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Abstract
Gene expression profiling provides a detailed molecular snapshot of cellular phenotypes that
can be used to compare different biological conditions. Nanopore sequencing technology
can generate high-resolution transcriptomic data in real-time and at low cost, which heralds
new opportunities for molecular medicine. In this study, we demonstrate the clinical utility of
real-time transcriptomic profiling by processing RNA sequencing data from childhood acute
lymphoblastic leukemia (ALL) patients on-the-fly with a trained neural network classifier. This
strategy successfully distinguished 11/12 representative ALL molecular subtypes and one
non-leukemia control in as little as 5 minutes of sequencing on a MinION sequencer or in
less than 1 hour on disposable, low cost Flongle flow cells. Our findings suggest that
real-time transcriptomics constitutes a drastically efficient solution for the molecular
diagnosis of ALL and other diseases, where conventional clinical workflows require days if
not weeks to achieve similar results.

Introduction

Acute leukemia is the most common pediatric cancer accounting for over 1/3 of cases in
children and young adults, of which acute lymphoblastic leukemia (ALL) will affect 4 out of 5
leukemia patients (1). Survival outcomes in childhood ALL have significantly improved over
the past 5 decades mainly due to refined, risk-adapted treatment intensification based on
patients’ presenting features, leukemia cytogenetics, minimal residual disease and an
improved understanding of ALL biology. The molecular landscape of ALL is characterized by
diverse genetic alterations that define novel molecular subtypes, which confer prognosis and
unravel tailored therapeutic vulnerabilities (2). Nevertheless, the outcome of adolescents and
young adults with ALL between 16-30 years of age remains significantly inferior compared to
their younger counterparts due to higher rates of both relapses and treatment-related
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mortality. Moreover, ALL is an aggressive disease and can present with life-threatening
symptoms at diagnosis, thus substantiating the need for rapid molecular diagnostics.

The current gold standard for ALL diagnosis, classification and risk stratification involves
bone marrow morphology and flow cytometry, followed by conventional cytogenetics and
molecular assays to identify recurrent genetic alterations. This process encompasses
several tests, including G-band karyotyping, fluorescence in situ hybridization (FISH),
comparative genome hybridization (CGH) and reverse-transcription polymerase chain
reaction (RT-PCR) which are labor-cumbersome, time-consuming and require multiple
samples.

The advent of next-generation sequencing (NGS), specifically RNA-sequencing (RNA-seq),
has expanded ALL taxonomy from 7 conventional to 19 molecular ALL subtypes, which are
defined by gene alterations and/or distinct gene expression signatures; features that are
either cryptic or not detected by conventional diagnostic pipelines (3). Therefore, several
groups are now incorporating RNA-seq into clinical workflows to refine the molecular
classification and risk stratification of ALL (3). However, NGS is currently hampered by a
relatively long turnaround time for decision-making (typically 3 to 4 weeks), remains a costly
endeavor and is only available in limited institutions.

Third-generation (real-time, single molecule) sequencing technologies offer unique
possibilities in this space. Portable and accessible nanopore sequencers, such as the Oxford
Nanopore Technologies’ (ONT) MinION device, yield impressive throughput and low
error-rates, the latter situated below 5%. Given the speed and accessibility of nanopore
sequencing, we hypothesized that processing RNA-seq data from leukemia patients in
real-time would improve the turnaround time for disease subtype classification. Here, we
leverage a neural network classifier trained on heterogenous short-read sequencing data to
demonstrate how nanopore RNA-seq can generate diagnostic-grade molecular classification
of ALL patients as fast as 5 minutes of sequencing for a fraction of the cost of contemporary
clinical workflows.

Materials and methods

Sample cohort
Study samples consist of 12 ALL patients (11 pre-B and 1 pre-T) from the established
Quebec childhood ALL (QcALL) cohort (4) and one control sample. Patients (8 boys and 4
girls), aged from 1 to 17 years (median 10 years) were diagnosed in the Division of Pediatric
Hematology-Oncology at Sainte-Justine University Health Center (UHC), Montreal, Canada,
between 2017 and 2021. The Sainte-Justine Institutional Review Board approved the
research protocol, and written informed consent was obtained from all participating
individuals or their parents (see Human Research Considerations section).

Training set and classifier
The training set used is described by Tran et al. (3) and contains 1,134 ALL RNA-seq
samples generated with diverse short-read sequencing protocols and platforms. These
include both in-house (n=72) and public datasets (n=1,062) (5, 6) that are distributed
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amongst 17 well-documented ALL subtypes. The data were corrected for batch effects using
a Surrogate Variable Analysis (SVA) package (7) and the 500 most differentially expressed
genes obtained from the DESeq2 likelihood ratio test (LRT) (8), which were used to train a
single layer neural network classifier in Tran et al. (3). As some samples in the test set might
also be present in the training set for the in-house samples, we ensured that the latter were
removed from the training set when spawning the neural network to avoid overfitting.

Sample preparation and nanopore sequencing
Library preparation was done on RNA isolated from either frozen or fresh patient samples
using TRIzol and following the manufacturer's protocol (Invitrogen, Mississauga, ON,
Canada). Different protocols were used based on the different RNA-seq chemistries and
devices tested. The tested devices were MinION cDNA, MinION dRNA and MinION Flongle.
RNA concentrations were obtained using a Qubit machine and the Qubit RNA assay kit (high
sensitivity) [Invitrogen, Mississauga, ON, Canada], while post-PCR cDNA was quantified
using the Qubit 1X dsDNA BR Assay Kit (Invitrogen, Mississauga, ON, Canada). When
required, the sequencing runs were refueled with 250 uL of FB buffer (with FLT) [Oxford
Nanopore Technologies, Oxford, UK].

MinION cDNA preparation protocol
All cDNA samples sequenced on a MinION flowcell (R9.4.1 - FLO-MIN106) [Oxford
Nanopore Technologies, Oxford, UK] were prepared following manufacturer’s protocol
(SQK-PCS109) [Oxford Nanopore Technologies, Oxford, UK]. PCR was done as follows:
95°C for 30 seconds for 1 cycle (initial denaturation), 95°C for 15 seconds for 15 cycles
(denaturation), 62°C for 15 seconds for 15 cycles (annealing), 65°C for 5 minutes for 15
cycles (extension), 65°C for 10 minutes for 1 cycle (final extension). Final libraries were
primed on the flowcells following manufacturer’s recommendations and ran for 72 hours on a
GridION sequencer (samples 0205, 0215, 0232, 0236, 0243, 0503) or 89 hours (sample
0318)

MinION dRNA preparation protocol
All RNA samples sequenced on a MinION flowcell (R9.4.1 - FLO-MIN106) were prepared
following manufacturer’s protocol for dRNA sequencing (SQK-RNA002) [Oxford Nanopore
Technologies, Oxford, UK]. Final libraries were loaded on flowcells following manufacturer’s
recommendations and ran for 46 hours on a GridION sequencer (samples 0205, 0215, 0232,
0236 and 0243) or 72 hours (sample 0318).

Flongle cDNA preparation protocol
All cDNA samples sequenced on a Flongle flow cells (R9.4.1 - FLO-FLG001) [Oxford
Nanopore Technologies, Oxford, UK] were prepared following manufacturer’s protocol
(SQK-PCS109) [Oxford Nanopore Technologies, Oxford, UK]. PCR was done as follows:
95°C for 30 seconds for 1 cycle (initial denaturation), 95°C for 15 seconds for 15 cycles
(denaturation), 62°C for 15 seconds for 15 cycles (annealing), 65°C for 5 minutes for 15
cycles (extension), 65°C for 10 minutes for 1 cycle (final extension). PCR reactions were
then processed using SQK-LSK110 library preparation kit, following manufacturer’s
recommendations (Oxford Nanopore Technologies, Oxford, UK). Final libraries were primed
on the flowcells following manufacturer’s recommendations and ran for 36 hours on a
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GridION sequencer (samples 0236, 0243, 1018 and 0244), for 20 to 25 hours (samples
0205, 0232, 0503, 0258 and 0274), for 10 hours (sample 0998) or 6 hours (sample 0340).
Running time was based on the number of pores available on the flow cell (Supplementary
Table 1).

Sequencing data processing
Raw data were base called with Guppy (see Supplementary Table 1 for software versions)
and retrospectively grouped into timepoints based on their acquisition time during
sequencing, as reported in raw .fast5 signal files and the base calling output file
“sequencing_summary.txt”. For each timepoint, reads were aligned to the Ensembl 75
transcriptome reference (http://feb2014.archive.ensembl.org/Homo_sapiens/Info/Index) and
the resulting count matrices were passed to the classification algorithm to output
classification probabilities for each time point.

Results
Table 1: Patient samples and ALL subtypes
Sample ALL subtype Known gene

fusion
RIN** Run type*

s0318 BCR-ABL1 or like BCR-ABL1 N/A MFR

s0215 BCR-ABL1 or like BCR-ABL1 8.8* MR

s0205 BCR-ABL1 or like EBF1-PDGFRB 9.1* MFR

s0243 DUX4 rearrangement DUX4-IGH 9.8* MFR

s0236 ETV6-RUNX1 or like ETV6-RUNX1 8.3* MFR

s0232 KMT2A or like KMT2A-MLLT3 9.1* MFR

s0258 PAX5 alteration 8.5* F

s0503 NUTM1 rearrangement NUTM1-ACIN1 10* MF

s0998 TCF3-PBX1 TCF3-PBX1 9-10* F

s0274 High hyperdiploidy 9-10* F

s1018 ETV6-RUNX1+High hyperdiploidy ETV6-RUNX1 9-10* F

s0340 T-cell 9-10* F

s0244 Non-leukemic bone marrow 8.8 F
*M=MinION-cDNA; F=Flongle-cDNA; R=MinION-dRNA
**RNA Integrity Number
NA=Not Applicable or Not Available

RNA extracted from bone marrow aspirates of 13 pediatric ALL patients with well-defined
molecular subtype classification for ONT sequencing using various chemistries and flow
cells (Supplementary Table 1). Samples were selected from the QcALL cohort to represent
the diversity of ALL molecular subtypes (Table 1). Following completion of the sequencing
runs, we grouped the sequencing reads into bins corresponding to various acquisition time
intervals; from 60 seconds of sequencing to 4 hours–in addition to the complete (or ‘final’)
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dataset–to retrospectively emulate real-time data acquisition. Each time point was processed
by aligning reads to a reference transcriptome (see Methods) to generate a count matrix,
which was then submitted to a neural network classifier pre-trained on ALL RNA-seq data
(3).

We first performed cDNA sequencing of 7 ALL samples on MinION flow cells, which typically
produce 5-15 million reads over 48 hours. All but one sample was assigned to the correct
molecular ALL subtype in less than 5 minutes of sequencing with >90% probability (Figure
1). Sample s0236–a B-ALL patient with ETV6-RUNX1 fusion, the most common pediatric
ALL gene fusion, produced the fastest classification; 3 minutes of sequencing were sufficient
to obtain a 98% molecular classification probability. A classification of 99% was obtained for
subsequent time points. Two BCR-ABL1 or BCR-ABL1-like samples, s0205 and s0318, as
well as s0232 (a KMT2A fusion) required only 4 minutes of sequencing to achieve 96%, 97%
and 94% classification probability, respectively, while sample s0215 required 5 minutes to
achieve 95%. Of the remaining samples, s0243 (a DUX4 fusion) attained 92% classification
probability in 5 minutes but dipped to ~80% on 2 occasions before stabilizing towards 98%
probability after 2 hours of sequencing. Based on these 6 samples, 5 minutes is enough to
accurately classify ALL subtypes using MinION flow cells and cDNA on Nanopore
sequencers. The classifier failed to correctly classify s0503, a rare NUTM1 fusion . However,
the NUTM1-rearranged molecular subtype was predicted at the end of the sequencing run
(after 72 hours of sequencing) with a probability of 37%, albeit BCR-ABL1 and PAX5
alteration classifications also produced 17% and 34% classification probabilities,
respectively.

Figure 1: Molecular subtype classification from cDNA reads on a MinION flow cell in
function of sequencing time. Independent clinical classification is indicated by header
colors for each sample.

Given the speed of this approach with MinION flow cells, we wondered if similar
classification results could be achieved on lightweight and disposable Flongle flow cells,
which generate ~15x less data than MinION flow cells. As expected, more time was required
to obtain high confidence ALL subtype classification probabilities on Flongle chips (Figure
2), which nonetheless yielded accurate classifications with probabilities >90% in less than 1
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hour for 9 out of 11 samples. Interestingly, sample s0243 was processed before the formal
clinical classification was received, initially being assigned the subtype “other”. However, our
classifier suggested a DUX4 rearrangement subtype with a probability of 95% after 60
minutes of sequencing, which was subsequently confirmed by identification of the gene
fusion via short read RNA-seq.

Two samples subjected to Flongle cDNA sequencing were problematic. The first, s0503 (the
above-mentioned NUTM1 rearrangement) was ultimately classified as the BCR-ABL1 or like
subtype, consistent with previous results. The second, s1018 (a rare leukemia sample
characterized by 2 distinct genomic aberrations; an ETV6-RUNX1 fusion and hyperdiploidy)
was accurately classified as ETV6-RUNX1 after 15 minutes of sequencing with a probability
of 96%. Nonetheless, the classifier failed to pick up the second subtype associated with this
sample that is high hyperdiploidy (0% for all timepoints), which may suggest that the gene
fusion is linked to the dominant molecular phenotype in this cancer.

We also included a bone marrow sample from a patient that was not diagnosed with
leukemia (s0244) as a negative control. The deterministic nature of the classifier accurately
recognized this sample as an “others” subtype, a category that was trained from ALL
samples without canonical gene fusions and/or gene expression profiles. Interestingly, the
above-mentioned sample with a dual clinical classification was classified as “others” early in
the data acquisition.

Figure 2: Molecular subtype classification from cDNA reads on Flongle flow cells in
function of sequencing time. Sample s1018 is associated with a double clinical
classification, as indicated by the header colors.
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To assess whether an independent sequencing chemistry could generate comparable
results, poly(A) RNA sequencing (no conversion to cDNA and use of PCR) was applied to
samples with sufficient quantities of RNA (Figure 3). Native RNA sequencing on MinION
flow cells produced similar yields and results to Flongle cDNA experiments (Figure 4, top
panel). The fastest correct classification was for sample s0318 with a 94% probability after 7
minutes of sequencing, a result akin to cDNA-MinION runs. All 6 samples were accurately
classified in less than 120 minutes of sequencing with a probability > 90%. A direct
comparison of the three different sequencing strategies is presented in Figure 4.

Figure 3: Molecular subtype classification from native RNA reads on MinION flow cells in
function of sequencing time.

Figure 4: Comparison of time-sensitive molecular subtype classification performance
across different nanopore RNA sequencing strategies.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion
Molecular profiling of acute leukemias via RNA-seq is a powerful tool for the characterization
of disease heterogeneity, biomarker discovery and risk stratification of leukemia patients (2,
9–14). Our results demonstrate that nanopore sequencing and supervised machine learning
can be used to diagnose and accurately classify molecular ALL subtypes in as little as 4
minutes of sequencing, or in ~4 hours when factoring in RNA extraction and sample
preparation time. This constitutes a turnaround time several orders of magnitude faster than
current clinical workflows. For most samples, less than 10,000 reads were sufficient to
pinpoint the ALL subtype. The slightly longer (1 to 2 hours) sequencing turnaround time
required when using Flongle flow cells is nonetheless efficient when considering their
significantly lower cost (US$80 versus US$500). This is a significant improvement when
considering that contemporary workflows for the molecular classification of ALL samples
using conventional cytogenetic/molecular approaches require 2-14 days, cost ~CA$3000
(without NGS-based RNA-seq), involve multiple different assays and approximately 40%
cases remain unclassified.

Overall, we found that cDNA sequencing gave the best results in terms of speed and stability
of the predictions over time. The slightly lower efficacy of native RNA sequencing could be
explained by the supervised nature of the classifier, which was exclusively trained on
previously published Illumina short-read sequencing data from cDNA (3). It would therefore
include features derived from reverse transcription and PCR amplification, which would not
be present in native RNA data. A similar rationale explains why one sample (s0503, NUTM1
rearrangement) performed poorly on both MinION and Flongle runs; NUTM1
rearrangements represent only 0.5% of the training set (only 6 out of 1,134 samples),
including the queried sample that was left out during training. The weak representation of a
subtype in the training set might corrupt the neural network and orient the prediction toward
well-represented subtypes, such as BCR-ABL1 that are more overrepresented in the training
set. Additional patient samples of rarer ALL subtypes, alternative machine learning models
and nanopore-specific training data would undoubtedly improve this strategy in the future. A
conservative threshold (e.g. 90%) and longer sequencing times would be sufficient to
distinguish low-confidence predictions.

The unique sample with dual clinical classification (s1018, ETV6-RUNX1 + high
hyperdiploidy) emitted a strong, unique classification probability to the ETV6-RUNX1
subtype only after 30 minutes of sequencing. As another high hyperdiploidy ALL sample
(s0274) was correctly classified with strong probability, it is possible that the neural network
identified the ETV6-RUNX1-derived gene expression signature as the predominant
molecular phenotype of this sample. Additional molecular studies would be required to
validate this hypothesis. Interestingly, the classification from early timepoints (i.e shallow
sequencing data) assigned this sample to the “others” ALL subtype, which was also the
category assigned to the only negative control used in this study (a bone marrow sample
from a patient without leukemia). Therefore, this model cannot distinguish between atypical
leukemias and non-leukemias in its current implementation. More leukemia and control
samples are thus required to define new subtype categories and to validate the clinical utility
and precision of our approach.
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Two pediatric ALL classification tools based on gene expression signatures were published
while preparing this manuscript. The first, ALLSorts is a B-ALL classifier that performs
hierarchical supervised classification within 5 meta-subtypes (Ph, KMT2A, ETV6-RUNX1,
ZNF384 and High Ploidy Signature groups) and 18 subtypes pretrained on 1,223 B-ALL
samples (15). As for the second, after comparing multiple machine-learning classification
models, the selected strategy employs a partial least-squares discriminant classifier trained
on 1,036 samples from ALL lineages (B and T) and acute myeloid leukemia (AML) genomic
subtypes. It produces binary predictions to be used as features that are input into a
non-linear Support Vector Machine (SVM) classifier for 3 leukemia lineages and 8 subtypes
(14). Our classifier employs a feedforward neural network (FNN) trained on 1,134 ALL
samples and outputs prediction probabilities for 16 ALL subtypes. As the FFN wasn’t
considered in the Wang et al. study, a comparison between these tools could enhance our
results and further reduce the sequencing time required for each chemistry and device
tested. Also, current classifiers handle between 8 to 18 subtypes, while up to 23 subtypes
have been identified (5, 16). This suggests that further refinement and subtype definition is
needed in order to find a consensus for homogeneous classifications.

The molecular classification strategy we present herein could nonetheless be improved.
Firstly, the machine learning strategy we applied was trained on gene-level NGS-derived
quantification data. Full-length isoforms would provide a more diverse and, presumably,
more sensitive training set to refine the classifier. Moreover, using an ad hoc reference
transcriptome assembled from single molecule sequencing of leukemia samples would
provide a bespoke qualitative reference, upon which individual sample would be quantified to
remove impertinent reference transcripts and include novel isoforms and long non-coding
RNAs that are specific to this condition. Although this would require deeper transcriptomic
data and the associated clinical metadata generated from patient samples, it has the
potential to identify new biomarkers of disease and, consequently, improve disease
classification and risk stratification efficiency. Similarly, generating a molecular subtype
classifier based on native RNA sequencing data, which would include RNA modifications,
would add an additional level of accuracy to disease subtype modeling. Indeed, several RNA
modifications, which are often lost during reverse transcription, are dysregulated in
leukemias (17).

Secondly, our method does not directly identify gene fusions that define molecular subtypes
and identify targeted therapies (18, 19). Identifying fusion genes remains a challenge due to
their (often) low expression levels. In this study, few known fusions were detected with the
relatively shallow nanopore sequencing we performed (data not shown). Deeper molecular
sampling with larger PromethION flowcells, for example, or targeted strategies (e.g. PCR
panels, adaptive sampling, CRISPR enrichment, etc) would be required to identify gene
fusions more reliably using nanopore sequencers. Lastly, whilst the processing reported
herein occurred retrospectively (for direct temporal comparisons between samples), our
pipeline can be implemented in real-time with relative ease, which we have successfully
performed in-house. N.B. Default sequencing parameters should be adjusted consequently
to produce sequencing files with less than 4000 reads (default parameters) in order to
perform ultra-rapid (~5m) classification, especially with Flongle or native RNA sequencing.

In conclusion, the diagnostic strategy we propose herein successfully leverages real-time
nanopore sequencing to provide a tangible solution for ALL diagnostics and
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risk-stratification, potentially providing same-day recommendations for precision therapeutic
strategies. In addition to its rapid turnaround time, the accuracy, cost and portability of
nanopore RNA sequencing provides exciting new opportunities for molecular medicine in the
post-genomics era.

Author contributions
MAS conceived the study. MS, SMS and MAS wrote the manuscript with input from all
authors. MS, SMS, MC & MAS performed bioinformatics analyses. MS, SMS, MC,
performed data analysis. MS, MR, BP, TS, SL performed sample preparation. MS, MR & BP
performed nanopore sequencing. AR, VL, SC, DS, THT & MAS supervised, revised
manuscript and contributed to experimental design.

Acknowledgments
This work was partially funded by a Cole Foundation transition award, a Canadian
Foundation for Innovation John R. Evans Leaders Fund (40767) and a National Science and
Engineering Research Council of Canada Discovery Grant (RGPIN-2022-04265) to MAS
and by a Fondation Charles-Bruneau grant to DS. MS is partially supported by a Cole
Foundation fellowship. BP is partially supported by a Fonds de Recherche du Québec -
Santé postdoctoral fellowship. MAS is partially supported by a Fonds de Recherche du
Québec - Santé Junior 1 fellowship and establishment award (307539). We would also like
to thank participating patients and their families, as well as the Fondation CHU
Sainte-Justine for their global support.

Human research considerations
This study (project code MP-21-2019-2032) is approved for human research by the CHU
Sainte-Justine ethics committee (FWA00021692) designated by the Ministère de la Santé et
des Services Sociaux du Québec.

Competing interest
MAS, MS and BP have received financial travel support from Oxford Nanopore
Technologies.

Availability of data and materials
All data produced in the present study are available upon reasonable request to the authors.

References

1. D. R. Brenner, A. Poirier, R. R. Woods, L. F. Ellison, J.-M. Billette, A. A. Demers, S. X.
Zhang, C. Yao, C. Finley, N. Fitzgerald, N. Saint-Jacques, L. Shack, D. Turner, E. Holmes,
Projected estimates of cancer in Canada in 2022. CMAJ 194, E601–E607 (2022).

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

http://paperpile.com/b/RYTR7O/N7No
http://paperpile.com/b/RYTR7O/N7No
http://paperpile.com/b/RYTR7O/N7No
https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. T. H. Tran, S. P. Hunger, The genomic landscape of pediatric acute lymphoblastic
leukemia and precision medicine opportunities. Semin. Cancer Biol. (2020),
doi:10.1016/j.semcancer.2020.10.013.

3. T. H. Tran, S. Langlois, C. Meloche, M. Caron, P. St-Onge, A. Rouette, A. R. Bataille, C.
Jimenez-Cortes, T. Sontag, H. Bittencourt, C. Laverdière, V.-P. Lavallee, J.-M. Leclerc, P. D.
Cole, L. M. Gennarini, J. M. Kahn, K. M. Kelly, B. Michon, R. Santiago, K. E. Stevenson, J. J.
Welch, K. Schroeder, V. B. Koch, S. Cellot, L. B. Silverman, D. Sinnett, Whole-transcriptome
analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol
16-001. Blood Adv (2021), doi:10.1182/bloodadvances.2021005634.

4. J. Healy, H. Bélanger, P. Beaulieu, M. Larivière, D. Labuda, D. Sinnett, Promoter SNPs in
G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia.
Blood 109, 683–692 (2007).

5. H. Lilljebjörn, R. Henningsson, A. Hyrenius-Wittsten, L. Olsson, C. Orsmark-Pietras, S.
von Palffy, M. Askmyr, M. Rissler, M. Schrappe, G. Cario, A. Castor, C. J. H. Pronk, M.
Behrendtz, F. Mitelman, B. Johansson, K. Paulsson, A. K. Andersson, M. Fontes, T. Fioretos,
Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell
precursor acute lymphoblastic leukaemia. Nat. Commun. 7, 11790 (2016).

6. The Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
initiativeNational Cancer Institute (available at https://ocg.cancer.gov/programs/target).

7. J. T. Leek, W. Evan Johnson, H. S. Parker, A. E. Jaffe, J. D. Storey, The sva package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics 28, 882 (2012).

8. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

9. M. Cieślik, A. M. Chinnaiyan, Cancer transcriptome profiling at the juncture of clinical
translation. Nat. Rev. Genet. 19, 93–109 (2017).

10. W. Arindrarto, D. M. Borràs, R. A. L. de Groen, R. R. van den Berg, I. J. Locher, S. A. M.
E. van Diessen, R. van der Holst, E. D. van der Meijden, M. W. Honders, R. H. de Leeuw, W.
Verlaat, I. Jedema, W. G. M. Kroes, J. Knijnenburg, T. van Wezel, J. S. P. Vermaat, P. J. M.
Valk, B. Janssen, P. de Knijff, C. A. M. van Bergen, E. B. van den Akker, P. A. C. ’t Hoen, S.
M. Kiełbasa, J. F. J. Laros, M. Griffioen, H. Veelken, Comprehensive diagnostics of acute
myeloid leukemia by whole transcriptome RNA sequencing. Leukemia 35, 47–61 (2020).

11. T. R. Docking, J. D. K. Parker, M. Jädersten, G. Duns, L. Chang, J. Jiang, J. A. Pilsworth,
L. A. Swanson, S. K. Chan, R. Chiu, K. M. Nip, S. Mar, A. Mo, X. Wang, S. Martinez-Høyer,
R. J. Stubbins, K. L. Mungall, A. J. Mungall, R. A. Moore, S. J. M. Jones, İ. Birol, M. A.
Marra, D. Hogge, A. Karsan, A clinical transcriptome approach to patient stratification and
therapy selection in acute myeloid leukemia. Nat. Commun. 12, 1–15 (2021).

12. L. M. Brown, A. Lonsdale, A. Zhu, N. M. Davidson, B. Schmidt, A. Hawkins, E. Wallach,
M. Martin, F. M. Mechinaud, S. L. Khaw, R. C. Bartolo, L. E. A. Ludlow, J. Challis, I. Brooks,
V. Petrovic, N. C. Venn, R. Sutton, I. J. Majewski, A. Oshlack, P. G. Ekert, The application of
RNA sequencing for the diagnosis and genomic classification of pediatric acute
lymphoblastic leukemia. Blood Adv 4, 930–942 (2020).

13. W. Walter, R. Shahswar, A. Stengel, M. Meggendorfer, W. Kern, T. Haferlach, C.
Haferlach, Clinical application of whole transcriptome sequencing for the classification of
patients with acute lymphoblastic leukemia. BMC Cancer 21, 1–11 (2021).

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

http://paperpile.com/b/RYTR7O/Gnpe
http://paperpile.com/b/RYTR7O/Gnpe
http://paperpile.com/b/RYTR7O/Gnpe
http://dx.doi.org/10.1016/j.semcancer.2020.10.013
http://paperpile.com/b/RYTR7O/Gnpe
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/At3l
http://dx.doi.org/10.1182/bloodadvances.2021005634
http://paperpile.com/b/RYTR7O/At3l
http://paperpile.com/b/RYTR7O/8uux
http://paperpile.com/b/RYTR7O/8uux
http://paperpile.com/b/RYTR7O/8uux
http://paperpile.com/b/RYTR7O/lVu3
http://paperpile.com/b/RYTR7O/lVu3
http://paperpile.com/b/RYTR7O/lVu3
http://paperpile.com/b/RYTR7O/lVu3
http://paperpile.com/b/RYTR7O/lVu3
http://paperpile.com/b/RYTR7O/R2mB
http://paperpile.com/b/RYTR7O/R2mB
https://ocg.cancer.gov/programs/target
http://paperpile.com/b/RYTR7O/R2mB
http://paperpile.com/b/RYTR7O/2Pyj
http://paperpile.com/b/RYTR7O/2Pyj
http://paperpile.com/b/RYTR7O/2Pyj
http://paperpile.com/b/RYTR7O/7lli
http://paperpile.com/b/RYTR7O/7lli
http://paperpile.com/b/RYTR7O/mQvc
http://paperpile.com/b/RYTR7O/mQvc
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/9GWU
http://paperpile.com/b/RYTR7O/5DZ6
http://paperpile.com/b/RYTR7O/5DZ6
http://paperpile.com/b/RYTR7O/5DZ6
http://paperpile.com/b/RYTR7O/5DZ6
http://paperpile.com/b/RYTR7O/5DZ6
http://paperpile.com/b/RYTR7O/XfNn
http://paperpile.com/b/RYTR7O/XfNn
http://paperpile.com/b/RYTR7O/XfNn
http://paperpile.com/b/RYTR7O/XfNn
http://paperpile.com/b/RYTR7O/XfNn
http://paperpile.com/b/RYTR7O/fflT
http://paperpile.com/b/RYTR7O/fflT
http://paperpile.com/b/RYTR7O/fflT
https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. J. Wang, N. Bhakta, V. Ayer Miller, M. Revsine, M. R. Litzow, E. Paietta, Y. Fedoriw, K. G.
Roberts, Z. Gu, C. G. Mullighan, C. D. Jones, T. B. Alexander, Acute leukemia classification
using transcriptional profiles from low-cost nanopore mRNA sequencing. JCO Precis. Oncol.
6, e2100326 (2022).

15. B. M. Schmidt, L. M. Brown, G. Ryland, A. Lonsdale, H. J. Kosasih, L. E. A. Ludlow, I. J.
Majewski, P. Blombery, P. G. Ekert, N. Davidson, A. Oshlack, ALLSorts: a RNA-Seq subtype
classifier for B-Cell Acute Lymphoblastic Leukemia. Blood Adv , bloodadvances.2021005894
(2022).

16. Z. Gu, M. L. Churchman, K. G. Roberts, I. Moore, X. Zhou, J. Nakitandwe, K. Hagiwara,
S. Pelletier, S. Gingras, H. Berns, D. Payne-Turner, A. Hill, I. Iacobucci, L. Shi, S. Pounds, C.
Cheng, D. Pei, C. Qu, S. Newman, M. Devidas, Y. Dai, S. C. Reshmi, J. Gastier-Foster, E. A.
Raetz, M. J. Borowitz, B. L. Wood, W. L. Carroll, P. A. Zweidler-McKay, K. R. Rabin, L. A.
Mattano, K. W. Maloney, A. Rambaldi, O. Spinelli, J. P. Radich, M. D. Minden, J. M. Rowe, S.
Luger, M. R. Litzow, M. S. Tallman, J. Racevskis, Y. Zhang, R. Bhatia, J. Kohlschmidt, K.
Mrózek, C. D. Bloomfield, W. Stock, S. Kornblau, H. M. Kantarjian, M. Konopleva, W. E.
Evans, S. Jeha, C.-H. Pui, J. Yang, E. Paietta, J. R. Downing, M. V. Relling, J. Zhang, M. L.
Loh, S. P. Hunger, C. G. Mullighan, PAX5-driven subtypes of B-progenitor acute
lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).

17. N. Jonkhout, J. Tran, M. A. Smith, N. Schonrock, J. S. Mattick, E. M. Novoa, The RNA
modification landscape in human diseaseRNA 23, 1754–1769 (2017).

18. X. Chen, F. Wang, Y. Zhang, X. Ma, P. Cao, L. Yuan, L. Wang, J. Chen, X. Zhou, Q. Wu,
M. Liu, D. Jin, H. Liu, Fusion gene map of acute leukemia revealed by transcriptome
sequencing of a consecutive cohort of 1000 cases in a single center. Blood Cancer J. 11,
112 (2021).

19. Y. Wang, N. Wu, D. Liu, Y. Jin, Recurrent fusion genes in leukemia: An attractive target
for diagnosis and treatment. Curr. Genomics 18, 378–384 (2017).

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

http://paperpile.com/b/RYTR7O/R70J
http://paperpile.com/b/RYTR7O/R70J
http://paperpile.com/b/RYTR7O/R70J
http://paperpile.com/b/RYTR7O/R70J
http://paperpile.com/b/RYTR7O/CMEf
http://paperpile.com/b/RYTR7O/CMEf
http://paperpile.com/b/RYTR7O/CMEf
http://paperpile.com/b/RYTR7O/CMEf
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/4EsZ
http://paperpile.com/b/RYTR7O/kOkF
http://paperpile.com/b/RYTR7O/kOkF
http://paperpile.com/b/RYTR7O/ltm5
http://paperpile.com/b/RYTR7O/ltm5
http://paperpile.com/b/RYTR7O/ltm5
http://paperpile.com/b/RYTR7O/ltm5
http://paperpile.com/b/RYTR7O/c30r
http://paperpile.com/b/RYTR7O/c30r
https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Flongle−cD
N

A
M

inIO
N

−cD
N

A
M

inIO
N

−dR
N

A

2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

Fi
na

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

Fi
na

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

Fi
na

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

Fi
na

l

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00C
la

ss
ifi

ca
tio

n 
pr

ob
ab

ilit
y

ALL subtypes
BCR−ABL1 (or like)

DUX4 rearrangement

ETV6−RUNX1 (or_like)

Hyperdiploidy

Hypodiploidy

iAMP21

IKZF1_N159Y

KMT2A rearrangement

MEF2D rearrangement

NUTM1 rearrangement

Others

PAX5 alteration

PAX5_P80R

T−ALL

TCF3−PBX1

ZNF384 rearrangement

1

100

10000
R

ea
ds

 (x
10

3 )
Flowcell–library

Flongle−cDNA

MinION−cDNA

MinION−dRNA

s0205 s0232 s0236 s0243

Sequencing time (minutes)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


s0243 s0318

s0205 s0215 s0232 s0236

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

Sequencing time (minutes)

Cl
as

sif
ica

tio
n 

pr
ob

ab
ilit

y

ALL subtypes
BCR−ABL1 (or like)
DUX4 rearrangement
ETV6−RUNX1 (or like)
Hyperdiploidy
Hypodiploidy
iAMP21
IKZF1_N159Y
KMT2A rearrangement

MEF2D rearrangement
NUTM1 rearrangement
Others
PAX5 alteration
PAX5_P80R
T−ALL
TCF3−PBX1
ZNF384 rearrangement

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


s0503 s0998

s0244 s0258 s0274 s0340

s0205 s0232 s0236 s0243

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Cl
as

sif
ica

tio
n 

pr
ob

ab
ilit

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

Sequencing time (minutes)

s1018
ALL subtypes

BCR−ABL1 (or like)
DUX4 rearrangement
ETV6−RUNX1 (or like)
Hyperdiploidy
Hypodiploidy
iAMP21
IKZF1_N159Y
KMT2A rearrangement
MEF2D rearrangement
NUTM1 rearrangement
Others
PAX5 alteration
PAX5_P80R
T−ALL
TCF3−PBX1
ZNF384 rearrangement

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/


s0243 s0318 s0503

s0205 s0215 s0232 s0236

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 45 60 75 90 12
0

18
0

24
0

fin
al

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sequencing time (minutes)

Cl
as

sif
ica

tio
n 

pr
ob

ab
ilit

y

ALL subtypes
BCR−ABL1 (or like)
DUX4 rearrangement
ETV6−RUNX1 (or like)
Hyperdiploidy
Hypodiploidy
iAMP21
IKZF1_N159Y
KMT2A rearrangement
MEF2D rearrangement
NUTM1 rearrangement
Others
PAX5 alteration
PAX5_P80R
T−ALL
TCF3−PBX1
ZNF384 rearrangement

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.22.22276550doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.22.22276550
http://creativecommons.org/licenses/by-nc-nd/4.0/

