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Abstract 
 Polygenic risk scores (PRS) have been widely adopted as a tool for measuring 
common variant liability and it has been shown to predict lifetime risk of Alzheimer's disease 
(AD) development. However, the relationship between PRS and AD pathogenesis is largely 
unknown. We aimed to address some of the knowledge gaps with respect to the downstream 
molecular consequences associated with PRS. We also make a direct comparison of the 
disrupted biological mechanisms in a case/control classification and in response to PRS in the 
same individuals. 
 We performed an integrative computational analysis of the transcriptome of the 
largest human brain-derived cohort sample (288 individuals; cerebellum and temporal cortex; 
MayoRNAseq; AMP-AD) with matched AD genetic and gene-expression data (WGS; bulk-
brain RNA-seq).  There was little overlap in terms of differentially expressed genes in 
case/control and PRS analyses, but a consensus of commonly disrupted biological 
mechanisms. Genes implicated by previous AD GWAS were found to be significantly 
enriched with respect to PRS in temporal cortex only. We identified mechanisms that were 
previously implicated in AD, including immune/stress response, lipid/cholesterol/fatty acid 
metabolism, endosome, death/apoptosis, neuronal processes, ageing and the involvement of 
glial cells. We also provide novel evidence for the significant involvement in AD of cellular 
structures, including the Golgi apparatus and endoplasmic reticulum as well as mitochondrial 
function. 
 The largely common biological mechanisms between a case/control classification and 
in association with PRS suggests that PRS stratification can be used for studies where 
suitable case/control samples are not available or the selection of individuals with high and 
low PRS in clinical trials.  
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1. Introduction 
 Alzheimer's disease (AD) is a neurodegenerative disorder characterised by 

progressive cognitive decline, molecular changes including, but not limited to the 

accumulation of beta-amyloids (extracellular Aß plaques) and tau tangles in the human 

brain1. The molecular changes are detectable much earlier than the clinical phenotype, 

occurring for example 10-20 years before cognitive deterioration2. Currently, there are no 

approved pharmacological or other treatments that have been shown to reverse or stop the 

symptoms and/or the associated molecular changes. An accurate diagnostic test in early 

(preclinical) and late stages of the disease is a prerequisite not only for the successful 

application of future treatments, but also for the correct stratification of individuals for 

clinical trials. 

 Polygenic Risk Scores (PRS) are a mathematical aggregate (i.e. a single value) 

indexing an individual's relative genetic liability to a trait conferred by hundreds or indeed 

thousands of risk alleles3. The scores are the output of statistical models developed using data 

from large genome-wide association studies (GWAS). PRS analysis has been widely adopted 

as a tool for measuring common variant liability in coronary artery disease, schizophrenia, 

AD, diabetes and cancer4-9. Furthermore, there have been efforts to develop the use of PRS as 

a diagnostic tool (i.e. as a biomarker) for early identification of people at an increased risk 

manifestation of clinical disease9.  

 In AD PRS have been used to predict lifetime risk of AD development4, 10, 11, yielding 

Area Under the Curve (AUC) estimates in identifying individuals with pathologically 

confirmed AD vs. controls of ~82-84%11, including the APOE locus. In addition, the 

sensitivity (true positives) increases to ~90% for PRS extremes12. Thus far, efforts to exploit 

GWAS associations to identify pathological mechanisms underpinning AD have met with 

varying success13, but immune response, lipid metabolism, regulation of Aß formation and 

cholesterol metabolism, have been identified as likely to be key disrupted biological 

mechanisms14 and macrophages and microglia as likely key drivers of pathology15. As for 

AD PRS, based on many variants in a cumulative fashion, understanding the underlying 

molecular or biological mechanisms that comprise the polygenic component in AD through 

gene-expression data, have not been explored before. 

 To address the paucity of knowledge with respect to the downstream molecular 

consequences of genetic liability to AD and to understand the biological mechanisms that are 

likely to be impacted upon by increased liability, we analysed the differential gene-
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expression from bulk RNA sequencing in the MayoRNAseq publicly available dataset with 

respect to PRS. We also compare the findings to a case/controls differential gene-expression 

analysis (Figure 1). This offers a potential to extend the clinical utility of PRS beyond 

diagnosing individuals at high risk of AD by pointing to putative causal processes at the 

molecular level. 

Figure 1 Experimental flowchart 

a) 

 

b) 

c) 

 
a) MayoRNAseq comprise individuals with matched genetic (WGS) and gene-expression data (bulk brain RNA-seq) from two brain 
samples: cerebellum and temporal cortex.  b) Differentially expressed genes were derived separately for case/controls and PRS. c) Gene-
ontology enrichment analysis was performed separately for both case/control and PRS outcomes and compared pairwise across all analysis. 
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2. Materials and Methods 

2.1. Sample data 
 We used the MayoRNAseq study (MayoRNAseq)16, part of the Accelerated-Medicine 

Partnership (AMP-AD). MayoRNAseq is a post-mortem brain cohort sample of individuals 

with a neuropathological diagnosis of AD, progressive supranuclear palsy, or pathological 

ageing, and elderly controls. The MayoRNAseq human brain-derived samples comprise 

temporal cortex and cerebellum tissues. The number of samples and other descriptors can be 

found in Suppl. Table 1. 

 
2.2. WGS, RNA-seq and metadata 
 WGS recalibrated vcf files (*.recalibrated_variants.vcf.gz) were downloaded from the 

AMP-AD consortium website (https://www.synapse.org/#!Synapse:syn22264775). RNA-seq 

bam files were also downloaded from the ConsortiumStudies 

(https://www.synapse.org/#!Synapse:syn9702085). All available metadata for the 

MayoRNAseq as part of AMP-AD were combined and WGS and RNA-seq individual 

identifiers were matched according to the manifest files. 

 
2.3. Alignment of RNA-seq to human reference genome build 38 
 The original bam files were converted to fastq (GATK picard-tools 1.60; 

SamToFastq) and aligned to human reference genome build 38 (GRCh38.98; gtf and fasta 

http://ftp.ensembl.org/pub/release-98/gtf/homo_sapiens/) using STAR aligner17 (v2.7.1a). 

Duplicated reads were marked using picard-tools 1.60 (MarkDuplicates) and RG groups 

populated using samtools18 (v1.9). 

 
2.4. RNA-seq quality control (QC) 
 RNA-seq QC of the aligned GRCh38.38 bam files was performed using RNA-SeQC 

2.3.519. Individual RNA-SeQC measures were converted to percentage and means and 

standard deviations were calculated for these measures separately within the two tissue 

MayoRNAseq samples, cerebellum and temporal cortex. Samples were excluded from further 

analysis if a specific RNA-SeQC measure for an individual RNA-seq sample was 4 standard 

deviations away from the mean of the distribution (³ or £ 4 standard deviations considered 

for different measures). More information on the measures used is provided in the 

supplementary materials (Suppl. Table 2). 
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 Read counts per gene per sample were derived using htseq-count (v0.11.2). Samples 

were removed from further analysis if they had 0 read counts across all genes. Genes were 

removed from further analysis if they had 0 read counts across all samples. Read counts were 

normalised using the trimmed mean of M-values (TMM) normalization method in the 

R/bioconductor package edgeR20 (v3.34.0) to estimate scaling factors and to adjust for 

differences in library sizes. Genes were excluded from further analysis if TMM values were 

<0.5 in 50% of the MayoRNAseq samples. 

 Raw gene counts derived from htseq-count for the remaining samples were 

normalized using Conditional Quantile Normalization (CQN)21 (R/bioconductor package cqn 

v1.38.0) to use for principal component analysis (CQN-normalised counts; y+offset). Gene 

exon lengths and GC content were calculated from the gtf and fasta files using custom built 

programs. 

 
2.5. VCF QC 
 Individual vcf files were converted and merged with PLINK 22 (PLINK v2.00a2.3) 

and bi-allelic variants were kept. For ethnicity estimates we also downloaded phase3 1000 

Genomes Project reference data23 from PLINK's website (https://www.cog-

genomics.org/plink/2.0/resources#1kg_phase3) and converted to PLINK format as well as 

removed duplicates with respect to genomic position. Only variants that were present in the 

1000 Genomes phase3 were kept for further analysis (variants matched by chromosome and 

position). The chromosome and position of the remaining variants were converted with 

respect to the human genome reference GRCh38 using the UCSC web-based liftover tool 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). Variants with Hardy-Weinberg equilibrium 

(p£1x10-06), missingness (³0.05) and minor allele frequency (£0.01) were excluded from 

further analysis. The remaining filtered variants were combined with the 1000 Genomes 

phase3. Ancestry was estimated using Principal Component Analysis (PCA) in PLINK2 (--

pca --maf) by plotting the first two eigenvectors and samples were excluded from further 

analysis if a sample deviated from the 1000 Genomes EUR cluster (Suppl. Figure 1c). In 

order to estimate individual sex, we removed the pseudo-autosomal region of the X 

chromosome and calculated inbreeding coefficients (F) using PLINK (--check-sex). 

Individuals with F£0.2 were deemed females and F³0.8 males. 

 Genetic relationship between the samples (pairwise identity by descent (IBD)) was 

determined using PLINK (--genome full --min 0.1). Samples that had PI-HAT³0.22 were 
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considered duplicates, or first-degree relatives (including identical twins). All such pairs of 

samples were excluded from further analysis. 

 
2.6. Matching RNA-seq to VCF samples 
 Matching individual RNA-seq with the VCF samples was done using verifyBamID24 

(v1.1.3). A matched sample comprising RNA-seq and WGS vcf files from the same 

individual was done based on the IBD coefficients from verifyBamID; a matched sample was 

deemed IBD³0.8. Only matched RNA-seq with WGS vcf files were included for further 

analysis. 

 
2.7. AD diagnosis and APOE status 
 The MayoRNA-seq dataset included diagnostic status in the RNA-seq covariates file 

from the AMP-AD knowledge portal. We excluded samples with progressive supranuclear 

palsy and pathological ageing, retaining only data from samples with a label of AD or 

control. To assign APOE status we used rs429358 and rs7412. The ambiguous double 

heterozygotes were coded as E2/E4 (Suppl. Table 3).  

 
2.8. RNA-seq differential gene-expression 
 We used R/bioconductor package DESeq2 (v.1.32.0)25 with raw htseq-counts with age 

at death, sex and APOE status as covariates (DESeq2 model matrix: 

design=~age_at_death+sex+APOE_status+diagnosis for case/control analysis and 

design=~age_at_death+sex+APOE_status+PRS for PRS; log fold changes and p-values are 

returned for the last variable in the design matrix). To account for multiple hypotheses testing 

the Benjamini-Hochberg false discovery rate was used (FDR). 

 

2.9. Gene Ontology 
 The Wilcoxon rank sum test, as implemented in Catmap26, was used to test for 

significant enrichment of Gene Ontology (GO) categories (differential gene-expression 

associated with PRS and separately for differential gene-expression with case/controls) using 

custom built gene-GO gene association (Suppl. Materials and Methods). Ranks of genes were 

based on the p-value from the significance of the differential gene-expression (from 

DESeq2). For all tests, three lists were derived comprising (1) differentially expressed genes 

based on p-value only (termed no-direction), (2) the most differentially up-regulated (p-value 

and log-fold) genes at the top of the list and most differentially down-regulated genes (log-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.29.22276952doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.29.22276952
http://creativecommons.org/licenses/by-nd/4.0/


 7 

fold< 0) at the bottom of the list (termed up-regulated) and (3) the most differentially down-

regulated (log-fold< 0) genes at the top of the list and most differentially up-regulated genes 

(log-fold> 0) at the bottom of the list (termed down-regulated). Gene lists 2) and 3) are 

inverted copies of each other. We used random null as the null hypothesis. Even though a 

random null is not as good approximation as compared to sample label permutations26, it was 

deemed computationally unfeasible to perform sample-label permutations. Nevertheless, we 

also performed a functional GO enrichment analysis using a separate method (topGO27; 

v2.44.0) with the three sets of ranked list of genes using the classic algorithm with the ks 

statistic (Kolmogorov-Smirnov test) and compared the results with Catmap. To account for 

multiple hypotheses testing the Benjamini-Hochberg false discovery rate was used. Statistical 

significance of overlaps of GOs between two experiments (e.g. Catmap vs. topGO, 

significant GO terms associated with PRS vs. significant GO terms from a case/control 

analysis) was determined using a hypergeometric test (including Biological Process (BP), 

Cellular Component (CC) and Molecular Function (MF) GO terms) and profile similarity by 

using a paired rank-based test for association based on Spearman's rho (gene-expression and 

GO). 

 For clustering of statistically significant GO terms we used semantic similarity 

(GOSemSim28) with Rel information content measure and classical multidimensional scaling 

(CMD; cmdscale package in R, k=2) separately for BP and CC GO terms as semantic 

similarity can only be performed within BP or CC. The most representative (manually 

curated) GO term was chosen as the name for describing CMD clusters. 

 
2.10. PRS calculations 
 To generate polygenic risk scores for the MayoRNAseq dataset we used the summary 

statistics from the clinically assessed case/control study on AD14, excluding AMP-AD 

samples that are part of that GWAS14. We chose to use Kunkle et al.14 AD GWAS, as it does 

not include the UK Biobank summary statistics, where cases are defined via family history 

(AD proxies29) and controls are not screened for AD. PRS were calculated using PLINK for 

pT£0.1 (p-value threshold) on LD-clumped SNPs by retaining the SNP with the smallest p-

value excluding SNPs with r2>0.1 in a 1000kb window. We chose to use the simplest 

clumping and thresholding approach as the simplicity guarantees the transparency (included 

SNPs and weights are known) and the prediction accuracy of AD by the PRS is similar for 

the majority of methodologies as previously described30. All derived scores were adjusted for 
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5 consecutive principal components then standardised within the MayoRNAseq samples 

(mean and standard deviation).  
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3. Results 

3.1. Sample numbers after QC 
 After our quality control (genotypes and RNA-seq), there were 288 samples with 

matched genetic and RNA-seq samples in the MayoRNAseq dataset (170 genetically unique 

individuals; Suppl. Table 1).  

 
3.2. AD case/control differential gene-expression and GO enrichment 
 Differentially expressed genes were derived using DESeq2 separately for the two 

tissue samples in the MayoRNAseq (temporal cortex and cerebellum), including covariates 

for age at death, sex and APOE status. There were >5,000 differentially expressed genes after 

correction for multiple hypothesis testing in both cerebellum (~8,000) and temporal cortex 

(~5,000; Suppl. Data 1 & 2) with a statistically significant overlap of differentially expressed 

genes between the two tissues (Suppl. Figure 2). There was no statistically significant 

enrichment of AD-associated GWAS risk genes in any of the three gene lists (p=0.97 and 

p=0.31 for cerebellum and temporal cortex respectively for genes based only on p-value (no-

direction); p=0.42 and 0.06 for up-regulated (order by p-value and logfc); p=0.58 and p=0.94 

for down-regulated; list of AD GWAS risk genes given in Suppl. Data 3 and description in 

Suppl. Materials and Methods). 

 We performed GO enrichment analysis (biological process (BP), cellular component 

(CC) and molecular function (MF)) using the three sets of differential expression gene lists, 

that is no-direction (based on p-value only), up-regulated and down-regulated (log-fold 

change and p-value). There was a statistically significant overlap of significantly enriched 

GO terms (separately for all three gene lists) between the two tissues (Suppl. Figure 3a-e) in 

addition to a significant GO rank profile similarity (Suppl. Figure 3f-h). This suggests that 

both tissues share an overall statistically significant similarity in terms of disrupted biological 

pathways with respect to a case/control analysis. It is of note that overlap of GO and testing 

for profile similarity achieved much stronger statistical significance in the up and down-

regulated significant GO terms as compared to the no-direction results (gene order based on 

p-value only). 

 The statistically significant GO terms from both tissues (no-direction gene-list; p-

value only) were combined and clusters were derived using semantic similarity (BP and CC). 

This was done to reduce the complexity and functional redundancy of GO terms. 

Significantly disrupted biological processes included response to stimulus, regulation of 
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signal transduction, cell motility and metabolism, aerobic respiration, differentiation, 

organelles (Golgi Apparatus, endoplasmic reticulum (ER), mitochondria), oxidoreductase 

complex, cell cycle, regulation of cell death (Suppl. Figure 4). 

 We also performed the same semantic similarity clustering separately for the up-

regulated and down-regulated GO terms. Significantly disrupted up-regulated biological 

processes included regulation of metabolism (including lipid and cholesterol), stress and 

immune response, signalling, DNA repair, differentiation/morphogenesis/development, 

organelles (Golgi Apparatus, ER, mitochondria), senescence, neuronal cells (Suppl. Figure 

5). Significantly disrupted down-regulated biological processes mainly included cellular 

respiration such as mitochondrial electron transport, respiratory chain complexes, 

mitochondrial membrane, etc. (Suppl. Figure 6). GO-terms in all semantic similarity clusters 

(both up and down-regulated analysis) were from both tissue samples, replicating the 

statistically significant profile GO similarity and overlap of GO terms, suggesting limited 

overall brain region specificity. 

 GO enrichment analysis showed that several biological pathways previously 

implicated from GWAS14 in AD were significantly enriched in the AD case/control 

differential gene-expression analysis (Suppl. Data 4-5, Figure 2a and Figure 5a), although we 

have not formally tested if this is statistically significant, thus it could be a chance finding. 

Significantly up-regulated GO terms included immune system processes (GO:0002376, 

p=1.13e-06 and p=4.09e-43 for cerebellum and temporal cortex respectively), response to 

lipids (GO:0033993, p=7.41e-03 and p=1.05e-27), inflammatory response (GO:0006954, 

p=4.87e-02 and p=5.83e-15), endosome (GO:0005768, p=6.27e-07 and p=2.30e-11), 

regulation of cell death (GO:0010941, p=1.78e-08 and p=1.26e-32), regulation of neuron 

death (GO:1901214, p=6.46e-03 and p=1.32e-04). There was also evidence for the 

involvement of glial cells in the temporal cortex (up-regulated GOs, glial cell projection 

GO:0097386 p=1.62e-04, astrocyte projection GO:0097449 p=6.55e-04, regulation of 

microglial cell activation GO:1903978 p=1.24e-02), but not in cerebellum. In addition, we 

were only able to confirm such previous AD GWAS-derived disrupted biological pathways 

by sorting (log-fold change and p-value) or in other words using the direction of effect of the 

genes (mostly up-regulated and mostly down-regulated at the top of the gene lists), but not 

based on p-value only (no-direction). For example, immune system process (GO:0002376) 

was not significantly enriched GO-term in the no-direction (genes sorted by p-value only; 

FDR p=1 and p=8.07e-01 in cerebellum and temporal cortex respectively), but it was 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.29.22276952doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.29.22276952
http://creativecommons.org/licenses/by-nd/4.0/


 11 

significantly enriched in both cerebellum and temporal cortex in the up-regulated GO-terms 

analysis. 

 We also performed the GO-terms enrichment analysis using a separate enrichment 

method (topGO27) with the same three gene lists (no-direction, mostly up-regulated and 

mostly down-regulated at the top). The results from both Catmap and topGO (paired GO 

ranks) display extremely similar rank profile of GO-terms with r2 ranging from 0.65-0.8 

(Suppl. Figure 7). 

 
Figure 2 Semantic similarity clustering of up-regulated statistically significant GO 
terms in both cerebellum and temporal cortex (case/control analysis) 

a) Semantic similarity clustering (BP only up-regulated 
GO) 

b) Overlap of GO terms (BP, CC 
and MF up-regulated GOs) 

 

 

a) X and Y axes represent classical multidimensional scaling (CMD) dimension 1 and 2. All GO terms p≤0.05 FDR. Green dots represent 
significant GO terms from the case/control analysis of cerebellum, Blue dots represent significant GO terms from the case/control analysis 
of temporal cortex, Red dots represent significant GO terms overlapping in case/control analysis of cerebellum and temporal cortex. Cluster 
labels were manually curated based on the most common GO term in the cluster. b) Proportional Venn diagram. Numbers represent 
significant GO terms (FDR) in the two lists with the middle number representing the number of genes that overlap. Red colour represents 
cerebellum, blue- temporal cortex. hypergeometric test p=4.11e-287.  
 
3.3. PRS differential gene-expression and GO enrichment 
 Similarly, to the case/control differential gene-expression analysis, for each gene we 

derived differentially expressed genes associated with PRS using DESeq2 separately for the 

two tissue samples in the MayoRNAseq, including a covariate for age at death, sex and 

APOE status. 

There were three and 351 genes differentially expressed genes in the cerebellum and the 

temporal cortex respectively following an FDR correction for multiple hypothesis testing 

(Suppl. Data 6). There were fewer differentially expressed genes in cerebellum as compared 

to temporal cortex associated with PRS, in contrast to the fewer differentially expressed 

genes in the temporal cortex as compared to cerebellum in the case/control analysis. Due to 

few genes being differentially expressed in cerebellum, we performed an overlap of the top 

300 genes in both tissue samples. There was a statistically significant overlap of genes in 
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both datasets in the same direction (including a significant rank correlation of all genes; 

Suppl. Figure 8). 

 There was also a statistically significant enrichment of previous AD-associated 

GWAS risk genes (Wilcox rank-sum test p=2.99e-02; not corrected for multiple hypothesis 

testing) in the temporal cortex no-direction gene list (ordered by p-value only), but not in 

cerebellum (p=2.44e-01). The top ranked 15 genes in the temporal cortex also found in AD 

GWAS hits were HAVCR2, MS4A6A, INPP5D, ECHDC3, SPI1, ADAMTS4, ADAMTS1, 

CR1, IL34, PICALM, HLA-DRB1, CD33, APH1B, FERMT2, and PLCG2, although only 

HAVCR2 and MS4A6A (p=1.61e-02, beta=0.21 and p=3.72e-02; beta=0.29), passed FDR 

correction. In addition, there was a statistically significant enrichment of AD-associated 

GWAS genes in the up-regulated gene list in temporal cortex (p=1.22e-05 and p=0.49 for 

temporal cortex and cerebellum respectively), but not in the down-regulated gene list for both 

temporal cortex and cerebellum (p=0.5 and p=0.99). This suggests that overall GWAS-hits 

are on average ranked significantly higher in the temporal cortex gene expression list in the 

PRS analysis than expected by chance alone and these are more likely to be up-regulated than 

down-regulated (only IL34 was down-regulated among the top 15 GWAS-hits). Furthermore, 

in temporal cortex, higher AD PRS was associated with increased gene-expression of 52 out 

of 75 AD GWAS associated genes (Fisher's exact test p=2.79e-04; 10319 up and 11071 

down-regulated among all genes). 

 There was a statistically significant overlap of significantly enriched GO terms 

(separately for all three gene lists) between the two tissues (Suppl. Figure 9a-e) in addition to 

a significant GO rank profile similarity (Suppl. Fig9f-h). This suggests that both tissues share 

an overall similarity in terms of disrupted biological pathways with respect to PRS. 

 The statistically significant GO terms from both tissues (no-direction gene-list; p-

value only) were combined and clusters were derived using semantic similarity. Significantly 

disrupted biological processes (no-direction gene list) included immune response, stress 

response, regulation of metabolism, transport and signalling, aerobic respiration, organelles 

(Golgi apparatus, ER, mitochondria), oxidoreductase complex, cell cycle, regulation of cell 

death (Suppl. Figure 10). Nevertheless, GOs in immune-related clusters (i.e. immune 

response, regulation of T/B cells and interferon/interleukin) were statistically significant only 

in temporal cortex (Suppl. Figure 10a), but not in cerebellum. 

 The semantic similarity clustering was also performed separately for the up-regulated 

and down-regulated GO terms. Significantly disrupted up-regulated biological processes 

included regulation of metabolism (including fatty acids and cholesterol), stress and immune 
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response (adaptive and innate), signalling, DNA repair, 

differentiation/morphogenesis/development, organelles (Golgi Apparatus, ER, mitochondria), 

senescence and neuronal cell death, neuronal cells (Suppl. Figure 11 and Figure 3a). 

Significantly disrupted down-regulated biological processes mainly included cellular 

respiration such as mitochondrial electron transport, respiratory chain complexes, 

mitochondrial membrane, mitochondrial ATP synthesis, metabolism, neuronal processes such 

as neurotransmitter secretion/transport, neuron projection, postsynaptic membrane (Suppl. 

Figure 12). The semantic similarity clusters comprised up-regulated GO terms from both 

tissues (semantic similarity Suppl. Figure 11), but there were notable differences in the down-

regulated GOs, suggesting tissue specificity. All synaptic-associated GO-terms were found to 

be significantly down-regulated in temporal cortex, but up-regulated cerebellum. These 

include synaptic/neuronal processes such as synaptic signalling, synaptic and 

pre/postsynaptic membranes, regulation of synaptic plasticity, synaptic vesicle, 

neurotransmitter secretion, glutamatergic synapse, etc. (Figure 3c and Figure 5a).  

 Similarly, to the case/control analysis GO enrichment analysis showed that a wide 

range of previously implicated (from GWAS) biological pathways in AD were also found to 

be significantly enriched (Suppl. Data 10-12 and Figure 3a and b and Figure 5a), including 

immune system processes (GO:0002376, p= 2.72E-05 and p= 2.67E-98 for cerebellum and 

temporal cortex respectively), response to lipids (GO:0033993, p= 1.44E-07 and p= 1.17E-

21), inflammatory response (GO:0006954, p= 7.98E-04 and p= 3.24E-29), endosome 

(GO:0005768, p= 2.44E-03 and p= 4.48E-19), regulation of cell death (GO:0010941, p= 

2.26E-07 and p= 1.12E-27), regulation of neuron death (GO:1901214, p= 2.55E-03 and p= 

2.96E-02). There was also some evidence for the involvement of glial cells in both tissues 

(up-regulated GOs, glial cell projection GO:0097386 p=1.95e-03 and p=3.48e-02 for 

cerebellum and temporal cortex respectively, astrocyte activation GO:0048143 p=3.66e-02 

and p=1.26e-02, microglial cell activation GO:0001774 p=4.09e-02 and p=3.09e-07). 

 Similarly, to the case/control GO analysis, the results from both Catmap and topGO 

(paired GO ranks) displayed extremely similar rank profile of GO-terms with r2 ranging from 

0.65-0.81 (Suppl. Figure 13). 
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Figure 3 Semantic similarity clustering of up-regulated statistically significant GO 
terms in both cerebellum and temporal cortex (PRS analysis) 

a) Semantic similarity clustering (BP only up-regulated 
GO) 

b) Overlap of GO terms (BP, 
CC and MF up-regulated 
GOs) 

 

 

c) Semantic similarity clustering (CC only down-regulated 
GO) 

d) Overlap of GO terms (BP, 
CC and MF down-regulated 
GOs) 

 

 

a) and c) X and Y axes represent classical multidimensional scaling (CMD) dimension 1 and 2. All GO terms p≤0.05 FDR. Green dots 
represent significant GO terms from the PRS analysis of cerebellum, Blue dots represent significant GO terms from the PRS analysis of 
temporal cortex, Red dots represent significant GO terms overlapping in PRS analysis of cerebellum and temporal cortex. Cluster labels 
were manually curated based on the most common GO term in the cluster. b) Proportional Venn diagram. Numbers represent the significant 
GO terms (FDR) in the two lists with the middle number representing the number of genes that overlap. Red colour represents cerebellum 
the blue temporal cortex. b) hypergeometric test p<1e-300; c) hypergeometric test p=6.85e-65. 
 
3.4. Molecular mechanisms shared/different between cases/controls and 

PRS with respect to differential gene expression 
 We compared the differential expression results in terms of genes from the 

case/control and PRS analyses for cerebellum and temporal cortex respectively. There was no 

statistically significant overlap of differentially expressed genes in cerebellum (Suppl. Figs. 

14 & 15), but there was a statistically significant overlap of differentially up and down-

regulated genes in the temporal cortex (Suppl. Figure 16). 

 Contrary to the results with respect to overlap of differentially expressed genes, the 

overlap of GO terms for both cerebellum and temporal cortex showed remarkable similarity 
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in terms of both overlap of significantly disrupted GOs and rank profiles in all three gene lists 

(no-direction, most up-regulated at the top and most-downregulated and top; Suppl. Figs. 17 

and 18), although fewer GOs overlapped if no-direction of gene effect was used. 

 The statistically significant GO terms from both tissues (no-direction gene-list; p-

value only) from the case/control and PRS analyses were combined and clusters were derived 

using semantic similarity, separately for cerebellum and temporal cortex. There were fewer 

significantly disrupted GO terms in the case/control analysis as compared to PRS (57 vs. 389 

in cerebellum and 264 and 695 for temporal cortex for the case/control and PRS respectively; 

Suppl. Data 4a, 5a, 7a and 8a). The only processes that were in common in cerebellum were 

GOs related to organelles and metabolic processes (Suppl. Figure 19). Similarly, the 

commonly disrupted biological processes in temporal cortex were extracellular 

space/structure, organelles, response to stimulus/lipids, signal transduction (Suppl. Figure 

22). Most of the semantically similar clusters of up/down-regulated GOs in cerebellum with 

respect to case/controls and PRS comprised GOs from both analyses (case/controls and in 

response to PRS), suggesting similarly disrupted biological processes with very few 

differences (Suppl. Figs. 20 & 21). Differences included significantly down-regulated 

biological processes found only in response to PRS such as, WNT/NF-kappaB signalling, 

rRNA processing, protein import in mitochondria (Suppl. Figure 21) and significantly up-

regulated processes only found in case/control analysis such as, histone acetyltransferase 

complexes (Suppl. Figure 20). 

 Similarly to cerebellum, most of the up-regulated semantically similar clusters in 

temporal cortex (case/control vs. PRS) have GO terms from both case/control and PRS 

analysis, suggesting little differences in terms of significantly disrupted up-regulated 

biological processes (Suppl. Figs. 23 and Figure 4a). This was in contrast to down-regulated 

terms that showed differences. These included mainly neuronal/synaptic down-regulated 

processes only found in response to PRS as compared to case/control analysis such as, 

neuronal plasticity, synaptic signalling/transmission, neurotransmitter levels and secretion, 

post/pre-synaptic membrane, glutamatergic and GABA-ergic synapse (Suppl. Figure 24 and 

Figure 4b). 
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Figure 4 Semantic similarity clustering of up and down-regulated statistically 
significant GO terms in temporal cortex (case/control vs. PRS analysis) 

a) Semantic similarity clustering (BP only up-regulated 
GO) 

 b) Overlap of GO terms (BP, 
CC and MF up-regulated GOs) 

 

 

c) Semantic similarity clustering (BP only down-
regulated GO) 

d) Overlap of GO terms (BP, 
CC and MF down-regulated 
GOs) 

 
 

 

a) and c) X and Y axes represent classical multidimensional scaling (CMD) dimension 1 and 2. All GO terms p≤0.05 FDR. Green dots 
represent significant GO terms from the case/control & PRS analysis of temporal cortex, Blue dots represent significant GO terms from the 
case/control & PRS analysis of temporal cortex, Red dots represent significant GO terms overlapping in case/control analysis of cerebellum 
and temporal cortex. Cluster labels were manually curated based on the most common GO term in the cluster. b) and d) Proportional Venn 
diagram. Numbers represent the significant GO terms (FDR) in the two lists with the middle number representing the number of genes that 
overlap. Red colour represents case/control the blue PRS analyses. hypergeometric test for b) p<1e-300; hypergeometric test for d) p=3.04e-
93. 

 

 We parsed all the GO-terms from all the analysis (case/control and PRS in cerebellum 

and temporal cortex) using search terms from previously reported molecular mechanisms 

disrupted in AD14, 31. The search terms were grouped in eight categories, aging/senescence, 

death/apoptosis, neuron/synapse, glial cell populations, amyloid, immune response, stress 

response, lipid/cholesterol/fatty acid metabolism. GO-terms matching any of the search terms 

and are statistically significant in at least one analysis were retained and sorted by the mean -

log10 p FDR across all the analyses. The most statistically significant categories were 

immune and stress response, asserting an important role of the immune system in the 

development of AD14 (Figure 5a). The least significant were glial cell populations and 

amyloid. This analysis does not take into account the overlap of genes within different GOs 
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and the overall redundancy of GO terms. It is of note that in all the differential gene-

expression analyses (case/control and PRS) we included age of death as a fixed covariate and 

despite this, ageing GO term is still a significant molecular mechanism associated with the 

development of AD.  

 

Figure 5 AD GWAS and novel mechanisms statistically significant in MayoRNAseq 
temporal cortex and cerebellum (case/control & PRS) 

a) AD GWAS mechanisms b) novel AD disrupted mechanisms 

  
Heatmap of GO terms that are statistically significant in at least one dataset (cas/con & PRS MayoRNAseq temporal cortex and cerebellum). 
cascon Case/control analysis; CER cerebellum; TEMP temporal cortex. Heatmap p-values are capped at 10e-30. blue colour represents 
down-regulated GOs and red-colours represent up-regulated GOs. All full GO term names from the up and down-regulated GO term results 
were searched using stress, immun, neuro/synap, death/apoptosis, lipid/cholesterol/fatty, aging/senescence, glia/astrocyte, abeta, endosome, 
golgi, reticulum and mitochond/respir and GO terms selected if FDR p-value was <0.05. GO terms within each category were ordered by 
mean -log10 p and the top 8 selected for visualisation (3 for lipid and cholesterol and 2 for fatty acid metabolism) 
 
 Even though, the most significantly disrupted AD GWAS-associated molecular 

mechanisms were immune/stress response and death/apoptosis, there were other statistically 

significant GO-terms that have not been reported associated with AD previously and were 

shared between the case/control and PRS analyses in cerebellum and temporal cortex. These 
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included variety of respiration-related processes (e.g. respiratory electron transport chain, 

mitochondrial inner membrane), Golgi apparatus and endoplasmic reticulum (Figure 5b).  
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4. Discussion 
 We performed an integrative analysis of the transcriptomics using case/control and 

genetic liability paradigms. The main aim of the study was to try to understand the biological 

correlates of elevated common variant liability to AD, and their relationship with these 

associated with AD per se. 

 Our overall findings suggest that disrupted biological pathways associated with 

affected status and increased PRS show remarkable profile similarities with respect to 

biological pathways derived from gene-expression (bulk brain-derived RNA-seq). In 

temporal cortex, we found evidence for a modest degree of similarity with respect to genes 

that are differentially expressed in AD cases compared to controls, and those are associated 

with increased PRS results. However, the degree of similarity between case status and 

elevated PRS was much stronger at the level of the GO-term enrichments for differentially 

expressed genes. This suggests a disease heterogeneity in terms of changes in the gene-

expression of individual genes32, but nevertheless a convergence in terms of disrupted disease 

biological mechanisms underlying AD. Crucially, this also suggests that both a case/control 

and PRS classifications elucidate similar molecular mechanisms. There was some evidence 

for tissue specificity for the associations with PRS, higher PRS being associated with down-

regulation of neuronal process genes in temporal cortex, but up-regulation of the same 

categories in cerebellum. In contrast, there was limited tissue specificity when the dataset was 

analysed as a case/control sample. 

 Our gene ontology analysis of differential gene-expression in cases versus controls 

shows a degree of convergence with analogous analyses of GWAS studies, 14, 33, 34, 

highlighting immune (both adaptive and innate) and stress response, lipids, fatty acids and 

cholesterol metabolism, endosome and cellular/neuronal death. Our results also suggest a 

significant involvement of previously less well characterised processes in AD. These include 

the involvement of cellular structures (ER, ER stress, Golgi, actin cytoskeleton, 

lamellipodium) and cellular mitochondrial respiration and secretion (exocytosis and 

endocytosis). Most of the AD GWAS implicated loci are non-coding14, 35 and choosing the 

closest gene to an index variant could miss genes that are further away or miss other 

regulatory mechanisms. Therefore we did not expect to find enrichment of GWAS hits 

(closest genes) among the differentially expressed genes, although some SNPs have been 

shown to be directly related to AD36. Nevertheless, there was a significant enrichment of 

differentially expressed genes in the temporal cortex associated with PRS. Thus, some of the 
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putative GWAS implicated genes, as defined as those closest to the associated index SNP at 

the locus are also likely to show a differential gene-expression in relationship with PRS in 

temporal cortex. Tissue specificity is also likely to account for some of the differences. The 

top ranked genes among the differential expression gene list include HAVCR2, MS4A6A, 

INPP5D, ECHDC3, SPI1, ADAMTS4, ADAMTS1, CR1, IL34, PICALM, HLA-DRB1, CD33, 

APH1B, FERMT2, and PLCG2, although only HAVCR2 and MS4A6A passed FDR 

correction. Strikingly, 69% (52/75; p=2.79e-04) of all GWAS implicated genes were up-

regulated in response to different PRS among the temporal cortex samples. While it is beyond 

the scope of this work, this result suggests a potential common regulatory mechanism or 

mechanisms. MS4A6A, INPP5D and SPI1 have been previously shown to be dysregulated 

specifically in microglial cells31, 37. Furthermore, the GO term microglial cell activation 

involved in immune response (GO:0002282) was significantly disrupted in temporal cortex 

with respect to PRS and it comprises TYROBP, TREM2, GRN and IL33. TYROBP was 

significantly up-regulated in response to higher PRS in temporal cortex and has been shown 

as a strategic and causal regulator in several microglial activation signalling cascades and the 

complement pathway in late onset AD38. Even though the gene-expression data we used are 

brain-derived (cerebellum and temporal cortex) bulk RNA-seq, we found several disrupted 

GO terms specifically related to glial cells (Figure 5a). Glial and microglia-related GO terms 

were not the top ranked GO terms, but nevertheless it is remarkable that this signal is 

detectable in bulk brain-derived RNA-seq. 

 The strongest GO-terms enriched in all datasets (both case/control and PRS) were the 

ER, Golgi apparatus, mitochondria and associated mitochondrial respiratory chain 

complexes. These cellular structures have received relatively little attention in AD. 

Nevertheless, both ER and mitochondrial function have been shown to be altered in AD39-42. 

The ER-mitochondria interaction is tightly linked to changes in lipid and cholesterol 

metabolism pathways42, both of which have been found to be significantly disrupted 

mechanisms in all datasets used in this work. Furthermore, Aß interacts with ER, Golgi 

apparatus and mitochondria to disrupt their normal function43.  

 Although age is one of the main risk factors for the development of AD, there is little 

understanding of the molecular mechanisms involved in this relationship. Most of the AD 

genetic and genomic statistical analysis use age at death or age of onset to account for the 

differences in chronological age of research participants and ageing is interchangeably used 

with age. In this study, despite adjusting our differential gene-expression analysis for age at 

death, we still found the GO term ageing to be enriched for genes that are up-regulated in a 
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case/control and in response to higher PRS. This suggests that on average the gene-

expression of ageing-related genes is markedly changed in individuals with AD as compared 

to controls and with respect to PRS. This indicates that the use of chronological age in the 

statistical modelling of genetic/genomic data in AD-research could be flawed. Following 

Horvath's seminal paper on estimating biological age using an epigenetic clock44, AD 

individuals have indeed been shown to exhibit an accelerated epigenetic clock and the rate 

might be also different in different brain regions45. Thus, constructing such epigenetic clocks 

in AD individuals could help delineate the difference between ageing and chronological age 

and provide further understanding of AD development. 

 Our study is an integrative computational approach of publicly available data from 

two sources to try to highlight the biological processes associated with PRS in comparison to 

case/control classification in AD. Our results point to a considerable heterogeneity in terms 

of changes in gene-expression with respect to case/control design and genes associated with 

PRS, but a convergence in terms of disrupted biological pathways, including novel and 

previous GWAS implicated biological process and cellular structures. 
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