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Abstract 

Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global 

healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram 

(ERG) has long been perceived as a first-use technique for diagnosing eye diseases, but 

existing methods are insufficient to screen early risk factors of diabetic retinopathy (DR). 

Here, we introduce non-evoked ERG as a simple, fast modality to record spontaneous 

activity, from which we developed a single random forest-based model that predicts disease 

cases in rodent models of obesity and in people with overweight, obesity, and metabolic 

syndrome. Classification performance was validated using a dataset from an independent eye 

center. Our algorithm can be coupled with different ERG sensors, including ones working 

with portative, non-mydriatic devices. Principal component and discriminant analysis 

suggest slow spontaneous ERG frequencies as main discriminators for our predictive model. 

Our study will facilitate the implementation of interventions for the prevention of overweight 

and obesity by providing a robust, quantitative, and non-invasive identification and follow-

up approach, which should ultimately reduce DR incidence. 

 

Key words: ERG, spontaneous activity, basal activity, resting-state activity, intrinsic 

activity, predictive biomarker, subclinical diabetic retinopathy, machine learning, random 

forest model 
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Introduction 

From a public health standpoint, timely detection of diabetic eye disease is one of the most 

cost-effective health procedures available to avoid the burden of vision loss 1. Huge efforts 

are being made to screen for sight-threatening diabetic retinopathy (DR) 1,2, but the best 

intervention remains to prevent the onset of diabetes 1.  

DR affects nearly 100 million people worldwide 3, corresponding to approximately one-third 

of all people with diabetes. Type 2 diabetes accounts for 85 %–95 % of diabetes cases and it 

can be avoided often by healthy life choices 4. Strategies to promote adherence to such 

choices would benefit from reliable, large-scale screening methods that identify and allow 

follow-up of people at risk of type 2 diabetes, i.e., those with overweight, obesity or 

metabolic syndrome, but still without diabetes. Ultimately, predicting risk factors of 

developing type 2 diabetes should mitigate the risk of developing complications like DR. The 

screening method to be developed must overcome the limitations of the current gold standard 

tests, particularly the A1C 5 and the 2-hour post-challenge glucose tests 6 that both require 

fasting, and it should be based on a reliable biomarker of the silent installation of type 2 

diabetes.  

An appealing candidate is spontaneous retinal oscillations. Spontaneous neural oscillations 

have proven being biomarkers for neurodegenerative diseases 7 and diabetes is one of them 

8. Spontaneous brain activity changes with diabetes 9, but also with obesity 10–14. Notably, 

retinal neurons can produce spontaneous activities 15–27 and neurodegenerative retinas 

showed altered patterns of spontaneous activity 28–30, including in diabetes conditions 31.  

Here we propose a diagnostic prediction method for early risk factors of DR based on the 

non-invasive recording of spontaneous retinal oscillations using a simple, yet meaningful 

non-evoked electroretinogram (ERG) protocol. ERG is the only clinical objective test 
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recommended by the International Society for Clinical Electrophysiology of Vision to stage 

early DR32, before vascular changes are apparent, and its clinical application has significantly 

improved with the commercial introduction of non-invasive, portative, and non-mydriatic 

ERG devices 33. Nonetheless, ERG has always been based on the response of retinal cells to 

a flash of light and never under spontaneous conditions. We found that spontaneous ERG 

signals of 1-minute duration are differentially altered in rodent models of obesity and early 

diabetes, allowing their discrimination by a random forest-based prediction model. The 

model also predicts the evolution of the diabetes model and risk factors for DR in humans, 

including overweight, obesity, metabolic syndrome, and diabetes. Our algorithm can be 

coupled with spontaneous ERG signals from different sensors. Principal component and 

discriminant analysis revealed slow ERG frequencies as main discriminators for our 

predictive model. Together, our study shows that spontaneous ERG signals are intimately 

linked to systemic metabolic status and demonstrates their use to screen people for 

preventable stages of DR. 
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Results 

Predictive model for obesity, type 1 diabetes, and type 1 diabetes evolution based on 

spontaneous ERG oscillations in rodents 

Spontaneous ERGs of high-fat diet-fed mice that are obese and insulin-resistant after 12 

weeks (Supplementary Fig. 1A) showed three consistent peaks in the 0.1-10 Hz range (Fig. 

1A) of similar power compared to lean mouse ERGs (Fig. 1B). The mid-low (1-1.8 Hz) peak 

frequency was reduced in obese mice, while the low (0.1-0.8 Hz) and mid (2-4 Hz) peak 

frequencies were not affected (Fig. 1B). Spontaneously obese insulin-resistant 

(Supplementary Fig. 1B) mice and streptozotocin-treated hyperglycemic (Supplementary 

Fig. 1C) rats exhibited low to mid-low frequency oscillatory activities (Fig. 1C, 1E, 

respectively) of similar power compared to their respective controls (Fig. 1D, 1F). The low 

(0.6-1 Hz) peak frequency (Fig. 1D) and the very low (0.2-0.6 Hz) and low-to-mid (0.6-2.5 

Hz) peak frequencies (Fig. 1F) were reduced in ERGs of spontaneously obese mice and 

streptozotocin-treated rat, respectively. In contrast, oscillatory potentials (OPs), considered 

as the most precociously altered ERG parameter in diabetes 34, remain unchanged in high-fat 

diet-fed mice (Supplementary Fig. 1D, 1E). We next tested the potential predictive content 

of these signals measured under the spontaneous modality. A single predictive model based 

on random forest algorithm was developed using the power spectra of spontaneous ERG 

oscillations in the activity range between 0.1-10 Hz (see Methods for more details). The area 

under the receiver operating characteristic (ROC) curve (AUC-ROC) values are 0.804, 0.875, 

and 0.906 for the high-fat diet-induced obesity mouse model (Fig. 1G), the spontaneously 

obese mouse model (Fig. 1H), and streptozotocin-induced type 1 diabetes rat model (Fig. 

1I), respectively. Additional metrics including accuracy and precision indicate that our model 

predicts correctly in 80 to 87.5 % of cases and is sure of its prediction in 80 to 84.6 % of 
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cases (Fig. 1G-1I). The specificity of this model is good (>0.75), meaning that it misses few 

non-diseased cases, and it is extremely sensitive in predicting both obesity and type 1 diabetes 

cases (Fig. 1H, 1J).  

Predicting a disease condition is useful for diagnosis at a given disease stage, but diabetes 

and its complications evolve 31,35. Progressive diabetic retinal neurodegeneration has been 

reported between 2 and 32 weeks of age in rodent models of diabetes 36. We therefore asked 

if our model could discriminate the disease cases from control ones over time by using the 

power spectra of rat ERGs after 4, 6, 8 or 12 weeks of streptozotocin treatment. The 

performance of this multiclass classification is visualized in a confusion matrix (Fig. 1J). 

Our model correctly identified the week classes in 75 % of cases (Fig. 1J). These data show 

that the major earliest risks of DR, i.e., obesity and type 1 diabetes, can be predicted by 

spontaneous ERG oscillations in rodents. 

 

Exceeding expert performance to predict preventable risks of diabetic retinopathy 

To assess the clinical relevance of our approach, we created a human database of spontaneous 

ERGs (Fig. 2A) from 80 metabolically healthy adult subjects (54 eyes), 40 patients with 

overweight (24 eyes), 14 patients with obesity (8 eyes), 66 patients with metabolic syndrome 

but no diabetes (MetS, 56 eyes), and 68 patients with diabetes but no DR (44 eyes) (Table 

1), who were referred to both IMO and INDEREB ophthalmology clinics for general eye 

check-up. Participants with MetS were older than controls (median 60.45 years vs 41.49 

years, p<0.001) and patients with diabetes were older than all other groups (median 65.86 

years vs 46.05 years, p<0.001), and more likely to be women (79.41 % vs 20.58 %, P < 

0.0001) (Table 1). A ground-truth label for the presence of metabolic health, overweight, 

obesity, MetS, diabetes mellitus, and no DR was established by experts using internationally 
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accepted criteria, as referenced in the Methods. Importantly, OP parameters of the 

overweight, obese, and MetS groups remain unchanged compared with the control group and 

overall, they also showed no difference in the diabetes without DR group (Supplementary 

Fig. 2A-C). The DR score 37 is similar between the control, overweight, obese, and MetS 

group, and is reduced patients with diabetes but no DR (Supplementary Fig. 2D). We further 

showed that the spontaneous ERG oscillation component was neither correlated with OP 

parameters (Supplementary Fig. 2E-F) nor DR score (Supplementary Fig. 2G). 

Spontaneous activity is seen between 0.3 and 40 Hz (Fig. 2B), with main peaks in the 0.3-2, 

10-20, and 20-40 Hz bands (Fig. 2B, insets). The large variation in our dataset that we 

assumed was confirmed by the absence of statistical differences in AUC and peak frequency 

between all groups in the previously mentioned bands (Fig. 2B). We therefore pooled 

spontaneous ERG-power spectra from non-healthy participants as one disease group (Fig. 

2C) and found an increased peak frequency in the 20-40 Hz band in the disease group (Fig. 

2D). No significant difference was observed in the AUC or peak frequency in the 0.3-2 and 

10-20 Hz bands (Fig. 2D). Next, the power spectra from 986 aleatory fragments of one-

minute duration extracted from the 186 ERGs registered from a total of 268 patients (186 

eyes), were randomized across training (80 %) and test (20 %) sets; diseases cases were 

defined as all cases except metabolically healthy and no DR, and the same random forest-

based model used in animal models was applied in our database of human ERG power 

spectra.  

The predictive model performed good (AUC-ROC = 0.761, Fig. 2E) and is accurate in 67.3 

% of the cases (Fig. 2F). The prediction precision is poor and the model shows 85.4 % 

sensitivity and a specificity of 61.5 % (Fig. 2F). We then aimed to assess the accuracy of our 

model using an external cohort. To this end, we created a validation database based on data 
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from patients enrolled in an important eye care setting in Mexico City (Table 2). Using this 

validation dataset of 0.3-40 Hz power spectra (126 aleatory fragments of one-minute duration 

extracted from the 38 ERGs registered from a total of 39 patients (11 eyes from controls, 5 

eyes from overweight, 3 eyes from obese, 3 eyes from MetS, and 3 eyes from diabetes but 

no DR), the predictive model performance was similar to the one of the original model (Fig. 

2G, H). These data provide an external validation of our predictive model for early DR risks. 

Interestingly, when we fed our model with the power spectra from ERGs registered with one 

and same device (762 aleatory fragments of one-minute duration extracted from 173 ERGs 

registered from a total of 237 patients (Table 3, 173 eyes)), the predictive model performed 

greatly (AUC-ROC = 0.926, Fig. 2J) and is accurate in 86.6 % of the cases (Fig. 2K). The 

prediction precision is 89.8 %; the model shows 82.8 % sensitivity and a specificity of 90.4 

% (Fig. 2K). 

During the model implementation, we found that the random forest-based model 

outperformed other models based on other algorithms, including linear and radial support 

vector machines (Supplementary Fig. 3A, B) and deep learning (not shown). We also 

sought the best performance for the shortest ERG window to shorten test duration. The 

greatest prediction performance was established for spontaneous photopic ERGs of 60 s 

(Supplementary Fig. 3C-E).  

Case labeling relies on expert’s knowledge. When we compared our model predictions with 

the predictions made by medical experts, our model underperformed in terms of precision 

(0.361) but was consistent in recall (0.867) (Fig. 2I). This, when experts only access full eye 

examinations (Fig. 2I). Our model performance slightly improved (precision 0.444) in case 

experts had access to reference tests to diagnose potential diabetes (Fig. 2I). Our model was 

close to the judgements of experts in ophthalmology if, in addition to eye examination, they 
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had access to laboratory (glycemia, HbA1c levels, HOMA-I, and lipid profile) and non-

laboratory (blood pressure, weight and waist circumference, and body mass index (BMI)) 

tests (Fig. 2I). In the three contexts, our model showed a good recall, referring to few false 

negatives −cases our model would classify as healthy that are not− (Fig. 2I). The fact that 

our model recognized disease cases with less information than experts prompted us to look 

closely at cases of errors in our model in all three contexts (only complete eye exam, the 

latter plus reference blood test; the latter two plus specific tests for metabolic profile). It 

appeared that error cases are false positives (low precision), indicating that our model 

“incorrectly” labeled cases as positive (or diseased) that were labeled as negative by experts. 

But are these negative labels from experts truly negative? Experts classified them as “with 

no retinopathy” based on eye examination, while deeper blood tests revealed that these 

“negative cases” present risk factors for DR. These data demonstrate that our model can 

predict early risk factors for DR with less information than experts, outperforming them. 

 

Statistical explanation for the spontaneous ERG-based model of prediction for 

preventable risks of DR 

When we implemented a multiclass model encompassing all risk stages for diabetes and DR, 

classification performance reached 66 % (Fig. 3A). The largest errors of our model consisted 

in classifying obesity into more advanced states and some overweight cases into controls 

(Fig. 3A).  

To gain insights into the discrimination between groups, we performed explanatory statistical 

analyses. We considered the variables with higher variability (detailed in Methods), 

including the normalized power of the slowest oscillations (0.3-0.8 Hz), the AUC of the 0.3-

40 Hz band, and the peak frequency of the 20-40 Hz band. Measurements of the considered 
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plasma and body variables significantly differed between control and disease groups (Table 

1 and 2), no significant change in the power of slow frequency spontaneous oscillations of 

the ERG was detected, the peak frequency in the 20-40 Hz band increased in the disease 

group (Fig. 2B, D). The initial evaluation of the utility of these variables in separating control 

and disease groups was accomplished by examining their natural partitioning using Principal 

Component Analysis (PCA). When only using variables related to spontaneous ERG 

oscillations, no separation of all groups was observed, but control cases tend to cluster (Fig. 

3B). PC1 and PC2 explained 69 % of the data set variance, powers of 0.6-0.7 Hz correlate 

with the AUC of the 0.3-2 and 0.3-40 Hz bands and had the largest contributions to PC1 (Fig. 

3C). The separation of the control group could be better appreciated when spontaneous ERG 

oscillation-related variables were combined with body variables like triglyceridemia, total 

cholesterol levels, fasting blood glucose, very low-, low-, and high-density lipoprotein 

cholesterol, systolic and diastolic blood pressure, age, body weight, hip and waist 

circumferences, and insulinemia. PC1 and PC2 explained 47 % of the data set variance (Fig. 

3D). According to our PCA results, the normalized power of the slowest oscillations (from 

0.4 to 0.7 Hz) was the most important in separating disease cases from controls as they had 

the largest contributions to PC1 (Fig. 3D). Plasma triglycerides, total cholesterol, low- and 

high-density lipoprotein cholesterol, fasting blood glucose, insulin, systolic blood pressure, 

age, and hip circumference, were the least important in this regard (Fig. 3D). Based on visual 

inspection of the PC1/PC2 biplot (Fig. 3E), we refined our PCA analysis to variables related 

to spontaneous ERG oscillations (from 0.7 to 0.8 Hz, the peak frequency in the 20-40 Hz 

band, and the AUC of the 0.3-40 Hz band) that were non-orthogonal with body-related 

variables (Age, fasting blood glucose levels, and total cholesterol), but PCA did not show a 

better separation of disease and control cases (Fig. 3F). We finally used linear discriminant 
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analysis since it is geared towards the discrimination between user-defined groups 40. As 

shown in the confusion matrix of the best performances we found for discriminating control 

(76 %), risk factors for diabetes (78 %), and diabetes (60 %) cases (Fig. 3G), this relative 

success required the combination of body metrics in addition to spontaneous ERG 

oscillation-related variables.  
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Discussion  

The clinical community is experiencing an explosion of machine learning-guided 

(tele)diagnostics, particularly in the context of detecting treatment-requiring DR, and the 

positive impact on care delivery is becoming evident 41,42. Risk-scoring algorithms for 

undiagnosed diabetes are also available 43, but there is no such approach for the main risk 

factors of type 2 diabetes, i.e., overweight, obesity, and MetS. The purpose of screening such 

conditions resides in well-established data about their preventability with adopting healthy 

lifestyle behaviours 44 and because people of normal weight are not always metabolically 

healthy 45 and at the opposite, the obesity phenotype can associate with no or little evidence 

of metabolic dysfunction 46. We have exploited the potential of non-invasive, quantitative, 

and objective ERG by introducing a new and simple modality to record spontaneous activity 

of the retina and combined it with a supervised machine learning-based model to predict early 

risk factors of DR. Our data support the robustness of the random forest system in the 

screening of early risk factors for DR and imply its translation into clinical use thanks to 

automated platforms like the one we created (http://deepretinopathydx.inb.unam.mx/). Our 

findings also highlight a very early impact of systemic metabolic changes in spontaneous 

signals from the central nervous system and add to the growing list of evidence that show 

retinal neurodegeneration as an early event in DR pathogenesis 47.  

 

Strengths and interpretation of spontaneous ERG signals’ predictive content 

We found that the spontaneous oscillations detected by non-evoked ERG are a quantifiable 

biological parameter that is modified under conditions related to an excess of body weight. 

These alterations were not accompanied by changes in OPs in high-fat diet-fed mice and in 

people with overweight, obesity, and MetS. These observations are consistent with previous 
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studies in animal models 48,49, but contrast with data showing reduced OP amplitude in high-

fat diet-fed mice 50 or in ob/ob mice 51. These discrepancies may be attributed to the different 

induction mechanisms of obesity, known to result in models with their own characteristics 

52,53. Particularly, our high-fat diet is more enriched in lipids than carbohydrates 50. While the 

ERG B-wave is affected in patients with obesity 54,55, there is no previous report of the effect 

of obesity on OPs in humans. In our group of patients with diabetes but no DR, the amplitude 

and implicit time of the OPs tend to decrease and increase, respectively, as previously 

reported 56. In general, these data agree with a view that the spontaneous activity of the retina 

may replace OPs by becoming 34, the most precociously altered functional parameter in 

prediabetic stages. In further agreement with this is our finding that the spontaneous ERG 

oscillation-related component score does not correlate with either OP parameters nor DR 

score that reflects the risk of requiring intervention within 3 years 37.  

The OPs are thought to reflect the function of the inner retina and are sensitive to changes in 

retinal circulation 56. In this sense, one may wonder about the nature of spontaneous 

oscillations measured by non-evoked ERG. If ERG is classically conceived as the summation 

of local synaptic and intrinsic activities of retinal cells, the low amplitude and slow frequency 

oscillations recorded in the non-evoked mode may be contaminated by sources other than the 

retina, e.g., cardiorespiratory system and brain. In humans, with our setup setting, breathing 

is too slow (~0.2-0.3 Hz) 57 to be detected by ERG, as is eye movement (0.26 Hz) 58, but 

cardiac (0.9-1.4 Hz) 59 and brain activities may be. Also, in stably anesthetized mice, 

respiration is in the 0.9-1.08 Hz range, while cardiac rhythm lies between 5 and 7.5 Hz. In 

ketamine-xylasine-anesthetized rats, eye movement shows two frequency components, 1 and 

12.2 Hz, the former correlating with respiration frequency 60. We cannot ascertain that the 

full range of spontaneous oscillations measured by non-evoked ERG originates in the retina, 
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but it is plausible that at least part of these signals come from the retina because in healthy 

adult retinas, several types of neurons have been reported to spontaneously oscillate, and this, 

within a range of frequencies from 0.7 to >10 Hz. In particular, spontaneous Ca2+-dependent 

membrane oscillations have been recorded in bipolar cell axon terminals 22,23,61 and if the 

consequent pulsatile release of neurotransmitter drives rhythmic activity in post-synaptic 

neurons, including amacrine and ganglion cells 21,62, different types of amacrine cells are also 

able to produce intrinsic oscillatory activity 24,25. Low-amplitude oscillations have even been 

recorded in starbust amacrine cells 21. The presence of these intrinsic oscillators in the inner 

retina 21–25,61,62, the fact that retinal neurons can be electrically coupled 63, and the large-scale 

network interactions happening in the retina 20 are likely to result in spontaneous fluctuations 

of the field potential 64 in this tissue. Consistent with the existence of bipolar/amacrine cell 

oscillators and our findings showing that spontaneous activity is altered in the high-fat diet-

induced obesity, spontaneous obesity, and streptozotocin-induced type 1 diabetes models, 

inner retinal deficits have been detected at the onset of diabetes 31,65,66. Overall, we found 

reduced peak frequencies of the low range activities (0.2-2.5 Hz), which is agreement with 

decreased inhibition in the early diabetic retina 31,67–71. Also in favor of part of the 

spontaneous oscillations detected by the non-evoked ERG being produced in the retina is the 

recent finding that DR can be detected by machine learning processing of electrooculogram 

(EOG) signal —corresponding to the potential difference between cornea and retina— 72.  

Though studies of spontaneous retinal activity are sparse in the adult and its functional role 

is yet to be fully understood 73, our results support that the 0.3-40 Hz activity is relevant for 

the disease process. Our data show that a single model is able to distinguish disease cases 

from control cases under disease-relevant conditions that range from rodent models to 

patients. This suggests that the predictive content of spontaneous ERG signals is conserved 
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in mammals and robust. Our PCA analysis adds to this view, because it showed that the 

normalized powers of the slowest oscillations (0.4-0.7 Hz) were the most important variables 

in separating disease cases from controls. Nevertheless, changes in spontaneous ERG 

oscillations of higher variability were insufficient to separate the groups of interest using 

PCA. Compared to the PCA that does the separation in a single step, the Random Forest 

model does it in several stages, that is, it first classifies the disease and control cases and 

then, in the disease category, classifies the four groups of interest, which surely contributes 

to its performance compared to that of PCA. There is also the algebraic limitation of PCA 

which cannot process more variables (823 in total) than the number of individuals (375, 

Table 1 and Table 2). We do not exclude the possibility that the frequency variables analyzed 

by PCA may explain the multigroup separation once the number of participants exceeds the 

number of variables. The statistical analyses we undertook for an explanation gave us some 

hints: the normalized power of the slowest oscillations (from 0.3 to 0.5 Hz) and the peak 

frequency of the 20-40 Hz band did not correlate with the power of the 0.6-0.8 Hz 

components or with the AUC of the 0.3-2 and 0.3-40 Hz bands. However, we do not have 

yet enough data to understand in details how our predictive model uses spontaneous ERG 

data and the fact that it surpassed so-called "black box" algorithms such as deep learning, 

does not yet represent an advantage in terms of intelligibility of our model 74. If we cannot 

explain the specific loadings of each variable and we do not exclude the contribution of other 

variables, our findings support a very tight relationship between systemic metabolic changes 

and retinal function 75. 

Our predictive diagnostic system meets the Food and Drug Administration criteria in terms 

of precision (≥ 85 %), sensitivity (≥ 85 %), and specificity (≥ 82.5 %) for clinical validation 

of diagnostic tools in retina 76,77 and the validated ROC of 0.719 alsmot indicates excellent 
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clinical accuracy 78. It performed as good as experts in identifying disease cases, but without 

the need for invasive study data. Our PCA data abound in this direction since additional 

variables to the spontaneous oscillations of the ERG such as VLDL, body weight, diastolic 

blood pressure and waist circumference, are necessary to better separate the control from 

disease groups. Importantly, accuracy is maintained when using signals from different 

sensors, which also accounts for the robustness of our system. It is well known that data from 

different sources penalize the performance of prediction models 79. Moreover, the fact that 

spontaneous ERG protocols could be developed on three commercial sensors and that the 

predictive potential of these signals is shown here illustrates that our system is flexible and 

can be adapted to any ERG apparatus. Also, we found that predictions are better with 

photopic recordings, which is advantageous in clinical practice because they take less time 

than the dark-adapted ones. Based on our practical experience, we specify that 2 to 5 minutes 

of high signal/noise ratio recordings are enough to obtain the spontaneous 1-minute ERG 

sequences that, according to our data, are informative. Furthermore, the notion that the 

spontaneous oscillations detected by non-evoked ERG are the most precociously altered 

functional parameter in prediabetic stages is highly relevant in clinical practice because OPs 

can only be extracted from scotopic ERG 80. Therefore, having access to such a parameter 

without the need for adaptation to darkness and light flash represents a definite advantage for 

the patient (no pupillary dilalation, faster examination 80). For the above and because it 

considers existing resources in terms of ERG device, works with completely non-invasive, 

portatile and cost-effective ERG devices, and does not require ophthalmological experts, our 

system has easy applicability in clinical settings.  

The clinically relevant information our system contributes to is to detect people with high 

likelihood of preventable risk factors for DR. Even though the Diabetes Prevention Program 
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recently reported that interventions that delay the development of type 2 diabetes in those at 

risk (overweight/obese with dysglycemia) do not reduce the subsequent prevalence of DR 81, 

this concerns people who have progressed to diabetes. In cases where intensive lifestyle 

intervention and metformin managed to prevent progression to type 2 diabetes, DR does not 

happen 81. In this regard, it is important to recognize that lifestyle interventions must be 

carried out with considerable involvement of clinicians and that acheiving awareness among 

patients and family relatives is challenging.  

 
 
Limitations and future work 

The advantages of our predictive diagnostic system —such as increased objectivity and 

efficiency in determining early risk factors for DR by the Random Forest system compared 

with health-care professionals, higher referral adherence from real-time point-of-care   

screening recommendations 42, more efficient resource allocation towards prevention and 

treatments due to the Random Forest system offloading tasks from human  graders, and 

reduction in the prevalence of RD in the mid to long term— are implied but unproven. Also, 

although translation of our system into clinics seems feasible, real-world testing and 

acceptation is in its infancy. We have provided external validation of our system, but future 

data from multiethnic populations should consolidate the validation of our model. In the same 

line, machine learning models have the disadvantage of dealing with the problem on which 

they were trained. If our findings in the streptozotocin-induced diabetes model suggest that 

our predictive model may be useful for disease follow-up, we plan to train our model with 

more severe grades of DR and other retinal disorders, step by step, possibly finishing with a 

multiclass prediction with acceptable performance in an unselected population. This will also 
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help clarify if altered spontaneous ERG oscillations represent neural signatures specific for 

each neurodegenerative retinal disease. 

An additional crucial step is to compare our system with more gold standards of early DR, 

like the multifocal ERG implicit time 82, and to determine whether the spontaneous 0.1-10 

Hz oscillations in rodents and between 0.3-40 Hz in humans respond to a therapeutic 

intervention 83. Showing altered peak frequencies and high degrees of prediction of these 

features only suggests that they are necessary for the early process of the diabetic eye desease 

84,85. Deciphering pathological mechanisms responsible for these alterations will be highly 

informative about DR etiology and may benefit the development of therapeutic options. 

Additional work is also needed to address the mechanisms that govern the slow spontaneous 

ERG signal. 

 

Concluding remarks 

Our ultimate goal is to provide a large-scale, easy, and affordable screening method that 

identifies asymptomatic patients in avoidable stages to enable personalized preventive action 

against the main early causes of DR. The state-of-the-art performance of our unique approach 

will likely contribute to improving the reputation of ERG 86, putting it at the right place in 

the clinical scene, as a quick, easy to administer and interpret, and relevant tool for screening 

early DR risk factors.  
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Methods 

Ethics statement 

All animal experiments were approved by the Bioethics Committee of the Institute of 

Neurobiology (protocol #74) at UNAM (clave NOM-062-ZOO-1999) in accordance with the 

rules and regulations of the Society for Neuroscience: Policies on the Use of Animals and 

Humans in Neuroscience Research. Approval was obtained from the IMO and INDEREB 

Human Participants Ethics committee (reference: CEI/029-1/2015), the National Ethics 

Committee (reference: CONBIOÉTICA-09-CEI-006-20170306), the Research Committee at 

APEC (17 CI 09 003 142), and the Research Ethics Committee at ENES León (reference: 

CEI_22_06_S21). Written informed consent was provided by all subjects. All procedures 

were conducted in accordance with the tenets of the Declaration of Helsinki.  

 

Animals and models 

C57BL/6 mice (male:female ratio = 1) between 6 and 8 weeks of age were obtained from the 

Institute of Neurobiology’s animal house. Male Wistar (n = 20-22) adult (250-300 g) rats (n 

= 6-8) were used, as well as lean (n = 15) and spontaneous obese (n = 12) Neotomodon alstoni 

mice 88. Animals were fed ad libitum and reared in normal cyclic light conditions (12 h 

light/dark cycle) with an ambient light level of ∼400 lux. Plasma glucose concentrations were 

measured from a tail blood sample using a blood glucose analyzer (Accu-check active, GC 

model). 

Six- to eight-week-old C57BL/6 mice were divided into two groups of 16 and fed a chow 

diet (5020, Lab Diets) containing 21 % of calories from fat or a high-fat diet containing 60 

% calories from fat (D12492 Research Diets).  
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Diabetes was induced in Wistar rats by i.p. injection of streptozotocin (55 mg per kg body 

weight) in citrate buffer 89. Control rat group received only citrate buffer injections. We 

confirmed diabetes by measuring blood glucose (>250 mg/dl in animals 90) 24 h after 

streptozotocin injection. Bodyweight was measured as indicated and glycemic controls were 

always performed after a 6 h fasting 91.  

For in vivo ERG, animals were evaluated after a 12-h dark adaptation period. 

 

Insulin and glucose tolerance tests 

Glucose tolerance tests and insulin tolerance tests were performed on C57BL/6J after 12 

weeks of control or high-fat diet and in 1-year-old lean and spontaneously obese Neotomodon 

alstoni mice, after 6-h fasting 91. 

The insulin tolerance test consisted in measuring glucose levels with a glucometer in tail vein 

blood samples obtained with a lancet needle before or 15, 30, 45, 60, and 90 minutes after an 

ip injection of 1 U/kg insulin (Humulin R; Eli Lilly). For the glucose tolerance test, mice 

were given glucose at a dose of 2 g/kg through a jugular vein catheter. Blood samples were 

then collected at 0, 15, 30, 45, 60, and 90 min after glucose administration to measure 

glycemia. Glucose profiles normalized to the initial glucose reading of each mouse were 

plotted for each group versus time of subsequent glucose determinations. 

 

Electroretinograms in animals 

Animals were anesthetized with 70 % ketamine and 30 % xylazine (1 μl/g body weight, ip). 

Corneas were hydrated with hypromellose (5 mg/mL), and pupils were dilated with 

tropicamide-phenylephrine (50 mg/8 mg/mL). ERG responses were recorded with contact 
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lens silver electrodes 92 (3.0 mm diameter, Ocuscience) placed on each cornea. Reference 

electrodes were positioned subcutaneously exactly between the eyes. 

The signal was amplified x100; the bandpass was set at 0.1 Hz to 1 kHz (AC-DC Differential 

Amplifier, Model 3000, A-M Systems) and acquisition frequency to 1 kHz (USB-6009, 

National Instruments). Spontaneous mesopic activity was measured for 10 minutes after a 

20-minute dark adaptation period (0.1 lux) and then spontaneous photopic activity for 10 

minutes after adaption to normal light (400 lux) for 10 min. At the end, light stimulation (0.7 

ms flashes of 0.38 log cd.s/m2; MGS-2 white Mini-Ganzfeld Stimulator, LKC Technologies) 

was given to confirm retina function. If no classical evoked response was seen 93, data were 

discarded. 

 

Human data description 

A total of 520 adult subjects aged between 30 and 80 years (mean: 45.27 ± 0.82 years, 265 

females), metabolically healthy or with overweight, obesity, MetS, or diabetes but no DR, 

were enrolled between February 26, 2015 and December 2019 and from September 2021 and 

June 17, 2022, in the Mexican Institute of Ophthalmology (IMO) of Querétaro (mean age: 

51.39 ± 1.49 years, 27 females), between November 11 and December 20, 2019 and from 

January 6 and May 26, 2022, in the Instituto de la Retina del Bajío (INDEREB) in Querétaro 

(mean age: 32.98 ± 2.07 years, 24 females), between August 10, 2021 and March 20, 2022 

in the Asociación Para Evitar la Ceguera (APEC) in Mexico city  (mean age: 45.77 ± 1.20 

years, 119 females), and between August 10, 2021 and May 31, 2022 in the Clínica de Salud 

Visual (CSV) at ENES León UNAM in León (mean age: 44.96 ± 0.84 years, 96 females). 

375 (age mean: 46.01 ± 0.98 years, 180 females) completed all tests required for the current 

study.  
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Subjects underwent an anamnesis and an initial optometric examination to ensure that they 

were eligible to participate. The exclusion criteria were ages outside 30 to 80 range, lens 

opacity, myopia greater than 6 diopters, glaucoma or other concomitant ophthalmologic 

disorders, ocular anomalies (e.g., surgery, trauma), recent use of laser or anti-angiogenic 

intravitreal administration, and cornea problems that disable ERG recordings.  

Qualified medical personnel collected the anthropometric data in the morning (8 am to 9 am) 

after an overnight fast. Height was measured to the nearest 0.5 cm with a stadiometer (Seca 

213; Seca). Bodyweight was measured with subjects wearing light clothing and without 

shoes to the nearest 0.1 kg on a mechanical column scale (Seca 700; Seca). Waist 

circumference was measured on undressed subjects at the midpoint between the lower margin 

of the last palpable rib and the top of the iliac crest while the subject was standing, after a 

moderate expiration, with a non-stretchable tape. Blood pressure was measured by using a 

mercury cuff sphygmomanometer after the study participant had been quietly seated for ≥10 

min. Blood samples were taken from an intravenous catheter without stasis after an overnight 

fast of at least 8 h. Laboratory measurements that include fasting blood glucose, glycated 

hemoglobin (HbA1c), insulin, triglycerides (TG), low-density lipoprotein (LDL) cholesterol, 

very low-density lipoprotein (VLDL) cholesterol, high-density lipoprotein (HDL) 

cholesterol, total cholesterol (CT), and creatinine were performed at INTERMEDIC 

(Querétaro, Mexico) for IMO data, iml Laboratorio Médico (Querétaro, Mexico) for 

INDEREB data, Laboratorio clínico Jenner (Mexico City, Mexico) for APEC data, and 

Laboratorios Salud Digna (León, Mexico) for CSV data. The homeostasis model of 

assessment index (HOMA-I) was calculated using fasting insulin and glucose values 94. 

All patients were classified according to the following criteria: normoglycemia (fasting 

glucose < 6.1 mmol/l) and diabetes (fasting glucose ≥ 7.0 mmol/l), according to the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.26.22276881doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.26.22276881


23 
 

1999/2006 WHO criteria 95,96. Normal weight was defined body mass index (BMI) between 

18.5 and 24.99 kg/m2, overweight with a BMI between 25 and 29.99 kg/m2, and obesity with 

a BMI over 30 kg/m2. MetS was defined according to the International Diabetes Foundation 

criteria for MetS 97, i.e. central obesity —BMI>30 kg/m2 or waist circumference >= 94 cm 

in male and >= 80 cm in female— plus any two of the following four factors: raised TG, 

reduced HDL, raised blood pressure, raised fasting plasma glucose, raised HbA1c, raised 

plasma insulin, TG, LDL, VLDL, total cholesterol, creatinine, HOMA-I, or atherogenic 

index (calculated as log10 (TG/HDL) 98). Data from IMO, INDEREB, and APEC (n = 307) 

were used for model training and test, and data from CSV (n = 39) were used for external 

validation of the predictive diagnosis model. Table 1 and Table 2 contain an overview of 

patient demographics and biometrics for training/test and external validation of the predictive 

diagnosis model, respectively.  

All subjects underwent a complete ophthalmologic examination including visual acuity 

testing using Snellen primer; anterior segment and crystalline status under microscopy and 

indirect ophthalmoscopy with a magnifying glass of 20 diopters; intraocular pressure by 

flattening tonometry (iCare TA01i); photographic study (7-field color photographs under 

pupil dilation, ZEISS camera, FM/NA, 60-degree images at IMO; ZEISS clarus® 500 

Fundus Camera at INDEREB and CSV; and Visucam® 500 at APEC; and macular patterns, 

raster and macular thickness map by optical coherence tomography (OPTOVUE RTV-1000 

equipment at IMO; Spectralis® Heidelberg Engineering at INDEREB and APEC; and 

CIRRUS HD-OCT 5000, Zeiss at CSV). Ophthalmic ERG tests were also performed, 

following ISCEV guidelines 80. At IMO, the dark-adapted 0.01, 3.0, and 10, dark-adapted 

3.0 oscillatory potentials, light-adapted 3.0, light-adapted 3.0 flicker, and multifocal ERG 

responses were measured in the order indicated using the MonElec2 (Metrovision, France; 
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from February 26, 2015 to December 20, 2017) or Retimax Advanced (CSO, Italy; from 

January 10, 2018 to June 17, 2022). At INDEREB, APEC, and CSV, the dark-adapted 0.01, 

3.0, and 10, light-adapted 3.0, light-adapted 3.0 flicker ERG responses and the DR score 37 

were recorded using a mydriasis-free ERG device (RETeval complete, LKC Technologies, 

USA). OP features (N1, P1, and N2 amplitudes and peak times, N1-P1 and P1-N2 ratios) 

were extracted from ISCEV dark-adapted 3.0 ERG protocol 80. The DR score derived from 

flicker ERG and pupillography data correlate with ocular intervention for DR 37. In addition, 

spontaneous ERG responses were measured in all patients using a custom protocol developed 

specifically for each ERG device (no flashlight, 0.3-1000 Hz band-pass filter with a 50 Hz 

notch, 1 kHz acquisition, and ×100,000 gain). At IMO, 30 min prior to ERG recording, one 

drop of tropicamide 1 % was instilled into each eye as a cycloplegic and contact lens 

electrodes were used posterior to corneal anesthesia with proparacaine hydrochloride eye 

drops. At INDEREB, APEC and CSV, skin electrodes on the lower eyelid were used 99. All 

patients were adapted to mesopic conditions for 20 minutes prior dark-adapted ERG 

assessment and before ERG assessment under photopic conditions, patients were adapted to 

normal light (400 lux) for 10 min. The acquisition sequence was as follows: spontaneous 

dark-adapted ERG, evoked dark-adapted ERGs, spontaneous light-adapted ERG, and evoked 

light-adapted ERGs. Electrode impedance was monitored throughout the test and maintained 

below 10 KOhm by repositioning the electrodes as required. Using an inbuilt artefact 

rejection algorithm, the electrophysiology software automatically detected artefacts (e.g., 

from blinking), removed the corresponding responses and retested the sequence. Imaging, 

ERG, and optometric measurements were performed by certified technicians or 

ophthalmologists. 

Patient diagnosis for DR or other eye issues was established once by experts at IMO 
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(M.G.R.), INDEREB (R.G.F.), APEC (H.Q.), and CSV (L.F.H.Z.) and after the finalization 

of our predictive diagnosis model, a second diagnosis (E.L.S. and V.C.S. from IMO) was 

established to compare our model performance with that of experts. The second diagnosis by 

experts was made under three conditions, the first with access to full eye examinations, the 

second with access to full eye tests and reference blood tests for diabetes, and the last with 

access to full eye tests, full blood tests, and anamnesis.  

To test if ERG data from one sensor could improve of our model performance, a group of 

patients tested with the mydriasis-free RETeval ERG device was enrolled at APEC, 

INDEREB, and CSV from January to June 2022. Table 3 contains an overview of these 

patient demographics and biometrics.  

 

ERG data processing 

For spectral analysis of both human and animal ERGs, signals were initially low-pass filtered 

at 1 kHz and high-pass filtered at 0.1 and 0.3 Hz for animals and humans, respectively. 

Recordings with large artifacts (which exceeded ± 100 μV) were removed. Recordings from 

the two eyes were independently analyzed. Raw ERG signals were normalized between -1 

and +1.  

ERGs show discontinuous activity, reason for which the wavelet (Morlet) transform was used 

to analyze them. Analysis was carried out with the MATLAB‐based fieldtrip toolbox 

implementing the wavelet method 100. The data were analyzed using custom-made MATLAB 

scripts (MATLAB R2018; MathWorks). Spontaneous human ERG signals were transformed 

within consecutive epochs of 10, 30, and 60 s. The corresponding number of windows was 

30, 10, and 5, respectively. Time and spectral resolutions were 0.01 s and 0.05 Hz, 

respectively. The wavelet transform data were represented as scalograms or normalized 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.26.22276881doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.26.22276881


26 
 

power spectra obtained by averaging the wavelet transform throughout the recording. The 

latter were subsequently grand averaged across all samples, animals, and patients for each 

condition. The standard error of the mean of the power spectra was calculated across 

animals/subjects.  

In exploratory analysis, frequency points were initially considered between 0.1 or 0.3 Hz and 

1 kHz (not shown) in animals and humans, respectively, and then refined in ranges where 

activity was detected (0.1-10 Hz and 0.3-40 Hz for animals and humans, respectively). 

Oscillatory potentials (OPs) were digitally isolated fromthe scotopic B-wave using a 100–

500 Hz digital filter. 

 

Modeling structure and development 

Four common classification algorithms with built-in feature selection (Random Forest, deep 

learning and linear and radial support vector machines) were applied on human datasets using 

the open-source R package caret (version 6.0–73) for support vector machines and the H2O 

package for Random Forest and deep learning. Random Forest was applied on animal 

datasets using the H2O package. In all cases, the final datasets were randomly divided into 

training (80 % of observations) and testing (20 %) sets. Only validation dataset results were 

reported. Random Forest parameters were tuned as follows: ntrees = c(50, 70, 90, 100, 150, 

200, 250, 300, 350, 400, 450, 500), max_depth = c(9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20), 

min_rows = c(1,2,3,4). We used the option in caret (precision, accuracy, sensitivity, and 

specificity) and H2O (ROC, ROC AUC, and confusion matrix) to return class probabilities 

for all classifiers.  

 

Model performance analysis 
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Classes were balanced for all predictions. We therefore computed test performance metrics, 

including ROC curves 101,102, AUC-ROC, accuracy, sensitivity, specificity, precision, 

negative predictive value (NPV) 103, and confusion matrix 104. The performance of our model 

was contrasted to the second patient diagnosis by experts using precision, recall, and F1-

score. 

 

Statistical analysis 

Statistical analyses were performed using Matlab (Statistics and Machine Learning Toolbox). 

Data are reported as mean ± s.e.m. or ± 95 % confidence interval. All data showed normal 

distribution and equal variance according to the D’Agostino–Pearson omnibus and Levene 

tests, respectively. Statistical significance was therefore determined either using unpaired t-

test or, for multiple comparisons, using a mixed ANOVA and Bonferroni post-hoc. Human 

metrics were analyzed using the Welch ANOVA that accounts for variance heterogeneity.  

For explanatory statistical analyses, the following variables were considered: BMI, hip and 

waist circumferences, TG, HDL, blood pressure, fasting plasma glycemia, HbA1c, plasma 

insulin, LDL, VLDL, CT, creatinine, HOMA-I, atherogenic index, normalized power of 0.3 

to 40 Hz oscillations with a frequency resolution of 0.05 Hz, and peak frequencies in the 0.3-

2, 10-20, and 20-40 Hz bands. The variables with higher variance (CoV function in R) were 

selected, i.e., TG, CT, fasting glycemia, LDL, systolic blood pressure, age, body weight, hip 

circumference, HDL, VLDL, normalized power of 0.45, 0.4, 0.5, 0.55, 0.6 Hz activity, AUC 

of the 0.3-40 Hz band, normalized power of 0.65, 0.35, 0.7, 0.3, 0.75, 0.8 Hz activity, and 

AUC of the 20-40 Hz band, (ordered in descending order of variance) to perform PCA 

analysis. PCA panel and biplots of PC1, PC2, and PC3 were generated in R (princomp, 

biplot). Linear discriminant analyses were performed in R (library mass; code available in 
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the provided Github access). Cases with missing values were omitted. 

To calculate the correlation between the spontaneous oscillation (SO) frequency components 

of major variance (detailed above), we computed a PCA score for each patient by combining 

linearly each variable coefficient (PC1) multiplied by its real value. Correlation analysis was 

done by calculating the Pearson’s R coefficient (cor function in R). 

The F1 score was calculated to rank our models for the shortest ERG window. 

 

Code availability 

We made use of several open-source libraries to conduct our experiments: caret 

(https://topepo.github.io/caret/) and H2O (http://docs.h2o.ai/), which provide 

implementations of individual model components. To facilitate improved reproducibility of 

our data analyses, the R code and documentation for the analysis are available online 

(https://github.com/airetinopathydx/AIRetinopathyDx_). 
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Figure legends 

Figure 1: Spontaneous ERG-based random forest model discriminates control and 

disease cases in rodent models of obesity and type 1 diabetes and predicts disease 

evolution in the type 1 diabetes model. Illustrative spontaneous ERGs and wavelet analysis 

in A, control versus high-fat diet-fed mice (n = 75 and n = 75, respectively), C, lean versus 

spontaneously obese Neotomodon alstoni mice (n = 20 and n = 20, respectively), and E, 

control and streptozotocin-treated rats (n = 40 and n = 40, respectively) in the 0.1-10 Hz 

range, under photopic conditions. ERG signals were normalized. Graphs show the average 

scalogram power ± s.e.m. throughout 1-minute recordings. The square brackets with the 

Roman numerals indicate the consistent peaks observed in each control condition. In the 

high-fat diet-induced obesity model, 0.1-0.8 (Low, L), 1-1.8 (M1, mid-low), and 2-4 Hz (M2, 

mid) bands were considered; 0.1-0.6 (I), 0.6-1 (II), and 1-1.7 (III) Hz bands in the 

spontaneous model of obesity, and 0.2-0.6 (I) and 0.6-2.5 (II) Hz bands in the type 1 diabetes 

model. AUC (0.1-10 Hz) and peak frequency analysis (P values were determined by unpaired 

Student’s t-test) of wavelet graphs in B, the high-fat diet-induced obesity D, the spontaneous 

model of obesity, and F, the type 1 diabetes models. Graphs show mean ± confidence 

interval. ROC curves and confusion matrix with performance measures for binary predictions 

(control vs. experimental cases) using the 0.1-10 Hz power spectra of G, control and high-

fat diet-fed mice (n = 15 and n = 15, respectively), H, lean and spontaneously obese 

Neotomodon alstoni mice (n = 4 and n = 4, respectively), and I, control and streptozotocin-

treated rats (n = 8 and n = 8, respectively). S, sensitivity; Sp., Specificity; NPV, negative 

predictive value; Ac., accuracy. J, Confusion matrix of multiclass prediction for the machine 

learning algorithm that discriminates between control and diseased rats at week 4, 6, 8, or 12 

post-streptozotocin injection. Each column represents the instances in a predicted class, and 
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rows represent the instances in an actual class. We used controls at week 4, 6, 8, and 12 (n = 

8 at each time point). 

  

Figure 2: Spontaneous ERG oscillations help predict the disease in patients with early 

risk factors of DR. A, Illustrative signals from spontaneous ERGs of control subjects and 

patients with overweight (OW), obesity, metabolic syndrome (MetS), and diabetes but no 

DR (DM no DR) under photopic conditions. Signals are normalized. Wavelet analysis for B, 

each group separately and C, combining all unhealthy conditions into one disease group. 

Control group is defined in Methods. Graphs show the average scalogram power ± s.e.m. 

throughout 20-second recordings between 0.3-40 Hz (host graph) and 0.3-2 (I), 10-20 (II), 

and 20-40 (III) Hz (inset graphs), where consistent peaks were observed in the control group. 

D, AUC and peak frequency analysis in the I, II, and III bands of wavelet power spectra from 

control and disease groups (P values were determined by unpaired Student’s t-test). Graphs 

show mean ± confidence interval. E, ROC curve and F, confusion matrix with performance 

measures for the Random Forest model discriminating control from disease cases in control 

and disease groups, using the 0.3-40 Hz power spectra. G, ROC curve and H, confusion 

matrix with performance measures corresponding to the validation of our predictive model 

thanks to an external and independent validation dataset. I, Classification performance of our 

model versus experts, when experts have access to full eye examination alone or combined 

with reference tests to diagnose diabetes (fasting glycemia, creatinine, triglycerides, and 

cholesterol) or full laboratory (glycemia, HbA1c levels, HOMA-I, and lipid profile) and non-

laboratory (blood pressure, weight and waist circumference, and BMI) tests. Precision, recall, 

and F1-score are reported. I, ROC curve and J, confusion matrix with performance measures 

corresponding to the performance of our predictive model using ERG-derived power spectra 
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recorded by only one ERG device. In A-F and I, control (metabolically healthy, n = 80) and 

disease (OW, n = 40; obese, n = 14; MetS, n = 66; and diabetes with no DR, n = 68) groups. 

In G, H, control (metabolically healthy, n = 11) and disease (OW, n = 5; obese, n = 3; MetS, 

n = 3; and diabetes with no DR, n = 3) groups. In J, K, control (metabolically healthy, n = 

37) and disease (OW, n = 18; obese, n = 8; MetS, n = 42; and diabetes with no DR, n = 33) 

groups. S, sensitivity; Sp., Specificity; NPV, negative predictive value; Ac., accuracy. 

 

Figure 3: Multiclass prediction of people at risk of developing type 2 diabetes and DR 

using the spontaneous ERG-based random forest model: explanatory data analysis. A, 

Multiclass confusion matrix for the prediction of control, overweight (OW), obesity, MetS, 

and diabetes with no DR (DM no DR) once the first binary classification (control vs. disease) 

was done using the Random Forest model. Data from Table 1 and 2 were pooled and aleatory 

divided in a training (80 %) and test (20 %) set. B, Separation of control, overweight, obese, 

metabolic syndrome, and diabetes (DM) without DR cases using PCA and C, corresponding 

biplot of PC1 and PC2, using 13 variables: normalized power of the slowest oscillations (0.3-

0.8 Hz), the AUC of the 0.3-40 Hz band (0.3-40 Hz AUC), and the peak frequency of the 20-

40 Hz band (20-40 Hz PF). D, Separation of control, overweight, obese, metabolic syndrome, 

and diabetes (DM) without DR cases using PCA and E, corresponding biplot of PC1 and 

PC2, using 20 variables: normalized power of 0.4-0.7 Hz activities, TG, CT, fasting blood 

glucose (BG), LDL, systolic blood pressure (SBP), VLDL, age, body weight (BWT), hip and 

waist circumferences (HC and WC, respectively), HDL, insulinemia (Ins.), and diastolic 

blood pressure (DBP). Table (right) shows variable contributions to the first and second 

principal components. F, Separation of control, overweight, obese, metabolic syndrome, and 

diabetes (DM) without DR cases using PCA, using 8 variables: normalized power of 0.7 to 
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0.8 Hz activities, the peak frequency in the 20-40 Hz band, the AUC of the 0.3-40 Hz band, 

age, BG, CT. G, Confusion matrix corresponding to the linear discriminant analysis to 

separate control, diabetes risk factors (overweight, obesity, and MetS, n = 168), and diabetes 

(DM) without DR groups. From B to G, control (n = 62), overweight (OW, n = 66), obese (n 

= 17), metabolic syndrome (MetS, n = 85), and diabetes (DM) without DR (n = 41). 

 

Supplementary Figure 1: Metabolic follow-up of animal models and oscillatory 

potential analysis. A, Follow-up of body weight and blood glucose levels, glucose tolerance 

test, and insulin tolerance test in control-diet (n = 75) and high-fat diet-fed (n = 75) mice for 

12 weeks. B, Body weight, blood glucose levels, glucose tolerance test, and insulin tolerance 

test in lean (n = 20) and spontaneously obese (n = 20) Neotomodon alstoni mice. In both 

models, mice have higher glycemia than control mice at every time point (P < 0.05), 

suggesting reduced insulin sensitivity. This was confirmed by insulin tolerance tests, which 

showed a lower fall in blood glucose in response to insulin in obese mice as compared with 

control mice. C, Blood glucose level follow-up in rats after 4, 6, 8, or 12 weeks of 

streptozotocin (n = 40) and vehicle (n = 40) treatment. Values, mean ± s.d. * indicates P 

values < 0.05 determined by a two-sample Student’s t-test in B (body weight and glycemia) 

and by a mixed ANOVA followed by Bonferroni test everywhere else. D, Illustrative ERG 

(top) and oscillatory potentials (OP, bottom) in control-diet and high-fat diet-fed mice for 12 

weeks, measured in response to a light flash of 7.72 (cd.s)/m2 (arrow) under dark-adapted 

conditions. E, Temporal monitoring (0 to 12 weeks, as indicated) of the average amplitude 

and implicit time of OP1, OP2, OP3, and OP4 in control (n = 10) and high-fat diet fed mice 

(n = 12) under dark-adapted conditions at increasing light intensities (0.02, 0.24, 2.45, and 

7.72 (cd.s)/m2. CD, control diet. HFD, high-fat diet. n.s., not significant (P > 0.05). 
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Supplementary Figure 2: Oscillatory potentials and DR score analysis in people with 

early risk factors for DR, and correlation with slow frequency spontaneous ERG 

oscillation power. A, Illustrative recording from the ISCEV DA 3 ERG protocol in a control 

case. N1-P1 and P1-N2 B, amplitude and C, peak time ratio in control (metabolically healthy, 

n = 8) and disease (OW, n = 5; obese, n = 2; MetS, n = 6; and diabetes with no DR, n = 61) 

groups. D, DR score in control (metabolically healthy, n = 74) and disease (OW, n = 22; 

obese, n = 18; MetS, n = 88; and diabetes with no DR, n = 109) groups. B-D, Graphs show 

mean ± confidence interval. Correlation analysis between the E, N1-P1 or P1-N2 amplitude 

ratio, F, N1-P1 or P1-N2 peak time ratio, and G, DR score with the spontaneous oscillation 

(SO) PCA score (detailed in Methods) in the groups of interest. 

 

Supplementary Figure 3: Random Forest model performs better than support vector 

machine algorithms and when it primarily uses spontaneous photopic ERG of 60-s 

duration in humans. A, ROC curves for both linear and radial svm algorithms. B, 

Performance parameters for the random forest model using power spectra from photopic or 

mesopic ERGs of 10, 30 or 60 s. C, ROC curves for the random forest model using power 

spectra from photopic, mesopic or combined photopic and mesopic ERGs of 60 s. D, 

Corresponding performance parameters. All data correspond to binary classification between 

control and disease cases. Controls are constituted by metabolically healthy subjects (n = 62) 

and the disease group by patients with overweight (n = 41), obesity (n = 16), metabolic 

syndrome (n = 55), and diabetes with no DR (n = 63). 
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Table 1: Characteristics of the patients studied for model training and test using ERG 

spectral components from three different recording devices. Values, mean ± s.d. P values 

were determined by the Welch ANOVA test. Values that do not share a letter (a, b, or c) are 

statistically different. Years, y. 

 

Table 2: Characteristics of the patients studied for external model validation. Values, 

mean ± s.d. P values were determined by the Welch ANOVA test. Values that do not share 

a letter (a, b, or c) are statistically different. Years, y. 

 

Table 3: Characteristics of the patients studied for external model validation using ERG 

spectral components from one recording device. Values, mean ± s.d. P values were 

determined by the Welch ANOVA test. Values that do not share a letter (a, b, or c) are 

statistically different. Years, y. 
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