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Abstract

Background: The genomes of SARS-CoV-2 are classified into variants, some of which are monitored
as variants of concern (e.g. the delta variant B.1.617.2 or omicron variant B.1.1.529). Proportions of
these variants in a population are typically estimated by large-scale sequencing of individual patient
samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective
alternative, but requires methods for estimating variant proportions in a mixed sample.
Results: We propose a new method based on a probabilistic model of sequencing reads, capturing
sequence diversity present within individual variants, as well as sequencing errors. The algorithm is
implemented in an open source Python program called VirPool. We evaluated the accuracy of VirPool on
several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms,
including wastewater samples from Austria and France monitoring the onset of alpha and delta variants.
Conclusions: VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle
both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic
mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative
positions, and can also capture haplotype dependencies within a single read.
Availability: VirPool is an open source software available at https://github.com/fmfi-compbio/virpool.

Introduction

The pandemic of COVID-19 is accompanied by an unprecedented level of genomic surveillance of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 10 million genomic sequences
deposited in the GISAID database (Elbe and Buckland-Merrett, 2017) by early April 2022. These sequences
are mostly obtained from single-patient samples following a positive clinical test. Long-term studies have
shown that the composition of viral RNA fragments in wastewater reflects qualitatively and quantitatively
the breakdown of virus lineages circulating in the population of the catchment (Agrawal et al, 2022; Amman
et al, 2022). Wastewater-based epidemiology (WBE) has recently emerged as a cost effective and scalable
alternative to sequencing individual sample patients (Safford et al, 2022; Hrudey and Conant, 2022). Various
PCR-based techniques can be used to estimate concentration of virus particles in wastewater to ascertain
epidemiological trends. This can be accompanied by sequencing the mixture of virus particles present in
the sample, effectively mapping the sequence variation of the virus within a local population. Wastewater
monitoring can help to address biases in analysis of clinical samples that are due to differences in test
availability and willingness to undergo a clinical test. Moreover, increases in wastewater viral RNA levels
can precede the results of clinical testing by several days or even longer when clinical testing is not readily
available (Bibby et al, 2021; Hrudey and Conant, 2022), and thus wastewater analysis can provide early

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276717doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/fmfi-compbio/virpool
https://doi.org/10.1101/2022.06.21.22276717
http://creativecommons.org/licenses/by/4.0/


warning signals of worsening epidemic situation or emergence of new variants of the virus in a particular
area.

Our goal is to identify and quantify the occurrence of variants of SARS-CoV-2 within pooled samples
(which also include wastewater samples). In our work, we rely on Pango lineage classification of virus
variants (Rambaut et al, 2020), which is based on phylogenetic analysis of sequenced genomes. Selected
clades of the phylogenetic tree are assigned identifiers, leading to a hierarchical system of subclades nested in
larger clades. The World Health Organization monitors prevalence of variants around the world and selects
variants of concern (VOCs) characterized by an increased transmissibility or virulence or the ability to evade
protection provided by vaccines and drugs. Several of these variants have caused massive epidemic waves,
most notably the Alpha, Delta, and Omicron variants (Pango lineages B.1.1.7, B.1.617.2, and B.1.1.529,
respectively). It is therefore of high interest to monitor the prevalence of these variants, particularly at an
onset of a new wave, when the public health authorities expect the arrival of a new variant in a certain area.

Early work in analysis of SARS-CoV-2 wastewater samples concentrated on producing an overall con-
sensus sequence of the sample or on detection of individual mutations followed by manual analysis of the
results (Xie et al, 2022; Izquierdo-Lara et al, 2021; Crits-Christoph et al, 2021; Nemudryi et al, 2020; Hillary
et al, 2021; Agrawal et al, 2021, 2022). Later, the presence of variants of concern was detected based on
pre-selected mutations typical for each variant (La Rosa et al, 2021; Jahn et al, 2021; Fontenele et al, 2021).

In order to also quantify the prevalence of a particular variant, the most straightforward approach
uses again several pre-selected sites with mutations characteristic for the variant. At each such site, the
proportion of the allele belonging to the variant is estimated, and the final proportion is determined as
a mean or a median of single-site estimates (Wurtz et al, 2021; Rios et al, 2021b; Brunner et al, 2022;
Pechlivanis et al, 2022). Since each variant is considered independently of others, the method can produce
inconsistent estimates (e.g. the sum of proportions of individual variants is greater than one) and can
be biased by mutations shared by multiple variants, an issue which is likely to be exacerbated given the
increased occurrence of convergent evolution events between different lineages due to selective pressures. To
account for these shared mutations, Ellmen et al (2021) estimate the proportions of variants by optimising
the L2 metric between a mixture of base frequencies of individual variants and observed frequencies of
specific mutation sites. Amman et al (2022) pushed this idea further by estimating the proportions jointly
for multiple samples, taking the time of their collection into account.

A similar problem has been previously addressed in the context of virus populations. In the quasispecies
spectrum reconstruction (QSR) problem, the aim is to analyze a sequencing sample containing reads from
several distinct virus variants (also called haplotypes) to recover individual haplotype sequences and quantify
their prevalence (Eriksson et al, 2008; Zagordi et al, 2011; Ahn and Vikalo, 2018). Typically, haplotypes are
recovered by specialized assembly algorithms employing read overlaps and sequence coverage (see e.g. the
path cover approach in ShoRAH (Zagordi et al, 2011)), followed by quantification of individual variants. In
general, these approaches assume that individual haplotypes yield a consistent coverage across the whole
reference genome, that the sequencing reads are randomly sampled from the haplotypes, and that haplo-
types themselves are well represented by a single consensus sequence, possibly with a few local variations
attributable to sequencing errors.

However, these assumptions are not satisfied in the case of SARS-CoV-2 wastewater sequencing. SARS-
CoV-2 wastewater samples are typically sequenced by ARTIC protocol, originally developed in the context
of Zika virus epidemics (Quick et al, 2017). The virus sequence is divided into overlapping segments (called
amplicons) that are first amplified through PCR, so as to increase the number of molecules present in the
sequencing sample. Depending on the protocol, the approximate length of amplicons varies between 400bp
(Loman et al, 2020) (further referred to as short amplicons) and 1.5-2.5kbp (Resende et al, 2020; Eden and
Sim, 2020; Freed et al, 2020) (long amplicons). Only after the PCR amplification, the pooled sample is
sequenced by Illumina or Oxford Nanopore MinION sequencers. The efficiency of the PCR amplification
varies between amplicons, resulting in highly uneven coverage along the genome. Moreover, sequencing
reads do not span amplicon boundaries, breaking the haplotype linkage between the amplicons. Finally,
individual SARS-CoV-2 variants (as defined by Pango lineages) typically include a large number of distinct
sequences, and this diversity is difficult to express as a single consensus sequence.

In this paper, we introduce a new approach based on a probabilistic model of sequencing reads originating
from a mixture of variants. Our model captures sequence diversity present within individual variants through
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employing variant profiles derived from available GISAID sequences for a particular variant. At the same
time, we also model sequencing errors, which is essential in application to data sets obtained by sequencing
technologies with higher error rates, such as nanopore sequencing. Our approach does not classify individual
reads or sites as belonging to a particular variant, but instead searches for a solution that has the highest
consistency with the observed data. Consequently, we do not require pre-selection of sites characteristic
for each variant, and we can use the information contained in the full length of the sequenced reads. In
this aspect, our approach is similar to the approach by Eriksson et al (2008), though our model is more
complex due to the specifics of the wastewater analysis problem. Finally, our approach is able to exploit
linkage between individual sites within the same sequencing read, which leads to an increased accuracy in
case of using long nanopore amplicons in spite of higher sequencing error rates of nanopore sequencing. An
early version of our model (Gafurov et al, 2021), which was unable to take this information into account,
suffered from lower accuracy which had to be addressed by ad-hoc heuristics. We have tested our software
on analysis of both simulated and real data sets and we have shown that our approach outperforms the
median approach previously employed for estimating proportions of SARS-CoV-2 variants in wastewater
samples.

Results

Mixture model for variant proportion estimation. For a given sequencing sample, VirPool estimates
the fraction of sequencing reads originating from selected variants. Variant k is characterized by its variant
profile Pk, where Pk(i, a) is the probability of observing nucleotide a at position i in variant k. The positions
are numbered according to the reference genome, and all sequences that we consider are aligned to this
reference genome.

The VirPool algorithm is governed by a probabilistic model that assigns a likelihood to weights of individ-
ual variants w1, . . . , wK , where K is the number of variant profiles. Intuitively, these weights correspond to
proportions of sequencing reads originating from individual variants mixed in a particular sample. Assuming
that a particular read r, starting at position s, originates from a variant k, the probability of observing this
read is simply

Pr(r|k) =

|r|∏
i=1

Pk(s+ i− 1, ri). (1)

This probability needs to be also adjusted for sequencing errors (for details, see Methods).
The overall likelihood is the probability of observing sequence of reads R = (r1, . . . , rm) given the variant

weights w1, . . . , wk. In our model, each read is generated independently; thus the likelihood can be expressed
as

L(w1, . . . , wk|R) = Pr(R|w1, . . . , wk) =
m∏
i=1

K∑
k=1

wk Pr(ri|k). (2)

Here we assume that starting positions and lengths of individual reads are fixed in advance. Note that if
these were sampled from any distribution independent of variants, this would only add a constant factor to
the likelihood and would have no influence on the weight optimization.

For a given set of sequencing reads and variant profiles, the weights are estimated so that the likelihood
L(w1, . . . , wk|R) is maximized. For details of the optimization algorithm, see Methods.

The results of VirPool analysis are dependent on the selection of variants included in the analysis.
Typically, one would select variants of interest circulating in a given region at a considered time. In our
experiments, we also include variant “other” that represents all the remaining SARS-CoV-2 sequences not
belonging to the selected variants. High weight of the “other” variant in the result allows the user to detect
that the set of the variants should be adjusted.

Accurate prediction of variant proportions for different sequencing technologies. To evaluate
the accuracy of our methods, we have prepared synthetic mixtures combining several single-patient sequenc-
ing read sets downloaded from public databases, each containing sequencing reads from a single virus variant.
We have selected four variants common in Europe in the Fall of 2020 (B.1.1.7, B.1.160, B.1.177, B.1.258) as
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Table 1: Comparison of true and estimated variant proportions for the synthetic mixtures. The first group
corresponds to mixtures created with Oxford Nanopore reads with long (2 kbp) amplicons, the second
group corresponds to mixtures created with Oxford Nanopore reads with short (400 bp) amplicons, and the
third group corresponds to mixtures created with Illumina reads. The proportion of other for the median
estimator is calculated as 1 minus the sum of the estimated proportions (therefore it can be negative).

mixture name B.1.1.7 B.1.160 B.1.177 B.1.258 other

ont-long-1
true 0.19 0.42 0.23 0.16 0.00
VirPool 0.18 0.42 0.23 0.17 0.00
median 0.19 0.43 0.24 0.17 -0.03

ont-long-2
true 0.17 0.38 0.21 0.15 0.09
VirPool 0.16 0.38 0.22 0.15 0.09
median 0.17 0.38 0.20 0.15 0.09

ont-long-3
true 0.42 0.00 0.00 0.35 0.23
VirPool 0.41 0.00 0.00 0.37 0.22
median 0.39 0.01 0.02 0.36 0.23

ont-long-4
true 0.00 0.65 0.35 0.00 0.00
VirPool 0.00 0.64 0.36 0.00 0.00
median 0.01 0.63 0.43 0.02 -0.08

ont-short-1
true 0.19 0.42 0.23 0.16 0.00
VirPool 0.18 0.42 0.23 0.17 0.00
median 0.19 0.43 0.24 0.17 -0.03

ont-short-2
true 0.17 0.38 0.21 0.15 0.09
VirPool 0.16 0.38 0.22 0.15 0.09
median 0.17 0.38 0.20 0.15 0.09

ont-short-3
true 0.42 0.00 0.00 0.35 0.23
VirPool 0.41 0.00 0.00 0.37 0.22
median 0.39 0.01 0.02 0.36 0.23

ont-short-4
true 0.00 0.65 0.35 0.00 0.00
VirPool 0.00 0.64 0.36 0.00 0.00
median 0.01 0.63 0.43 0.02 -0.08

illumina-1
true 0.15 0.23 0.27 0.34 0.00
VirPool 0.16 0.26 0.29 0.29 0.00
median 0.20 0.26 0.30 0.35 -0.11

illumina-2
true 0.13 0.20 0.23 0.29 0.16
VirPool 0.14 0.22 0.25 0.25 0.13
median 0.17 0.23 0.25 0.30 0.06

illumina-3
true 0.16 0.25 0.00 0.37 0.21
VirPool 0.18 0.29 0.01 0.33 0.19
median 0.23 0.32 0.00 0.38 0.07

illumina-4
true 0.00 0.46 0.54 0.00 0.00
VirPool 0.00 0.47 0.53 0.00 0.00
median 0.00 0.49 0.66 0.00 -0.16

well as samples from other variants which should be correctly classified as “other” profile (B.1.221, B.1.1.170,
B.1.367, B.1.1.37, AP.1); see Methods for the mixture creation details. We have estimated proportions of
these profiles both by VirPool and by the baseline median method described in Methods and compared the
results to true proportions.

Table 1 shows that in almost all cases, VirPool can accurately estimate the true proportions. This is true
for all three considered sequencing protocols (Illumina paired 150bp reads with 400bp amplicons, Oxford
nanopore short 400bp amplicons, and Oxford nanopore long 2kbp amplicons). The method also worked
well when the mixtures contained variants included in the “other” combined profile. The median method
(Rios et al, 2021b), while providing in many cases similar results to VirPool, systematically overestimates
the explicitly listed variants, in many cases resulting in estimates of named variants summing to more than
1.

Prediction accuracy at low coverages. To evaluate the accuracy at lower coverages, we have subsam-
pled our synthetic mixtures. Figure 1 shows the mean squared error of predictions averaged over multiple
subsamples. Even though nanopore sequencing has a much higher sequencing error rate than Illumina, the
best weight estimates are achieved with nanopore long 2kb amplicons. This suggests that VirPool can effec-
tively take advantage of long-range dependencies between positions covered by a single amplicon. For both
nanopore and Illumina with short amplicons, the error decreases with increasing coverage until reaching a
plateau, in most cases around 100× genome coverage. In most cases, the median approach has significantly
larger error than VirPool.
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Figure 1: Variant proportion estimation errors as a function of sequencing coverage. Left: long nanopore
mixtures; Center: short nanopore mixtures; Right: Illumina mixtures. The mean squared error (MSE) was
averaged over ten random subsamples of synthetic mixtures from Table 1 for each considered coverage. Both
axes are in logarithmic scale.

Table 2: Estimated proportions for the in-vitro mixture sample of eight patient samples. The second rows
shows a simple estimate based on computing the median of frequencies for mutations unique to one of the
eight samples and then summing the medians over the samples with the same variant.

B.1.1.7 B.1.160 B.1.177 B.1.258 other

number of samples 2 samples 1 sample 0 samples 4 samples 1 sample
estimate from unique mutations 0.55 0.08 0.00 0.33 0.07
VirPool estimate 0.53 0.07 0.00 0.25 0.15

Reliability of detection of low-abundance variants. To test detection of variants occurring at low
frequencies, we have created artificial mixtures of two variants from among the Fall of 2020 samples, with
the minor variant present in frequencies ranging from 0.1% to 20%. Figure 2 shows that VirPool is generally
accurate for frequencies of 5% or more. Even frequencies of 2% were generally detected, but the variance
in the results is high. Conversely, at very low frequencies, the presence of the minor variant may be
overestimated. Note that detection of such low-frequency variants has been shown to be difficult and
requires an extremely high coverage even with Illumina sequencing data (Van Poelvoorde et al, 2021).

We have also attempted to replicate data corresponding to the Alpha (B.1.1.7) wave transitioning to
Delta (B.1.617.2) (Figure 3) and Delta transitioning to Omicron (B.1.1.529, specifically BA.1 subvariant)
(Figure 4). Again, results above 5% are reliable, with the exception of short nanopore data in the Omicron
wave, where the estimated weights of Omicron are lower due to a false prediction of the “other” variant.

In-vitro mixture of patient samples. Using nanopore long amplicons, we have sequenced and analyzed
a mixture of eight clinical samples. Presence or absence of individual variants was correctly identified by
VirPool (Table 2), and the estimated proportions agree well with a separate analysis based on examination
of frequencies of mutations specific for individual clinical samples, as determined by previous sequencing of
each sample individually. Note that, even though an effort has been made to balance the original sample
proportions using dilution factors based on measured Cq values (Supplementary Table S2), the resulting
proportions are influenced by many factors, such as different levels of fragmentation of RNA and subsequent
differences in amplification efficiency.
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(a) ONT long (b) ONT short (c) Illumina

Figure 2: Estimated proportion of the minor variant in synthetic experiments among Fall 2020 samples.
Blue crosses represent the true proportion of the minor variant. Orange lines represent the median, red
circles are outliers. In each setting, the graphs show the distribution for 10 randomly generated data sets
for each pair of variants (including the “other” group). The average coverage for each synthetic data set
was 5000.

Analysis of wastewater samples from the Alpha wave. We have applied VirPool to time series data
sets of wastewater samples spanning several months in regions of Bischofshofen, Austria (Illumina data)
(Amman et al, 2022) and Nice, France (nanopore data) (Rios et al, 2021b). Wastewater samples are highly
challenging, because the coverage is often highly uneven (see Supplementary Figure S1).

Figure 5 shows the analysis of a time series sampled between December 2020 and February 2021 from the
area of Bischofshofen, Austria (State of Salzburg), sequenced by Illumina short read protocol. Comparing
VirPool analysis to the analysis by VaQuERo pipeline (Amman et al, 2022), both tools predict a sharp
increase in the Alpha variant in January and February of 2021, which also apparent in the clinical samples
from GISAID.

Both methods also agree on the general composition of samples and most of the trends (Supplementary
Table S4). One of the notable differences is a lower prevalence of the Alpha variant at the end of February
in VirPool predictions, which is compensated by a rebound in the B.1.258 prevalence to 10%. By examining
allele frequencies, we have found 7 alleles that strongly support inclusion of B.1.258 (Supplementary Table
S5); three of these alleles are typical for the whole B.1.258 clade, while four additional alleles are characteristic
for subvariant B.1.258.17 that has been observed in clinical samples in the state of Salzburg (12 samples out of
136 in GISAID in February and March). In contrast, several alleles very common in B.1.258 are either missing
completely (e.g., 8047T) or are present at very low frequencies (e.g., 7767C, 22879A, 29734C). This may be
a consequence of a very uneven coverage or variant-specific differences in amplification efficiency for specific
primers, may possibly indicate recombination, or it may indicate some other variant sharing characteristic
mutations with B.1.258.17; ten samples in GISAID outside of B.1.258 collected between January and March
share the same 7 alleles. Their classification is either generic (B.1), some of them are classified as B.1.367
or B.1.221. In spite of this uncertainty, the data seem to support a lower prevalence of the Alpha variant
and possible presence of B.1.258.17 variant in agreement with the VirPool predictions.

One of the strengths of VirPool is that the same method can be applied to both Illumina and nanopore
data sets, only changing settings for the sequencing error rate. Figure 6 shows the result of analysis of
selected samples from Nice, France, sequenced by the short-amplicon nanopore sequencing protocol. In
agreement with Rios et al (2021b), we observe a very sharp increase in the Alpha variant prevalence in
February 2021, which is not observed in the clinical samples from GISAID in the Provence-Alpes-Côte
d’Azur region, suggesting that this outbreak was not captured in a timely manner by genome sequencing
efforts. In agreement with Rios et al (2021b) we see a significant prevalence of the Alpha variant in the Les
Moulins site already in January 2021.

VirPool consistently predicts several percent of the Alpha variant in all samples from October 2020. Rios
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(a) ONT short (b) Illumina

Figure 3: Estimated proportion of the minor variant in synthetic mixtures of the Alpha and Delta variants.
Blue crosses represent the true proportion of the minor variant. Orange lines represent the median, red
circles are outliers. In each setting, the graphs show the distribution for 20 randomly generated data sets
with the prescribed minor variant proportion, with Alpha and Delta playing the role of the minor variant
in 10 samples each. The average coverage for each synthetic data set was 5000.

et al (2021b) also observe several mutations characteristic for the Alpha variant in October 2020, but do
not comment or investigate this phenomenon. Upon closer examination, we see a similar pattern as in the
case of B.1.258 variant in the Austrian samples, with some mutations characteristic for a given variant (in
this case Alpha) having a relatively high frequency, while others being absent (Supplementary Table S6).
Here, having samples from multiple locations, we observe that some genome positions give consistent results,
while others vary between samples, further supporting the hypothesis of amplification efficiency differences.
Overall, we hypothesize that the Alpha variant was indeed present in the area, which is further supported
by three GISAID Alpha samples collected in Marseille in the same month.

VirPool also estimated a significant decrease in the Alpha variant proportions in several locations between
February and March 2021. We have investigated this decrease in the Harbor location (from 74% in February
to 59% in March), where VirPool estimated a rebound of variants B.1.177 (to 11%) and B.1.160 (to 15%).
The predicted increase in B.1.177 seems to be driven by C22227T mutation, which is characteristic for
B.1.177 and very rare in B.1.1.7; nonetheless, it appeared at the frequency of 69% in the reads from this
sample (Supplementary Table S7). All the other mutations characteristic for B.1.177 are either present at
much lower frequencies or completely missing. Also, C22227T mutation occurs in several B.1.1.7 GISAID
samples from France. All this evidence leads us to a conclusion that a B.1.1.7 subvariant with this mutation
has been highly prevalent in this area and the rebound of B.1.177 is a false positive. This points to a
weakness of variant characterization by probabilistic profiles representing global distribution of mutations,
which may not agree with locally circulating strains, although as we see in other experiments, this usually
does not cause problems in the estimation.

Methods

Variant profile estimation. Our method requires a set of K profiles, each representing one variant of
the SARS-CoV-2 virus. In these profiles, Pk(i, a) is the probability of observing nucleotide a at position i
in variant k, where positions are numbered according to the reference sequence (we use Wuhan/Hu-1/2019).
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(a) ONT short (b) Illumina

Figure 4: Estimated proportion of the minor variant in synthetic mixtures of the Delta and Omicron variants.
Blue crosses represent the true proportion of the minor variant. Orange lines represent the median, red circles
are outliers. In each setting, the graphs show the distribution for 20 randomly generated data sets with the
prescribed minor variant proportion, with Delta and Omicron playing the role of the minor variant in 10
samples each. The average coverage for each synthetic data set was 5000.

In our experiments, we build these profiles from the SARS-CoV-2 genomic sequences downloaded from the
GISAID database (Elbe and Buckland-Merrett, 2017). We have used GISAID version from February 5,
2022, omitting sequences with incomplete or missing collection date, and incomplete genomes with less than
25kbp of sequence. We have then subsampled the data so that at most roughly 50,000 sequences were kept
per month. In specific experiments, we use only a subset of GISAID records corresponding to the period
from which our samples originate.

In each experiment, we selected several variants designated by their Pango lineage identifier (Supplemen-
tary Table S1). The profile for each selected variant is built from the samples assigned to this lineage and
its sublineages according to GISAID metadata. Specifically, we assign each sequence to the nearest ancestor
clade from our list of selected lineages. This allows for selecting both a lineage and its sublineage, such as
B.1.1 and B.1.1.7; in such case sequences from the sublineage are excluded from the parent lineage profile.
If no ancestor clade is in the list, the sequence is assigned label “other”, representing genomic background
of all other lineages.

Each sequence was aligned to the common reference sequence Wuhan/Hu-1/2019 by minimap2 (Li, 2018).
Intuitively, value Pk(i, a) would be estimated from data as the relative frequency of symbol a at position i
among the genomes assigned to the variant k. However, some variants contain characteristic deletions shared
by almost all genomes belonging to the variant. As a result, some genomic positions are covered by only a
small number of genomes belonging to variant k. Let γk be a threshold on the coverage. Then we set the
variant profile probabilities as follows:

Pk(i, a) =
Ck(i, a)

max {γk,
∑

bCk(i, b)}
,

where Ck(i, a) is the number of occurrences of base a at position i among genomes of variant k. Thus, the
positions with coverage lower than γk, typically containing gaps characteristic for the variant, will have the
sum of values Pk(i, a) lower than one. This will have no impact on reads originating from variant k, because
they have gaps at such positions, but it will penalize reads from other variants that do not have such gaps.
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Figure 5: Estimated proportions of the Alpha (B.1.1.7) variant in wastewater samples from Bischofshofen,
Austria (Amman et al, 2022). The red line represents the proportions estimated by VirPool model. The
green line represents the proportions estimated by VaQuERo model (Amman et al, 2022). The blue circles
represent the daily proportions of B.1.1.7 among Austrian samples submitted to GISAID, the number of
samples is reflected by circle size; blue line is the smoothed version of those data.

In our experiments, we set γk as the coverage at the first percentile (smallest 1%) of coverage within the
genome for each variant k.

To select the list of variants for analysis of new samples, the user would choose ones that circulate in a
particular area at the time, with additional variants added from relevant watch lists (such as WHO variants
of concern and variants of interest). The profiles should be built based on sequences with recent collection
dates (latest months) and updated periodically in order to include recent evolutionary changes within virus
sequences.

Substitution error. The mixture model characterized by equations (1) and (2) in the Results section as-
sumed error-free sequencing. In our final model, we add substitution sequencing errors that occur uniformly
at random with error rate ε. The probability of observing read r at position s from variant k is then

Pr[r|k, ε] =

|r|∏
i=1

(1− ε) · Pk(s+ i− 1, ri) +
ε

3
·
∑
a 6=ri

Pk(s+ i− 1, a)


In our experiments, we use ε = 0.001 for Illumina reads and ε = 0.05 for nanopore reads. Note that both

real insertions and insertion errors are ignored by our model; read positions with a deletion are treated as
missing data.

Mixture weight estimation. The optimal weights W = w1, . . . , wK are estimated via minimisation of
the negative log-likelihood

W ∗ = arg min
wk≥0,∑
wk=1

−
m∑
i=1

log

[
K∑
k=1

wk · Pr[ri|k]

]

To simplify the optimisation task to an unconstrained case, we use softmax transformation (Bridle,
1990). Namely, we define auxiliary variables ξ1, . . . , ξK and set the values of the original weight variables
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w1, . . . , wK as the softmax of the auxiliary variables:

wi =
eξi∑K
j=1 e

ξj
,

This transformation ensures that all weight variables are non-negative and sum up to 1. This leads to the
following unconstrained optimization task:

W ∗ = softmax

{
arg min
ξ1,...,ξK

−
m∑
i=1

log

[
K∑
k=1

eξk∑K
j=1 e

ξj
· Pr[ri|k]

]}
.

The minimisation is done using the L-BFGS-B algorithm (Zhu et al, 1997) implemented in scipy Python
library (Virtanen et al, 2020) with symbolic Jacobian. We use numba library to speed up the calculations
by pre-compilation of time-critical functions.

Analysis of sequencing samples. Alignments of sequencing reads to the reference genome were down-
loaded from ENA, or where needed, were produced by minimap2 for ONT reads and bwa-mem for Illumina
reads. We use only primary alignments for each read. In our analysis, we consider a paired read as a single
unit with both parts originating in the same variant, and we require that both parts are aligned.

Some mutations tend to occur repeatedly within the virus evolution (homoplasic sites). To avoid con-
fusion between variants, we mask known homoplasic sites (De Maio et al, 2020) and do not consider them
in the analysis. Some variants have mutations within primer binding positions. These positions will appear
in the reads as matching the primer, not the sequenced sample. Since in most cases, these primers are not
trimmed in the underlying datasets, we mask primer positions (ARTIC protocol V3 or V4 as appropriate).

Baseline method and evaluation. In our experiments, we compare VirPool with an estimator based on
median proportions previously used by Rios et al (2021b); similar methods were also used by other studies
(Wurtz et al, 2021; Pechlivanis et al, 2022; Brunner et al, 2022). For each selected variant, this estimator
needs a list of characteristic mutations; we use the lists by Rios et al (2021b) from their code repository
Rios et al (2021a). The relative frequency of each characteristic mutation is computed among reads aligned
to the corresponding position. The resulting estimator of the variant’s proportion is the median of these
frequencies. Since the median estimate is computed independently for each variant, it is not guaranteed
that proportions of all variants will sum to one. We attribute the remaining probability to the background
“other” variant; this can also be a negative number.

To evaluate the accuracy of both VirPool and the median estimator on simulated data, we use the mean
squared error (MSE ) measure defined as MSE(W, Ŵ ) = 1

K ·
∑K

k=1 (wk − ŵk)2, where W = (w1, . . . , wK) and

Ŵ = (ŵ1, . . . , ŵK) are the true and estimated proportions of variants, respectively. Note that this metric
supports negative weight estimates, so it can be used for the median estimator.

Synthetic mixtures. The synthetic mixtures for evaluating the accuracy of our method were created by
combining reads from several single-patient sequencing samples downloaded from ENA (see Supplementary
Tables S1a and S1b). For initial experiments, we have selected a subset of considered variants and pooled
all mapped reads from all Fall 2020 samples belonging to these variants (Supplementary Table S1a). For
experiments evaluating the accuracy at low coverages, we have subsampled these mixtures to the desired
coverage. To assess the sensitivity to low abundance variants, we have created mixtures of pairs of variants,
again pooling all samples belonging to a particular variant from the Fall 2020 samples. The reads corre-
sponding to the two variants were then subsampled to achieve the desired proportions and the total average
coverage of 5000. A similar procedure was used for samples representing transitions from Alpha to Delta
and from Delta to Omicron. In all syntetic mixtures, the true proportions were defined as the proportion
of reads originating from the samples belonging to a particular variant.

In vitro mixture sequencing. We have created and sequenced a mixture of eight single-patient sam-
ples (Supplementary Table S2) that were previously sequenced individually at the Biomedical Research
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Centre of the Slovak Academy of Sciences in Bratislava, Slovakia. The samples originated from oropha-
ryngeal swabs collected in January 2021. The sample processing and sequencing library construction were
carried out as described earlier (Brejová et al, 2021), generally following the COVID-19 virus protocol
(PTC 9096 v109 revF 06Feb2020; Oxford Nanopore Technologies, Oxford, UK) with some modifications.
After RNA extraction for each sample, SARS-CoV-2 RNA was quantified by an RT-qPCR assay carried
on QuantStudio™ 5 Real-Time PCR System (Applied Biosystem, Foster City, California, USA). Individual
samples were diluted according to the obtained quantification cycle (Cq) to obtain approximately equimolar
mixture (Supplementary Table S2). From this mixture of all eight samples, 11µl was then used for reverse
transcription. The resulting cDNA was amplified using the 2-kb primer scheme (Resende et al, 2020),
and the sequencing library was constructed using a ligation kit (SQK-LSK109). A single library was used
for sequencing, and thus no barcoding was performed. The library was sequenced using an R9.4.1 flow
cell (FLO-MIN106) on a MinION Mk-1b device (Oxford Nanopore Technologies, Oxford, UK). Nanopore
sequencing data were base called using Guppy v.4.4.1 and aligned using minimap2 v.2.13-r852 Li (2018).

Wastewater samples. As some wastewater samples have a very uneven coverage, signal from extremely
highly covered positions can overwhelm the rest of the genome. Therefore we subsample reads from such
highly covered positions. In our experiments, we set coverage threshold t to 1000. For each read, we compute
the median coverage mr of the genome in the area covered by this read. The read is then chosen into the
subsampled set with probability min{1, t

mr
}. As a result, all reads are kept in regions with coverage below

t.
To visually compare the time series obtained by our wastewater analysis with variant proportions from

GISAID (as in Figure 5), we smooth the GISAID frequencies using locally weighted linear regression (Cleve-
land, 1981), as the number of samples sequenced in a single day in the location of interest can be low. The
data set used for regression contains a point for each sample from a given location in GISAID. This point is
(d, 1) for a sample from date d with the given variant or (d, 0) for any other variant. In other words, vector
X consists of dates of the samples (converted to e.g. day difference from the beginning of year 2020), and
vector Y contains values 0 and 1, depending on the variant of each sample. We use the Gaussian distance

function w(x, z) = exp
(
− (x−z)2

2τ2

)
, where τ is a smoothness parameter.

Discussion

In this paper, we have presented a new method for estimating the proportions of SARS-CoV-2 variants in
mixed samples based on a probabilistic model, which captures known genetic variability of each variant. Ex-
plicit modeling of sequencing errors and utilization of haplotype information makes the proposed approach
particularly useful for current long-read sequencing technologies. We have demonstrated on synthetic mix-
tures that our tool gives accurate results for different sequencing technologies and with different variant
combinations, including variants that were included in the background “other” profile. The proportions can
be estimated even at relatively low coverage and even for variants with proportions as low as 5%. This makes
it also relevant for deconvoluting coinfections in single-patient samples. Our tool can be easily adapted to
other viruses where a comprehensive database of sequences belonging to individual clades is available.

Our work suggests several open problems in this area. First, we have selected the set of variants manually
in this paper. This is often practical, as various authorities post lists of variants of concern. Nonetheless,
automated selection of relevant variants for a given sample is an interesting problem. Some work in this
direction was done by Amman et al (2022) who select variants prior to estimating their proportions.

It would be also desirable to provide some measure of confidence whether a given variant actually
appears in the sample, particularly when the model predicts relatively low proportion. This can be achieved
by measuring of the statistical significance of individual estimated proportions, similarly to classic regression
analysis, or by requiring that reads supporting a given variant are spread along the entire genome. Highly
uneven support of a variant along the genome can be caused by the presence of recombinant viruses. It
would be interesting to extend our model to discover the presence of such recombinants in the sample. The
ability of our model to capture long-range dependencies within reads, coupled with use of long amplicons
and nanopore sequencing, is likely to contribute crucial information to detecting recombination points.
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We could also extend our probabilistic model by removing various assumptions built into it. Although the
entire read is in our model generated from one variant, and thus the positions in a read are not independent,
once the variant is fixed, the bases in the variant profile are assumed to be independent. By building
more complex variant profiles it would be possible to capture linkage between different genome positions,
particularly positions within a single amplicon. Similarly, although we do not assume that the coverage is
uniform at all positions, we assume that the variant proportions are the same at all positions in the genome.
However, mutations occurring at primer binding sites may render some primer pairs less efficient in some
variants, which violates this assumption (see e.g. changes in the ARTIC primer sets V4 and V4.1 to avoid
mutations in the Delta and Omicron variants, respectively). To handle this phenomenon, our model can be
extended to consider the starting position of the read as a random variable. The typical read depth profiles
of individual variants necessary for this change can be estimated from single-patient samples sequenced
using the same technology and primer set.
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Figure 6: Estimated the Alpha (B.1.1.7) proportions in wastewater samples from Nice, France, using data
from Rios et al (2021b). If multiple samples were sequenced for a given location and month, the median was
taken. The last row (“GISAID”) is the proportion of sequences with variant B.1.1.7 submitted to GISAID
database from French region Provence-Alpes-Côte d’Azur in the same month.
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Supplementary figures and tables

This table is in the attached supplementary file 1.

Table S1: (a) Overview of single-patient clinical samples used in synthetic mixtures. (b) Composition of
synthetic mixtures and parameters of VirPool analysis. (c) Overview of wastewater samples.

Sample ID GISAID Variant Cq Dilution Unique mut. Freq.

UKBA-1122/2021 EPI ISL 959634 B.1.1.7 15.924 14.1 1 0.243
UKBA-1123/2021 EPI ISL 959635 B.1.1.7 15.915 14.2 1 0.307
UKBA-1102/2021 EPI ISL 959642 B.1.160 16.873 7.3 24 0.084
UKBA-1118/2021 EPI ISL 959631 B.1.258 16.292 10.9 8 0.009
UKBA-1108/2021 EPI ISL 959649 B.1.258 19.738 1.0 11 0.023
UKBA-1124/2021 EPI ISL 959636 B.1.258 16.748 7.9 10 0.129
UKBA-1103/2021 EPI ISL 959648 B.1.258 16.348 10.5 7 0.165
UKBA-1105/2021 EPI ISL 959647 B.1.1.170 17.681 4.2 19 0.065

Table S2: Eight single-patient samples mixed in the in vitro mixture. The dilution of each sample was
computed based on the Cq value from RT-qPCR. Among mutations discovered in individual samples we
have selected those that are specific to a single of these eight samples, and we report their count and the
median frequency of these mutations in the mixed sample. The two B.1.1.7 samples have only a single
unique mutation each, making their estimates less reliable, but their sum agrees well with proportions of
mutations characteristic for this variant shown in Table S3).

(a) ONT short, clinical sample ERR4868988 (average
coverage: 1920, median coverage: 1818)

(b) Illumina, clinical sample ERR4839756 (average
coverage: 4527, median coverage: 3810)

(c) ONT short, wastewater sample SRR15275979,
(average coverage: 1057, median coverage: 302)

(d) Illumina, wastewater sample CoV-3813-S77797-
npa (average coverage: 26223, median coverage:
11579)

Figure S1: Typical coverage along the genome in clinical single-patient and wastewater samples. The y-
axis is truncated at coverage of 1000. In wastewater samples, the coverage is much more variable with
many regions of extremely low coverage. The Spike gene region, which contains many variant segregating
mutations, is highlighted in orange.
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Frequency in
Pos Allele # reads reads B.1.1.7

23271 A 12762 0.615 1.000
23709 T 12240 0.606 1.000
23063 T 12108 0.597 1.000
14676 T 39639 0.581 1.000
15279 T 38363 0.574 1.000
24506 G 11952 0.566 1.000
24914 C 11645 0.560 0.999
16176 C 11035 0.549 0.999
5388 A 24426 0.538 1.000
6954 C 10154 0.527 0.999

28111 G 31574 0.521 1.000
913 T 14904 0.502 1.000

3267 T 12638 0.489 1.000
28280 C 34572 0.487 0.998
27972 T 27369 0.486 1.000
28977 T 26171 0.486 1.000
28048 T 28749 0.484 0.998
28282 A 33981 0.477 0.998
28281 T 33260 0.445 0.998
11296 G 456 0.053 0.918

Table S3: Frequencies of selected alleles in the reads from the in vitro mixed sample. We have selected
all alleles which had in our variant profile probability more than 90% in B.1.1.7 and less than 1% in the
other variants considered in the analysis, including the background “other” profile. We display the number
and fraction of reads containing this allele and the probability in the B.1.1.7 profile. The median allele
proportion is 0.524, which agrees well with the Virpool estimate of 53% for B.1.1.7. Most positions have a
similar proportion of the B.1.1.7 allele, except for the last one.

Date B.1.1.7 B.1.160 B.1.177 B.1.258 B.1.351 other

VirPool
18/12/2020 0.00 0.46 0.16 0.13 0.00 0.24
27/12/2020 0.09 0.06 0.10 0.51 0.01 0.23
17/01/2021 0.52 0.28 0.09 0.02 0.00 0.08
03/02/2021 0.84 0.08 0.01 0.02 0.00 0.05
24/02/2021 0.86 0.04 0.00 0.10 0.00 0.00

VaQuERo
18/12/2020 0.00 0.42 0.12 0.11 0.00 0.35
27/12/2020 0.20 0.15 0.00 0.41 0.00 0.24
17/01/2021 0.51 0.23 0.09 0.05 0.00 0.12
03/02/2021 0.70 0.21 0.00 0.09 0.00 0.00
24/02/2021 0.94 0.00 0.00 0.00 0.00 0.06

Table S4: The estimated proportions in wastewater samples from a plant near Bischofshofen, Austria (federal
state of Salzburg) (Amman et al, 2022). Comparison of predictions with VirPool and VaQuERo (Amman
et al, 2022). Column “other” for VaQuERo includes lineages B.1.221, B.1.1.232, and B.1.1.153 as well as
other unidentified lineages.
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Frequency in
Pos Allele # reads reads B.1.1.7 B.1.160 B.1.258

20268 G 245 1.000 0.000 0.001 0.993
829 T 18060 0.315 0.001 0.001 0.273

18028 T 8005 0.304 0.000 0.001 0.789
17104 T 17743 0.288 0.000 0.002 0.996
23876 A 2007 0.272 0.000 0.000 0.298
22127 T 4922 0.230 0.000 0.000 0.300
25947 T 1922 0.171 0.000 0.001 0.298

12988 T 25 0.002 0.000 0.001 0.790
7767 C 2 0.002 0.000 0.002 0.992

14697 T 18 0.001 0.000 0.000 0.281
22879 A 36 0.001 0.000 0.001 0.991
26972 C 55 0.001 0.000 0.002 0.783
27800 A 26 0.001 0.000 0.001 0.849
28083 T 123 0.001 0.000 0.007 0.265
29734 C 86 0.001 0.000 0.002 0.976
15598 A 0 0.000 0.000 0.002 0.790
16394 T 1 0.000 0.002 0.001 0.299
18176 T 4 0.000 0.000 0.000 0.284
19398 T 0 0.000 0.000 0.004 0.297
20451 T 0 0.000 0.000 0.001 0.365
24910 C 56 0.000 0.000 0.002 0.791
8047 T 0 0.000 0.000 0.001 0.993

Table S5: Frequencies of selected alleles in the Austrian wastewater sample from February 24, 2021. We
have selected all alleles which had in our variant profile probability less that 1% for both B.1.1.7 and B.1.160
and probability at least 25% in B.1.258. We also display the number and fraction of reads containing this
allele and the frequencies from these profiles. The first seven rows support a high percentage of B.1.258
variant.
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Frequency in
Pos Allele Fabron Madeleine Harbor Paillon East Nice

913 T 0.145 0.106 0.121 0.095 0.132
3267 T 0.034 0.035 0.034 0.042 0.042
5388 A 0.000 0.000 0.009 0.000 0.009
5986 T 0.062 0.000 0.006 0.014 0.022
6954 C 0.000 0.000 0.000 0.000 0.000

11296 G 0.006 0.003 0.006 0.008 0.002
14676 T 0.342 0.379 0.399 0.421 0.358
15279 T 0.121 0.163 0.212 0.179 0.114
16176 C 0.015 0.003 0.009 0.008 0.007

23063 T 0.000 0.333 0.000 0.000 0.000
23271 A 0.023 0.011 0.018 0.014 0.020

23709 T 0.028 0.000 0.078 0.060 0.152
24506 G 0.209 0.224 0.019 0.168 0.077
24914 C 0.156 0.005 0.001 0.000 0.045
27972 T 0.062 0.000 0.037 0.037 0.027
28048 T 0.000 0.000 0.010 0.000 0.000
28111 G 0.017 0.019 0.014 0.012 0.015

28280 C 0.169 0.236 0.229 0.209 0.214
28281 T 0.158 0.214 0.208 0.185 0.194
28282 A 0.162 0.221 0.222 0.195 0.205
28977 T 0.000 0.458 0.000 0.000 0.026

Table S6: Frequencies of selected alleles in the Nice wastewater samples from October 2020. We have
selected all alleles which had in our variant profile probability less that 1% for both B.1.160 and “other” and
probability at least 90% in B.1.1.7. We display the fraction of reads containing each allele in the samples
from the five locations where VirPool estimated at least 7% of the Alpha variant. Positions where at least
one of the five samples have allele proportion at least 5% are highlighted in boldface.

20

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276717doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276717
http://creativecommons.org/licenses/by/4.0/


Frequency in
Pos Allele # reads reads B.1.177 B.1.160 B.1.1.7 other

22227 T 268 0.691 0.995 0.006 0.001 0.004
28932 T 6 0.085 0.996 0.002 0.000 0.001
6286 T 19 0.022 0.995 0.004 0.001 0.002

29645 T 3 0.008 0.995 0.003 0.000 0.001
445 C 3 0.004 0.994 0.003 0.000 0.001

21255 C 0 0.000 0.989 0.002 0.001 0.002
26801 G 0 0.000 0.979 0.003 0.000 0.001

26876 C 205 0.274 0.001 0.987 0.000 0.000
4543 T 18 0.205 0.004 0.987 0.003 0.003

13993 T 2 0.105 0.001 0.990 0.000 0.000
16889 G 1 0.100 0.000 0.988 0.000 0.000
17019 T 1 0.100 0.001 0.987 0.002 0.001
5629 T 3 0.088 0.001 0.962 0.000 0.001

15766 T 30 0.037 0.001 0.988 0.000 0.004
11497 T 1 0.004 0.001 0.988 0.002 0.000
25710 T 0 0.000 0.001 0.988 0.001 0.002
28975 C 0 0.000 0.001 0.985 0.000 0.000
29399 A 0 0.000 0.001 0.987 0.000 0.000
9526 T 0 0.000 0.001 0.989 0.000 0.001

Table S7: Frequencies of selected alleles in the Nice wastewater samples from March 2021, Harbor location.
The top part of the table contains all alleles which had in our variant profile probability less that 1% for
B.1.160, B.1.1.7 and “other” and probability at least 90% in B.1.177. Similarly, the bottom part contains
all alleles with probability at least 90% in B.1.160 and less than 1% in B.1.177, B.1.1.7 and “other”. We
display the count and fraction of reads containing each allele in this sample as well as allele probabilities in
these profiles.
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