performed Cox regression analysis to examine the impact of compound genotypes comprised of a 

group-specific SNP and either rs7412 (Tables 2 and S10, Figure 3A) or rs429358 (Tables 2 and S11, Figure 

3B) on the AD risk. An advantage of using compound genotypes is that we can explicitly examine the effect 

of a minor allele of a group-specific SNP independently of the effect of the ε2 or ε4 allele (CompG2), the 

impact of the ε2 or ε4 allele independently of the minor allele of that SNP (CompG3), and combined effects 

of these minor alleles (CompG4) in the same model with the same reference genotype (CompG1) (Table 

1).  

AD risk for carriers of 24 rs7412-bearing compound genotypes (Tables 2 and S10, Figure 3A) 

Our analysis showed that none of eight CompG2 genotypes bearing SNPs from the APOE locus attained 

Bonferroni-adjusted significance PBε2=2.08E-03 (=0.05/24), although rs405509 minor allele was 

beneficially associated with AD, independently of ε2, at nominal significance P=0.0238. In contrast, six of 

16 CompG2 genotypes comprised of rs7412 and non-APOE locus SNPs were beneficially associated with 

AD at the nominal significance (PBε2≤P<0.05). For one CompG2, we observed beneficial association of 

rs2884183 minor allele (11q22.3, DDX10) with AD at P<PBε2 independently of the ε2 allele.  

All CompG3 genotypes were beneficially associated with AD (although non-significantly for rs11668861) 

because of the leading role of the ε2 allele and the lack of minor alleles of the group-specific SNPs. Also, 

regardless of the significance, all CompG4 genotypes were beneficially associated with AD risk, with 10 of 

them (seven in the APOE locus) reaching P<PBε2. For all 16 group-specific inter-chromosomal SNPs, the 

effects for CompG4 were smaller in magnitude than those for CompG3 either at the nominal (12 SNPs) or 

P<PBε2 (four SNPs) significance (Figure 3A).  
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AD risk for carriers of 57 rs429358-bearing compound genotypes (Tables 2 and S11, Figure 3B) 

We found that one of 40 intra-chromosomal CompG2 genotypes comprised of rs483082 (APOC1) and 

rs429358 was adversely associated with AD risk independently of the ε4 allele at Bonferroni-adjusted 

significance PBε4=8.77E-04 (=0.05/57). None of 17 CompG2 with inter-chromosomal SNPs attained P<PBε4. 

Each of 57 CompG3 and CompG4 genotypes was adversely associated with the AD risk. None of the 

differences in the effects between them attained P<PBε4 for inter-chromosomal SNPs. In contrast, we 

identified seven (PBε4≤P<0.05) and 10 (P<PBε4) differences in the effects between CompG3 and CompG4 

for SNPs within the APOE locus (Figure 3B).  

Biological functions and diseases 

Our analysis was performed for 11 and 19 genes harboring SNPs in group-specific LD with ε2-encoding 

rs7412 and ε4-encoding rs429358, respectively. We found that 7 and 4 REACTOME pathway were 

enriched at P<0.05 using genes from the ε2 (Figure S1) and ε4 (Figure S2) sets, respectively. Four of them, 

i.e., “plasma lipoprotein assembly”, “plasma lipoprotein clearance”, “NR1H3 and NR1H2 regulate gene 

expression linked to cholesterol transport and efflux”, and “NR1H2 and NR1H3-mediated signaling” were 

enriched in both ε2 and ε4 sets. Three pathways, however, were ε2 specific, including "cell-cell junction 

organization", "plasma lipoprotein assembly, remodeling, and clearance", and "cell junction 

organization". There were no enriched ε4 specific pathways. 

Disease annotations (Tables S12 and S13) included 14 terms that were enriched at PFDR<0.05 by both the 

ε2 and ε4 gene sets. They were mainly related to neurological diseases (e.g., AD and other dementia 

phenotypes, memory performance, mild cognitive disorder, and primary progressive aphasia), serum lipid 

traits (e.g., dyslipoproteinemias, serum Low-density lipoprotein (LDL) cholesterol measurement, and 

serum total cholesterol measurement), serum albumin measurement, and C-reactive protein 

measurement. 
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Seven terms were only enriched in the ε4 set at PFDR<0.05 (Table S13) which included mental deterioration, 

atherogenesis, triglycerides measurement, and high-density lipoprotein measurement as well as multiple 

hematological and immune system related terms (i.e., autoantibody measurement, acute monocytic 

leukemia, and peripheral T-cell lymphoma).   

Discussion 

Our comprehensive approach examining intra- and inter-chromosomal modulators of the impacts of the 

APOE rs7412 or rs429358 SNP encoding the ε2 or ε4 allele on the AD risk provided four insights.  

First, we identified 306 (27 loci) and 801 (143 loci) SNPs in LD with rs7412 and rs429358, respectively, at 

genome-wide (P<5E-08) or suggestive-effect (5E-08≤P<5E-06) significance in AD, NAD, or both groups. Of 

them, 58 (27 loci) and 505 (154 loci) SNPs were not on APOE locus, indicating potential inter-chromosomal 

modulators of the impacts of the ε2 or ε4 allele on the AD risk.  

Second, among these SNPs, we found significant differences in LD between AD and NAD groups for 24 (16 

inter-chromosomal SNPs in 6 loci) and 57 (17 inter-chromosomal SNPs in 11 loci) SNPs with rs7412 and 

rs429358, respectively, at the Bonferroni-adjusted significance level (Figures 1 and 2, and Tables S5 and 

S9). This finding strongly supports modulating roles of the intra- and inter-chromosomal SNPs on the 

impacts of the ε2 or ε4 allele on the AD risk, predominantly tailored to either AD-affected or unaffected 

subjects.  

Third, Cox regression analysis identified Bonferroni-adjusted associations of minor alleles of rs2884183 

(11q22.3, DDX10) and rs483082 (19q13.32, APOC1) with decreased and increased AD risk independently 

of the ε2 and ε4 alleles, respectively (Table 2).  

Fourth, Cox regression analysis revealed that the beneficial and adverse effects of the ε2 and ε4 alleles, 

respectively, on the AD risks were significantly modulated by other SNPs, and that this modulation was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.22276523doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276523
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

fundamentally different for these alleles. Specifically, the beneficial effect of the ε2 allele was decreased 

by minor alleles of all 16 group-specific inter-chromosomal SNPs (with a significant decrease at 

Bonferroni-adjusted level for variants mapped to JADE2 and SDK2 genes) (Figure 3A). In contrast, the 

adverse effect of the ε4 allele was significantly modulated by ten APOE locus (intra-chromosomal) SNPs; 

the ε4 impact was weakened by minor alleles of four SNPs mapped to TOMM40 and APOE genes and 

major alleles of six SNPs mapped to NECTIN2, TOMM40, APOE, and APOC1 genes (Figure 3B). 

The APOE locus-specific LD patterns corroborated our previous findings observed for SNP pairs [18] and 

triples [17]. However, according to the GWAS Catalog [50], none of the identified 33 inter-chromosomal 

group-specific SNPs have been associated with AD or AD-related pathologies (e.g., amyloid plaque) in 

previous GWAS at genome-wide or suggestive significance. Rs1884507 (ZFP64, in LD with rs7412) and 

rs12139692 (NEGR1, in LD with rs429358) were associated with triglycerides [51] and intelligence [52], 

respectively, at P<5E-08. Other SNPs mapped to FRMD4A [53] and NEGR1 [54] have been previously 

associated with AD at genome-wide and suggestive significance, respectively. In addition, several SNPs 

mapped to the JADE2, FRMD4A, DDX10, SDK2, ZFP64, TSHZ2, ZDHHC14, NEGR1, and SLC5A8 genes, in 

interaction with SNPs in the other non-APOE-locus genes, were associated with AD-related brain 

pathologies such as diffuse amyloid plaque, PHF-tau, and neurofibrillary tangles at P<5E-08 [55]. Also, an 

IL1RAP variant was previously associated with amyloid plaque accumulation rate at P<5E-08 [56]. 

Additionally, SNPs mapped to JADE2, ELAVL2, and TSHZ2 have been associated with educational 

attainment [57] and those mapped to ELAVL2 and NEGR1 with intelligence and general cognitive ability 

[58,59].  

Next, we discuss JADE2 and SDK2 genes harboring inter-chromosomal SNPs, which significantly modulate 

the effects of the ε2 allele on AD risk (Table 2). JADE2 is involved in ubiquitination of histone demethylase 

LSD1 [60] and may play roles in the LSD1-mediated regulation of neurogenesis and myogenesis [61,62]. 

LSD1 is required for neuronal survival and was implicated in tau-induced neurodegeneration in AD and 
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frontotemporal dementia [63,64]. Additionally, JADE2 (alias PHF15) may regulate the microglial 

inflammatory response [65].  

SDK2 is involved in lamina-specific synaptic connections which are essential to form neuronal circuits in 

retina that detect motion [66]. Visual impairments including motion detection abnormalities have been 

reported in AD [67] and Huntington’s disease [68]. Also, visual working memory (i.e., object identification 

and location recall) were previously associated with the ε4 allele and β-amyloid accumulation [69]. 

We also highlight DDX10 gene harboring rs2884183, which is associated with AD risk independently of ε2 

(Table 2). The RNA helicase DDX10 affects ribosome assembly and modulates α-synuclein toxicity [70]. α-

Synuclein may synergistically interact with β-amyloid and Tau protein to promote their accumulation [71] 

and may be involved in the pathogenesis of AD in addition to synucleinopathie (e.g., Parkinson's disease) 

[72,73]. DDX10 may also  affect ovarian senescence [74]. 

Our enrichment analysis of biological functions (Figures S1 and S2) suggested that group-specific LD with 

rs7412 or rs429358 entails SNPs in genes, which are involved in lipid and lipoprotein metabolism. 

Additionally, LD with rs7412 entails SNPs in genes, which may contribute to cell junction organization. 

These biological processes have been implicated in AD pathogenesis  [31,75–79]. The disease enrichment 

analysis (Tables S12 and S13) mostly highlighted the enrichment of AD, dementia phenotypes, and other 

neurological diseases as well serum lipid traits in both the ε2 and ε4 gene sets. In addition, multiple lipid 

traits, and neurological and immune system related disorders were enriched in the ε4 gene set. 

Investigating the impacts of group-specific SNPs on gene expression revealed that several SNPs in LD with 

rs7412 (Table S5), including rs11668861 (NECTIN2), rs6021874, rs6021877, rs2426435, and rs1884507 

(ZFP64) are in LD (P<0.0001 in the CEU population of Utah Residents with Northern and Western European 

Ancestry [80]) with expression quantitative trait loci (eQTLs) whose minor alleles increase NECTIN2 and 

ZFP64 expressions in the brain tissue (Table S14). Also, among SNPs in group-specific LD with rs429358 
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(Table S9), SNPs mapped to CLEC12A (rs611819, rs479624, rs478829, rs2760953, rs526157, and 

rs2961542) and NECTIN2 (rs416041, rs11668861, rs6859, rs406456, and rs3852860) are in LD (P<0.0001 

[80]) with eQTLs altering the expressions of these two genes. In addition, rs4803770 and rs71352239 

(APOC1P1) are themselves eQTLs for this gene whose minor alleles decrease APOC1P1 expression in the 

brain tissue (Table S14) [81]. In addition, the transcription factor binding sites (TFBS) enrichment [46] 

shows that that JADE2, ELAVL2, FRMD4A, and APOC1 genes (harboring ε2 group-specific SNPs) have a 

common TFBS motif corresponding to RXRB within ±2kb of their transcription starting sites (P<2.00E-06 

and PFDR<5.01E-03) [82]. Also, TMEM125, DNMT3A, ZDHHC14, and BCL3 genes (harboring ε4 group-

specific SNPs) share a TFBS motif corresponding to SP3 within ±2kb of their transcription starting sites 

(P<1.58E-05 and PFDR<2.51E-02) [82]. 

Despite the rigor, this study has limitations. The first is that GWAS datasets do not provide phased genetic 

data and, therefore, probabilistic estimates of haplotypes may adversely impact the power of LD analyses. 

Second, due to the small frequency of the ε2 allele in the general population, the LD analysis of rs7412 

with the other SNPs may not have optimal statistical power, particularly in the AD-affected group because 

of the protective role of the ε2 allele against AD. Third, because genotypes were available from WGS in 

ADSP and genome-wide arrays in the other datasets, we imputed SNPs to harmonize them across all five 

datasets. Imputation generally results in less accurate genotype calls compared with WGS, particularly in 

genomic regions with low coverage on the arrays. Low imputation quality may adversely impact the 

results of the analyses. Although we excluded SNPs with imputation quality of r2 < 0.7 to offset the 

impacts of potential inaccuracies, replication of the results using directly genotyped SNPs could add 

robustness to our findings. Fourth, while the Cox regression analysis of genetic associations using AAO of 

a complex trait provides higher statistical power than the logistic regression analysis of the case-control 

status [83], we acknowledge limited abilities in determining exact AAO due to slow progression of AD. For 

instance, AD is not usually diagnosed when the brain pathologies start to develop years before clinical 
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manifestations. Fifth, the small number of genes may affect the accuracy of the functional enrichment 

analysis. Finally, further stratifying of the AD group based on the pathological information on AD sub-

phenotypes would provide valuable insights into the genetic heterogeneity of AD. Also, including subjects 

with mild cognitive impairment (MCI) in LD analyses as a separate stratum may help to identify APOE allele 

dependent genetic factors contributing to MCI progression to AD. Such additional stratifications would 

require large datasets with more comprehensive clinical and pathological data. 

Conclusion 

Our comprehensive analysis provides compelling evidence that intra- and inter-chromosomal variants can 

modulate the impacts of the ε2 and ε4 alleles on the AD risk. The survival-type analysis robustly shows 

predominant modulating roles of the inter-chromosomal SNPs for the ε2 allele and the APOE-region SNPs 

for the ε4 allele. We identified two variants in DDX10 (11q22.3) and APOC1 (19q13.32) genes with 

beneficial and adverse associations with AD risk independently of the ε2 and ε4 alleles, respectively. 

Functional enrichment analysis highlighted ε2- and/or ε4-linked processes involved in lipid and lipoprotein 

metabolism and cell junction organization which have been implicated in AD pathogenesis. Our results 

advance the understanding of the mechanisms of AD pathogenesis and help improve the accuracy of AD 

risk assessment. 

Supplementary Information 

Supplementary Information File: containing Supporting Acknowledgment, Table S1, and Figures S1 and S2. 

Tables S2-S14 in Excel format. 
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Table 1. Compound genotype constructed based on the genotypes at rs7412 or rs429358 and the identified group-specific SNPs. 

Genotype at rs7412 or rs429358 Genotype at the group-specific SNP Compound Genotype 

0 0 CompG1 
0 1 or 2 CompG2 

1 or 2 0 CompG3 
1 or 2 1 or 2 CompG4 

Abbreviations: SNP = single-nucleotide polymorphism; CompG = compound genotype; 0 = major allele homozygote; 1 = heterozygote; 2 = minor 
allele homozygote; CompG1 = ε3ε3 subjects carrying major allele homozygotes of the SNP; CompG2 = ε3ε3 subjects carrying at least one minor 
allele of the SNP; CompG3 = ε2 carriers (i.e., ε2ε2 or ε2ε3 subjects in the rs7412 analysis) or ε4 carriers (i.e., ε4ε4 or ε3ε4 subjects in the rs429358 
analysis) having major allele homozygotes of the SNP; CompG4 = ε2 (rs7412 analysis) or ε4 (rs429358 analysis) carriers having at least one minor 
allele of the SNP. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.22276523doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276523
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Table 2. Bonferroni-adjusted significant results from the survival-type meta-analysis of compound genotype (CompG) associations with Alzheimer's disease risk using SNPs in group-specific LD with 
rs7412 or rs429358.  

Group-specific SNPs CompG2 CompG3 CompG4 CompG3 vs. CompG4 

CHR GENE SNP POS EA EAF N BETA SE P-value Effects BETA SE P-value Effects BETA SE P-value Effects |Beta|.diff χ2 P-value 

rs7412 Analysis 

5q31.1 JADE2 rs4958188 134504121 T 0.106 6853 -0.052 0.065 4.27E-01 --++- -0.734 0.095 9.05E-15 --+-- -0.179 0.136 1.88E-01 +--+- -0.555 11.242 8.00E-04 
11q22.3 DDX10 rs2884183 109127412 T 0.212 6849 -0.185 0.054 5.46E-04 ----- -0.845 0.110 1.39E-14 ----- -0.423 0.109 9.72E-05 ----- -0.422 7.464 6.29E-03 
17q25.1 SDK2 rs75122991 73639797 G 0.068 6853 -0.048 0.078 5.35E-01 +-++- -0.698 0.089 4.95E-15 ----- -0.104 0.158 5.12E-01 +-+?- -0.595 10.732 1.05E-03 
17q25.1 SDK2 rs28527783 73640957 T 0.069 6854 -0.053 0.078 4.95E-01 +-++- -0.699 0.089 4.66E-15 ----- -0.104 0.158 5.10E-01 +-+?- -0.595 10.741 1.05E-03 
17q25.1 SDK2 rs76380229 73643396 T 0.068 6852 -0.058 0.078 4.58E-01 +-++- -0.700 0.089 4.42E-15 ----- -0.105 0.158 5.07E-01 +-+?- -0.595 10.731 1.05E-03 

rs429358 Analysis 

19q13.32 NECTIN2 rs283815 44887076 G 0.297 9935 0.075 0.079 3.42E-01 ++?+- 0.595 0.091 5.32E-11 ++?++ 1.083 0.036 1.09E-197 ++?++ 0.488 25.030 5.64E-07 
19q13.32 TOMM40 rs157582 44892962 T 0.297 9933 0.086 0.080 2.85E-01 +-?+- 0.601 0.093 1.33E-10 ++?++ 1.082 0.036 5.12E-198 ++?++ 0.481 23.079 1.56E-06 
19q13.32 TOMM40 rs8106922 44898409 G 0.372 9919 0.069 0.061 2.62E-01 -+?-- 1.249 0.060 2.04E-95 ++?++ 0.932 0.063 1.88E-49 ++?++ -0.317 13.241 2.74E-04 
19q13.32 TOMM40 rs1160985 44900155 T 0.394 9935 0.140 0.064 2.85E-02 ++?+- 1.304 0.063 1.43E-94 ++?++ 0.987 0.065 1.01E-51 ++?++ -0.317 12.202 4.78E-04 
19q13.32 TOMM40 rs7259620 44904531 A 0.391 9935 0.122 0.064 5.50E-02 ++?-- 1.289 0.063 1.27E-93 ++?++ 0.976 0.065 3.60E-51 ++?++ -0.313 11.993 5.34E-04 
19q13.32 APOE rs769449 44906745 A 0.198 7860 -0.159 0.336 6.36E-01 ?-??? 0.704 0.062 7.57E-30 ?+?++ 1.035 0.039 1.40E-154 ?+?++ 0.330 20.312 6.58E-06 
19q13.32 APOE rs769450 44907187 A 0.376 9933 0.087 0.062 1.62E-01 -+?-- 1.270 0.061 2.09E-95 ++?++ 0.946 0.064 1.25E-49 ++?++ -0.324 13.387 2.53E-04 
19q13.32 APOC1 rs483082 44912921 T 0.276 9933 0.479 0.137 4.75E-04 +-?+- 0.312 0.145 3.12E-02 ++??+ 1.078 0.035 6.12E-209 ++?++ 0.766 26.454 2.70E-07 
19q13.32 APOC1 rs56131196 44919589 A 0.328 7667 -0.009 0.088 9.14E-01 +-+?- 0.379 0.116 1.10E-03 ++-?+ 1.034 0.035 1.02E-189 +++?+ 0.655 29.080 6.94E-08 
19q13.32 APOC1 rs4420638 44919689 G 0.328 7660 -0.009 0.088 9.18E-01 +-+?- 0.381 0.116 1.05E-03 ++-?+ 1.034 0.035 1.63E-189 +++?+ 0.653 28.924 7.53E-08 

Abbreviations: SNP = single-nucleotide polymorphism; CHR = chromosomal region (i.e., cytogenetic band); POS = SNP position based on Human Genome version 38 (hg38); EA = Effect allele; EAF = Effect 
allele frequency; N = Number of subjects; BETA and SE = effect size and its standard error; Effects = directions of effects in LOAD FBS, ADGC, FHS, CHS, and ADSP-WGS datasets, respectively; |Beta|.diff 
= the difference in absolute values of effect sizes of CompG4 and CompG3 levels; χ2 = chi-square statistic corresponding to the comparison of effect sizes of CompG4 and CompG3 levels. 
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Figure 1. Linkage disequilibrium r between the identified group-specific SNPs and rs7412 in the ε4-negative sample of all five 

datasets combined. The x-axis shows SNP identifiers, genes harboring these SNPs, and chromosomes. Blue boxes: Alzheimer’s 

disease-affected group (AD). Red boxes: AD-unaffected group (NAD). The vertical lines show 95% confidence intervals. 
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Figure 2. Linkage disequilibrium (LD) r between the identified group-specific SNPs and rs429358 in the ε2-negative sample of all 

five datasets combined. (A) LD for inter-chromosomal SNPs, i.e., SNPs not on chromosome 19. (B) LD for intra-chromosomal SNPs. 

The x-axis shows SNP identifiers, genes harboring these SNPs, and chromosomes in Figure A. Blue boxes: Alzheimer’s disease-

affected group (AD). Red boxes: AD-unaffected group (NAD). The vertical lines show 95% confidence intervals. 
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Figure 3. The results of the meta-analysis of the associations of compound genotypes comprised of SNPs (shown on the x-axis) in 

group-specific linkage disequilibrium with (A) rs7412 in the ε4-negative sample or (B) rs429358 in the ε2-negative sample with 

the Alzheimer's disease risk. CompG2 (green) indicates ε3ε3 subjects carrying at least one minor allele of the SNP; CompG3 (red) 

denotes (A) ε2 or (B) ε4 carriers having major allele homozygotes of the SNP; CompG4 (blue) indicates (A) ε2 or (B) ε4 carriers 

having at least one minor allele of the SNP. CompG1 indicating the ε3ε3 subjects carrying major allele homozygotes of the SNP 

was the reference. Black vertical lines show 95% confidence intervals (negative direction for rs769449 was truncated for better 

resolution). The x-axis shows SNP identifiers, genes harboring these SNPs, and chromosomes. One asterisk (*) indicates nominally 

significant differences in the effects between CompG3 and CompG4 at (A) 2.08E-03≤P<0.05 and (B) 8.77E-04≤P<0.05. Two 

asterisks (**) indicate Bonferroni-adjusted significance in those differences at (A) P<2.08E-03 and (B) P<8.77E-04. No asterisk 

indicates non-significant differences in Figure (A). Figure (B) shows only 17 group-specific SNPs for which the differences in the 

effects between CompG3 and CompG4 attained P<0.05. 
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