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Abstract1

The novel coronavirus SARS-CoV-2 emerged in 2019 and subsequently spread2

throughout the world, causing over 529 million cases and 6 million deaths thus far.3

In this study, we formulate a continuous-time Markov chain model to investigate the4

influence of superspreading events (SSEs), defined here as public or social events that5

result in multiple infections over a short time span, on SARS-CoV-2 outbreak dynamics.6

Using Gillespie’s direct algorithm, we simulate a continuous-time Markov chain model7

for SARS-CoV-2 spread under multiple scenarios: first, with neither hospitalisation8

nor quarantine; second, with hospitalisation, quarantine, premature hospital discharge,9

and quarantine violation; and third, with hospitalisation and quarantine but neither10

premature hospital discharge nor quarantine violation. We also vary quarantine vio-11

lation rates. Results indicate that, in most cases, SSE-dominated outbreaks are more12

variable but less severe than non-SSE-dominated outbreaks, though the most severe13

SSE-dominated outbreaks are more severe than the most severe non-SSE-dominated14

outbreaks. SSE-dominated outbreaks are outbreaks with relatively higher SSE rates.15

In all cases, SSE-dominated outbreaks are more sensitive to control measures, with16

premature hospital discharge and quarantine violation substantially reducing control17

measure effectiveness.18

Key words: SARS-CoV-2, superspreading events, human behavior, continuous-time19

Markov chain, Gillespie’s direct algorithm.20
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1 Introduction21

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent22

of COVID-19. Since emerging in China’s Hubei province in 2019, it has caused over23

529 million cases and 6 million deaths worldwide [47], with over 84 million cases and24

1 million deaths in the United States [16]. With an estimated basic reproduction25

number (R0) ranging from 2 to 4 [13], the virus is moderately infectious. COVID-1926

has strained the U.S. healthcare system, with many hospitals nearing or exceeding27

capacity [2, 34, 24, 19] and some moving to ration care [8, 9, 11, 17, 25]. In response,28

both national and state-level governments have issued guidelines and mandates aimed29

at reducing transmission, ranging from social-distancing guidelines and mask mandates30

to stay-at-home orders and limits on large gatherings [36, 40].31

The effectiveness of these guidelines and mandates has been hindered by imperfect32

adherence and compliance. For example, some people refuse to wear a mask [21].33

Moreover, many people fail to social distance, despite doing so initially [23]. People34

also violate stay-at-home orders, with several being issued citations and some being35

arrested [22, 29, 31, 45]; more people than indicated by citations and arrests alone36

have likely violated stay-at-home orders, given the variability in enforcement protocols37

[4, 18]. Beyond refusing to mask, failing to social distance, and violating stay-at-home38

orders, some people also attend public or social events. This facilitates superspreading39

events (SSEs), defined here as public or social events that result in multiple infections40

over a short time span. Such events have contributed to SARS-CoV-2 spread [30]. All41

of the aforementioned are functions of human behavior.42

SSEs differ from superspreading individuals (SIs), which we define here as individuals43

who cause disproportionately more infections over their infectious lifetime. Event- and44

individual-based superspreading are not mutually exclusive; people who cause SSEs45

may qualify as SIs. However, this is not always the case. People may cause multiple46

infections at a public/social event but not cause disproportionately more infections47

over their infectious lifetime. Likewise, not all who become SIs do so by causing SSEs.48

People may become SIs due to intrinsic factors, such as greater-than-average contact49

rates or viral shedding [3, 32]. Heterogeneity in contact rates is well-established, while50

heterogeneity in SARS-CoV-2 shedding is evident in Badu, et al’s literature review [7]51

on SARS-CoV-2 viral loads, shedding, and transmission dynamics. Only a subset of52

the population may thus achieve SI status without causing SSEs, whereas anyone may53

cause SSEs under the right circumstances. Extrinsic factors such as crowding and poor54

ventilation potentiate SSEs [3, 6].55

Event- and individual-based superspreading are incorporated into models using differ-56

ent frameworks. SSEs may be modeled via rare events resulting in multiple infections;57

these events may be caused by any individual, and their frequency and number of re-58

sulting infections each follow some distribution. This is the approach taken by James,59

et al [26]. SIs may be modeled via heterogeneity in infectivity; individual infectivity60

follows some distribution, the right tail of which corresponds to superspreader individ-61

uals. This is the approach taken by Lloyd, et al [32]. There are many other approaches62
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to modeling SIs [43, 37, 42, 38]. Note that while some of these articles mention super-63

spreading events, their frameworks are nonetheless individual-based. Whereas most64

superspreading-incorporating models use an individual-based framework, we use an65

events-based framework.66

In what follows, SSE-dominated outbreaks refer to outbreaks with relatively higher SSE67

rates than non-SSE-dominated outbreaks; non-SSEs refer to non-SSE-related infection68

events. The goals of this study are to investigate:69

G1. The influence of SSEs relative to that of non-SSEs on outbreak dynamics70

G2. The effectiveness of hospitalisation and quarantine as control measures for SSE-71

versus non-SSE-dominated outbreaks72

G3. The influence of quarantine violation on the effectiveness of quarantine for SSE-73

versus non-SSE-dominated outbreaks74

We incorporate SSEs into a continuous-time Markov chain (CTMC) model, impose a75

constancy condition, and vary SSE and non-SSE rates to accomplish G1. The con-76

stancy condition requires that the expected number of infections following the CTMC77

model’s first change in state remain constant for different SSE and non-SSE rates. We78

simulate the CTMC model under multiple scenarios to accomplish G2:79

(i). With neither hospitalisation nor quarantine (NHQ). This scenario excludes hos-80

pitalization and quarantine.81

(ii). With realistic hospitalization and quarantine (RHQ). This scenario includes hos-82

pitalisation, quarantine, premature hospital discharge, and quarantine violation.83

(iii). With idealistic hospitalization and quarantine (IHQ). This scenario includes hos-84

pitalisation and quarantine but excludes premature hospital discharge and quar-85

antine violation.86

While simulating the CTMC model under these different scenarios partially addresses87

G3, we also simulate it under RHQ with varying levels of quarantine violation to88

accomplish G3. Our methods, results, and discussion are located in Sections 2, 3, and89

4, respectively.90

2 Methods91

We derive our continuous-time Markov chain (CTMC) model from Agusto et. al.’s [1]92

baseline COVID-19 model (see Section 2.1) and incorporate SSEs in Section 2.2. The93

constancy condition is derived in Section 2.3. After formulating the CTMC model and94

imposing the constancy condition, we detail our simulation protocol in Section 2.4.95

Finally, we introduce two superspreading-incorporating, discrete-time Markov chain96

(DTMC) models from literature [32, 26] in Section 2.5. These models’ results are used97

for comparison in Section 4.98
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2.1 Baseline COVID-19 Model99

In Agusto et al’s baseline COVID-19 model [1], the evolution of susceptible (S(t)),100

exposed (E(t)), asymptomatic (A(t)), symptomatic (I(t)), hospitalized (H(t)), quar-101

antined (Q(t)), and removed (R(t)) individuals through time is governed by the system102

of ordinary differential equations given below:103

dS

dt
= −β

S(t)[I(t) + ηAA(t) + ηQQ(t) + ηHH(t)]

N(t)

dE

dt
= β

S(t)[I(t) + ηAA(t) + ηQQ(t) + ηHH(t)]

N(t)
− σE(t)

dA

dt
= qσE(t)− (γA + δA)A(t)

dI

dt
= (1− q)σE(t) + νQQ(t) + νHH(t)− (ωQ + ωH + γI + δI)I(t)

dH

dt
= ωHI(t)− (νH + γH + δH)H(t)

dQ

dt
= ωQI(t)− (νQ + γQ + δQ)Q(t)

dR

dt
= (γA + δA)A(t) + (γI + δI)I(t) + (γQ + δQ)Q(t) + (γH + δH)H(t)

(1)

The exposed and asymptomatic classes account for the virus’ incubation period and the104

reduced infectiousness of asymptomatic individuals. Meanwhile, hospitalisation and105

quarantine function as control measures. Movement of individuals from the hospitalized106

and quarantined classes back to the symptomatic class account for limited resources107

and human behavior. We refer to the former as premature hospital discharge and the108

latter as quarantine violation.109

The model’s flow diagram is displayed in Figure 1, and its parameters are defined in110

Table 1.111
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Figure 1: Compartmental flow diagram for the baseline COVID-19 model (1). Susceptible in-
dividuals are exposed upon initial infection, and exposed individuals are either asymptomatic or
symptomatic once infectious. Asymptomatic individuals are removed upon recovery or death,
while symptomatic individuals may be hospitalised or quarantined and are removed upon recov-
ery or death. Hospitalised and quarantined individuals may be prematurely discharged from the
hospital or violate quarantine and are removed upon recovery or death.

Parameter Description Value

β Infection rate 0.4975
ηA, ηH , ηQ Infection rate modifiers 0.45, 0.1362, 0.3408
q Proportion that remain asymptomatic 0.5
σ Disease progression rate 1

6
γA, γI , γH , γQ Recovery rates 0.7565, 0.0775, 0.041, 0.083
ωH , ωQ Hospitalization & quarantine rates 0.1977, 0.453
νH , νQ Hospital discharge & quarantine violation rates 0.1301, 0.4605
δA, δI , δH , δQ Death rates 0.00325, 0.0065, 0.0065, 0.0065

Table 1: Parameter values for the baseline COVID-19 model (1) from Agusto et. al. [1].

2.2 Continuous-Time Markov Chain Model112

We limit ourselves to outbreaks scenarios – specifically, the short time period following113

the introduction of a small number of infected individuals into a completely susceptible114

population – so that we may assume the following:115

(†) Population size and mixing is such that transmission events are independent of116

each other and unaffected by the depletion of susceptible individuals and accu-117

mulation of removed individuals [35].118

This assumption is reasonable in outbreak scenarios because the number of infected
individuals is small relative to the number of susceptible individuals. (†) implies that

5
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S
N ≈ 1, so we may approximate the rate at which individuals transition from S to E
due to non-SSEs as

βS(ηAA+ I + ηQQ+ ηHH)

N
≈ β(ηAA+ I + ηQQ+ ηHH).

The possible events corresponding to the baseline COVID-19 model (1) are:119

ES→E : S → S − 1, E → E + 1 (An individual transitions from S to E)

EE→A : E → E − 1, A→ A+ 1 (An individual transitions from E to A)

EA→R : A→ A− 1, R→ R+ 1 (An individual transitions from A to R)

EE→I : E → E − 1, I → I + 1 (An individual transitions from E to I)

EI→H : I → I − 1, H → H + 1 (An individual transitions from I to H)

EI→Q : I → I − 1, Q→ Q+ 1 (An individual transitions from I to Q)

EI→R : I → I − 1, R→ R+ 1 (An individual transitions from I to R)

EH→I : H → H − 1, I → I + 1 (An individual transitions from H to I)

EH→R : H → H − 1, R→ R+ 1 (An individual transitions from H to R)

EQ→I : Q→ Q− 1, I → I + 1 (An individual transitions from Q to I)

EQ→R : Q→ Q− 1, R→ R+ 1 (An individual transitions from Q to R)

ES→E corresponds to a susceptible individual being exposed; EE→A corresponds to120

an exposed individual becoming infectious but remaining asymptomatic; EA→R cor-121

responds to an asymptomatic individual recovering or dying; EE→I corresponds to122

an exposed individual becoming infectious and symptomatic; EI→H corresponds to a123

symptomatic individual being hospitalised; EI→Q corresponds to a symptomatic indi-124

vidual being quarantined; EI→R corresponds to a symptomatic individual recovering or125

dying; ; EH→I corresponds to a hospitalised individual being prematurely discharged126

from the hospital; and EH→R corresponds to a hospitalised individual recovering or127

dying; EQ→I corresponds to a quarantined individual violating quarantine; EQ→R cor-128

responds to a quarantined individual recovering or dying.129

Let K ∈ N∪{0} be a Poisson random variable with expectation φ ∈ N. We incorporate130

SSEs by defining an additional event,131

ESSE : S → S − k,E → E + k (k individuals transition from S to E),

where k is some possible value of K. ESSE corresponds to k susceptible individuals132

becoming exposed. The event thus generates a random number of infections over a133

short period of time. This differs from ES→E , which generates one infection. In what134

follows, we take ψ ∈ R+ to be the deterministic rate at which infected individuals135

cause SSEs. (†) implies that SSEs involve a single infected individual and otherwise136

susceptible individuals, and assuming that hospitalized and quarantined individuals do137

not cause SSEs, we may take ψ(ηAA + I) to be the deterministic rate at which SSEs138

occur.139

Now, let τ ∈ R+. By considering the above events’ occurrence in a sufficiently small140

time interval, (τ, τ+∆τ), we may assume that at most one event occurs in this interval.141

6
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The probabilities corresponding to each event’s occurrence in (τ, τ + ∆τ) are then:142

P (ES→E ; ∆τ) = β(ηAA+ I + ηQQ+ ηHH)∆τ P (ESSE ; ∆t) = ψ(ηAA+ I)∆t

P (EE→A; ∆τ) = qσE∆τ P (EA→R; ∆τ) = (γA + δA)A∆τ

P (EE→I ; ∆τ) = (1− q)σE∆τ P (EI→H ; ∆τ) = ωHI∆τ

P (EI→Q; ∆τ) = ωQI∆τ P (EI→R; ∆τ) = (γI + δI)I∆τ

P (EH→I ; ∆τ) = νHH∆τ P (EH→R; ∆τ) = (γH + δH)H∆τ

P (EQ→I ; ∆τ) = νQQ∆τ P (EQ→R; ∆τ) = (γQ + δQ)Q∆τ

∆τ is taken to be small enough that
∑
P (Eξ; ∆τ) ≤ 1 for all τ ≤ T , where ξ ∈ {S →143

E,SSE,E → A,A → R,E → I, I → H, I → Q, I → R,H → I,H → R,Q → I,Q →144

R} and T ∈ R+; this ensures that the above are valid probabilities. We denote the set145

of all possible transitions as ST . The stochastic instantaneous rates at which events146

occur are obtained by dividing the above probabilities by ∆τ and taking147

lim
∆τ→0+

P (Eξ; ∆τ)

∆τ

for each ξ:148

q(ES→E) = β(ηAA+ I + ηQQ+ ηHH) q(ESSE) = ψ(ηAA+ I)

q(EE→A) = qσE q(EA→R) = (γA + δA)A

q(EE→I) = (1− q)σE q(EI→H) = ωHI

q(EI→Q) = ωQI q(EI→R) = (γI + δI)I

q(EH→I) = νHH q(EH→R) = (γH + δH)H

q(EQ→I) = νQQ q(EQ→R) = (γQ + δQ)Q

From the stochastic instantaneous rates, we obtain the probabilities of given events149

being the next to occur. Letting Ω
.
=

∑
q(Eξ), we have:150

P (ES→E) =
q(ES→E)

Ω
P (ESSE) =

q(ESSE)

Ω

P (EE→A) =
q(EE→A)

Ω
P (EA→R) =

q(EA→R)

Ω

P (EE→I) =
q(EE→I)

Ω
P (EI→H) =

q(EI→H)

Ω

P (EI→Q) =
q(EI→Q)

Ω
P (EI→R) =

q(EI→R)

Ω

P (EH→I) =
q(EH→I)

Ω
P (EH→R) =

q(EH→R)

Ω

P (EQ→I) =
q(EQ→I)

Ω
P (EQ→R) =

q(EQ→R)

Ω

The set of events SE
.

= {Eξ : ξ ∈ ST } and probabilities SP
.

= {P (Eξ) : ξ ∈ ST }151

constitute a continuous-time Markov chain. Our CTMC derivation from the baseline152

COVID-19 model (1) is adapted from Oluwatobilloba’s CTMC derivations from sim-153

pler (SIS and SIR) models for infectious disease spread [39]. For further reading on154

infectious disease modeling, see [28], and for general reading on Markov chains, see155

[41, 10].156
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2.3 Constancy Condition157

To investigate the relative influence of SSEs versus non-SSEs on outbreak dynamics,158

we impose a constancy condition by requiring that the expected number of infections159

following the first change in state remain constant for different rates of SSEs and160

non-SSEs. We denote this expectation as E0(X), where X ∈ N ∪ {0} is a random161

variable corresponding to the number of infections following a change in state. Note162

that these infections may be SSE- or non-SSE-related. Our constancy condition is163

adapted from James et al’s [26] constancy condition. Assuming that James et al take164

I0 = 1, both conditions may be derived using the pgfs of X given the systems’ initial165

states. However, the interpretation of E0(X) differs, as the systems’ state changes have166

different meanings (see Section 2.5).167

Let β∗ = κβ, where κ ∈ [0, 1] and β is the fitted infection rate parameter (see Table 1),168

which we take to be the non-SSE rate in the absence of SSEs. This gives β∗ ∈ [0, β].169

We seek ψ, the SSE rate, such that the constancy condition is satisfied for an arbitrary170

β∗. To begin, we derive the pgf for X. Letting171

P̃ (X = 0) = P (EEA) + P (EAR) + P (EEI) + P (EIH) + P (EIQ) + P (EIR) + P (EHI)

+ P (EHR) + P (EQI) + P (EQR)

and recalling that K ∼ Poisson(φ), we have:172

G(s) = P (X = 0)s0 + P (X = 1)s1 + P (X = 2)s2 + ...+ P (X = k)sk + ...

= [P (ESSE &K = 0) + P̃ (X = 0)]s0 + [P (ESSE &K = 1) + P (ESE)]s1

+P (ESSE &K = 2)s2 + ...+ P (ESSE &K = k)sk + ...

= P̃ (X = 0)s0 + P (ESE)s1 + P (ESSE)[P (K = 0)s0 + P (K = 1)s1

+ P (K = k)sk + . . .]

= P̃ (X = 0)s0 + P (ESE)s1 + P (ESSE)[φ
0

0! e
−φs0 + φ1

1! e
−φs1 + φ2

2! e
−φs2+

. . .+ φk

k! e
−φsk + . . .]

= P̃ (X = 0) + P (ESE)s+ P (ESSE)eφ(s−1)

From the pgf, we obtain the expectation of X:173

E(X) = G′(1) = P (ESE) + P (ESSE)φ =
β(ηAA+ I + ηHH + ηQQ) + ψ(ηAA+ I)φ

Ω

Taking 〈E,A, I,H,Q〉 = 〈E0, A0, I0, H0, Q0〉, where the latter are the initial numbers of174

exposed, asymptomatic, symptomatic, hospitalised, and quarantined individuals, E(X)175

becomes E0(X). For further reading on pgfs and their properties and epidemiological176

applications, see [35, 44].177

Next, we obtain ψ as a function of β∗. Letting E0,β(X) and E0,β∗(X) be the initial ex-178

pectations when the non-SSE rates are β and β∗ < β and setting E0,β(X) = E0,β∗(X),179
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we have:180

ψ =
I1(β − β∗)Ω′

I2[φΩ′ + βI1(φ− 1)]
, I1 = ηAA0 + I0 + ηHH0 + ηQQ0

I2 = ηAA0 + I0

Ω′ = σE0 + (γA + δA)A0 + (ωH + ωQ + γI + δI)I0

+ (νH + γH + δH)H0 + (νQ + γQ + δQ)Q0

(2)

Note that ψ is only defined for I2, φΩ′+ βI1(φ− 1) > 0. The requirement that ψ be of181

the above form constitutes our constancy condition.182

Also note that ψ is invariant under scaling with respect to 〈E0, A0, I0, H0, Q0〉. Indeed,
letting c ∈ R, ~v = 〈E0, A0, I0, H0, Q0〉, and ~w = 〈σ, ηA, ηH , ηQ, ωH , ωQ, νH , νQ,
γA, γI , γH , γQ, δA, δI , δH , δQ〉 and noting that I1(c~v; ~w) = cI1(~v; ~w), I2(c~v; ~w) = cI2(~v; ~w),
and Ω′(c~v; ~w) = cΩ′(~v; ~w), we have:

ψ(c~v; ~w) =
I1(c~v; ~w)(β − β∗)Ω′(c~v; ~w)

I2(c~v; ~w)[φΩ′(c~v; ~w) + βI1(c~v; ~w)(φ− 1)]

=
cI1(~v; ~w)(β − β∗)cΩ′(~v; ~w)

cI2(~v; ~w)[φcΩ′(~v; ~w) + βcI1(~v; ~w)(φ− 1)]

=
I1(~v; ~w)(β − β∗)Ω′(~v; ~w)

I2(~v; ~w)[φΩ′(~v; ~w) + βI1(~v; ~w)(φ− 1)]

= ψ(~v; ~w)

This property motivates our choice of initial conditions when simulating the CTMC183

model (see Section 2.4).184

2.4 Model Simulation185

Because our model is a CTMC, it may be simulated using Gillespie’s direct algorithm186

[20, 28]. The algorithm is a direct (versus approximate) method for simulating stochas-187

tic processes [20]. We simulated the model under the following scenarios:188

(i). Neither hospitalization nor quarantine (NHQ), in which hospitalisation, quaran-189

tine, premature hospital discharge, and quarantine violation are excluded from190

the model; this is equivalent to excluding EI→H , EI→Q, EH→I , and EQ→I from191

the model192

(ii). Realistic hospitalization and quarantine (RHQ), in which hospitalisation, quar-193

antine, premature hospital discharge, and quarantine violation are included in194

the model; this is equivalent to including EI→H , EI→Q, EH→I , and EQ→I in the195

model196

(iii). Idealistic hospitalization and quarantine (IHQ), in which hospitalisation and quar-197

antine are included in the model but premature hospital discharge and quarantine198

violation are excluded; this is equivalent to including EI→H and EI→Q in the199

model but excluding EH→I and EQ→I200

Note that RHQ corresponds to the baseline COVID-19 model (1). We also simulated201

the model under RHQ with low quarantine violation (lqv) and high quarantine violation202
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(hqv). We denote these sub-scenarios as RHQlqv and RHQhqv. For lqv, we halved the203

fitted value of quarantine violation (1
2νQ), and for hqv, we doubled the fitted value of204

quarantine violation (2νQ).205

Events were excluded by setting their corresponding stochastic instantaneous rates to206

zero. In NHQ, ωH , ωQ, νH , and νQ were set to zero, thereby eliminating hospitalization,207

quarantine, premature hospital discharge, and quarantine violation; in RHQ, ωH , ωQ,208

νH , and νQ remained set to their fitted values (see Table 1); and in IHQ, ωH and209

ωQ remained set to their fitted values, while νH and νQ were set to zero, thereby210

eliminating premature hospital discharge and quarantine violation.211

The initial conditions for NHQ, RHQ, and IHQ were 〈E0, A0, I0, H0, Q0〉 = 〈15, 2, 4, 0, 0〉,212

〈14, 2, 2, 1, 1〉, and 〈14, 2, 2, 1, 1〉, respectively; the CTMC model is independent of S0213

and R0. These initial conditions were obtained by simulating the baseline COVID-19214

model (1) under each scenario with 〈S0, E0, A0, I0, H0, Q0, R0〉 = 〈1010, 20, 0, 0, 0, 0, 0〉215

and recording the number of individuals in each class on day 3. S0 was taken to be216

1010 to ensure that the depletion of susceptible individuals had a negligible influence.217

Recall that the constancy condition is not defined for 〈E0, A0, I0, H0, Q0〉 = ~0 and is218

invariant under scaling of 〈E0, A0, I0, H0, Q0〉 (see Section 2.3). This motivates the219

need for a realistic initial proportion of asymptomatic, symptomatic, hospitalised, and220

quarantined individuals. The initial conditions for RHQlqv and RHQlqv were taken to221

be the same as for RHQ.222

For NHQ, RHQ, and IHQ, κ was varied from 0 to 1 in increments of 0.1, and ψ223

was calculated for each β∗ value using the constancy condition (2) with scenarios’224

corresponding initial conditions and parameter sets. κ was also varied from 0 to 1 in225

increments of 0.1 for RHQlqv and RHQhqv, but ψ was taken to be the same as for226

RHQ; it was not re-calculated using 1
2νQ or 2νQ. This allows for better isolation of227

quarantine violation’s influence on quarantine effectiveness for SSE- versus non-SSE-228

dominated outbreaks.229

Simulations were ended once either the disease went extinct or 50 active infections230

were attained, similar to the approach taken in [32]. The number of extinctions and231

total simulations were recorded to estimate the probabilities of outbreak extinction,232

and for surviving outbreaks, the times at which 50 active infections were attained and233

the cumulative numbers of SSE-related and non-SSE-related infections were recorded234

for analysis. These times are hereafter referred to as stop times.235

The number of simulations depended on the variances of the stop times. If the variance236

was less than 1500, 50000 simulations were ran; if the variance was between 1500 and237

15000, 500000 simulations were ran; and if the variance was greater than 15000, 1500000238

simulations were ran. Table 2 gives the number of simulations for each parameter set.239
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〈ωQ, ωH , νQ, νH〉 κ Simulations

〈0, 0, 0, 0〉 [0, 1] 50000
〈0.453, 0.1977, 0.23025, 0.1301〉 [0, 0.6] 500000
〈0.453, 0.1977, 0.23025, 0.1301〉 [0.7, 1] 50000
〈0.453, 0.1977, 0.4605, 0.1301〉 [0, 0.4] 500000
〈0.453, 0.1977, 0.4605, 0.1301〉 [0.5, 1] 50000
〈0.453, 0.1977, 0.921, 0.1301〉 [0, 1] 50000
〈0.453, 0.1977, 0, 0〉 [0, 0.3] 50000
〈0.453, 0.1977, 0, 0〉 [0.4, 0.5] 500000
〈0.453, 0.1977, 0, 0〉 [0.6, 0.8] 1500000
〈0.453, 0.1977, 0, 0〉 [0.9, 1] 500000

Table 2: Number of simulations for each parameter set. 〈0, 0, 0, 0〉 corresponds to NHQ,
〈0.453, 0.1977, 0.23025, 0.1301〉 corresponds to RHQlqv, 〈0.453, 0.1977, 0.4605, 0.1301〉 corresponds
to RHQ, 〈0.453, 0.1977, 0.921, 0.1301〉 corresponds to RHQhqv, and 〈0.453, 0.1977, 0, 0〉 corresponds
to IHQ.

2.5 Discrete-Time Markov Chain Models240

With CTMC models, the system may assume a new state at any time t ∈ R+; t is thus241

continuous. For our CTMC model, every time-step corresponds to a single event Eξ,242

ξ ∈ ST , occurring. With discrete-time Markov chain (DTMC) models, the system may243

only assume a new state at times {tk : k ∈ N}; t is thus discrete. For Lloyd et al’s244

[32] and James et al’s [26] DTMC models, every time-step corresponds to the death245

of the current generation of infected individuals and birth of the next generation of246

infected individuals. The CTMC and DTMC models’ state changes thus have different247

meanings.248

Lloyd, et al [32] utilize an individual-based superspreading framework. They incor-249

porate SIs into their DTMC via the random variable ν, the expected number of in-250

fections caused by an individual. Individuals thus have different potentials to infect251

others. They simulate their model under multiple scenarios, each of which assumes a252

different distribution for ν. We limit our comparison (see Section 4) to the scenario253

which assumes ν is γ-distributed. James, et. al. [26] utilize an event-based framework.254

They incorporate SSEs into their DTMC via ρ, the expected number of SSEs caused255

by an individual, and λ, the expected number of infections caused by an SSE. Every256

individual has the same potential to infect others.257

3 Results258

In each figure, κ increases from 0 to 1 in increments of 0.1; increasing values of κ259

correspond to decreasing rates of SSEs and increasing rates of non-SSEs. Note that,260

while all figures’ x-axes are the same, their y-axes differ.261

Scenario (i): Neither Hospitalisation nor Quarantine (NHQ)262

In NHQ, hospitalization, quarantine, premature hospital discharge, and quarantine263

violation are excluded from the model. Figure 2(a) shows the distribution of stop264
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times. The maximum, mean, and median stop times strictly decrease for κ ∈ [0, 1],265

while the minimum stop times are similar for κ ∈ [0, 0.7) but strictly increase for266

κ ∈ [0.7, 1]. Figures 2(b) and 2(c) show the variances of stop times and probabilities267

of extinction, respectively. Both strictly decrease for κ ∈ [0, 1], but they do so more268

quickly for smaller κ. Figure 2(d) shows the means of the cumulative numbers of SSE-269

related and non-SSE-related infections. Their curves are labelled as SSE and Non-SSE270

in the legend. The SSE curve strictly decreases with increasing κ, while the Non-SSE271

curve strictly increases. They do so more quickly for smaller κ and intersect between272

κ = 0.4 and κ = 0.5.273

(a) (b)

(c) (d)

Figure 2: (a) Distributions of Stops Times (NHQ) (b) Variances of Stop Times for NHQ (c)
Probabilities of Extinction for NHQ (d) Means of Cumulative Total of SSE- and Non-SSE-Related
Infections for NHQ

Scenario (ii): Realistic Hospitalization and Quarantine (RHQ)274

In RHQ, hospitalization, quarantine, premature hospital discharge, and quarantine275

violation are included in the model. Figure 3(a) shows the distribution of stop times.276

The maximum, mean, and median stop times strictly decrease for κ ∈ [0, 1], while the277

minimum stop times are similar for κ ∈ [0, 0.5) but generally increase for κ ∈ [0.5, 1].278

Figures 3(b) and 3(c) show the variances of stop times and probabilities of extinction,279
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respectively. Both strictly decrease for κ ∈ [0, 1], but they do so more quickly for280

smaller κ, the exception being the variances of stop times for κ ∈ [0, 0.1]. Figure281

3(d) shows the means of the cumulative numbers of SSE-related and non-SSE-related282

infections. Their curves are labelled as SSE and Non-SSE in the legend. The SSE283

curve strictly decreases with increasing κ, while the Non-SSE curved stricly increases.284

They do so more quickly for smaller κ and intersect between κ = 0.4 and κ = 0.5.285

(a) (b)

(c) (d)

Figure 3: (a) Distributions of Stops Times (RHQ) (b) Variances of Stop Times for RHQ (c)
Probabilities of Extinction for RHQ (d) Means of Cumulative Total of SSE- and Non-SSE-Related
Infections for RHQ

Scenario (iii): Idealistic Quarantine and Hospitalization (IHQ)286

In IHQ, hospitalization and quarantine are included in the model, but premature hos-287

pital discharge and quarantine violation are excluded. Figure 4(a) shows the distribu-288

tion of stop times. The maximum, mean, and median stop times strictly increase for289

κ ∈ [0, 0.7) but strictly decrease for κ ∈ [0.7, 1]. Meanwhile, the minimum stop times290

are similar for κ ∈ [0, 0.8) but strictly increase for κ ∈ [0.8, 1]. Figure 4(b) shows the291

variances of stop times, which strictly increase for κ ∈ [0, 0.7) but strictly decrease for292

κ ∈ [0.7, 1]. Figure 4(c) shows the probabilities of extinction, which strictly decrease293

with increasing κ for κ ∈ [0, 1] but remain near 1 for κ ∈ [0, 0.5) and quickly decrease294
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for κ ∈ [0.5, 1]. Figure 4(d) shows the means of the cumulative numbers of SSE-related295

and non-SSE-related infections. Their curves are labelled as SSE and Non-SSE in the296

legend. The SSE curve remains approximately constant for κ ∈ [0, 0.5) but strictly de-297

creases for κ ∈ [0.5, 1]. Meanwhile, the Non-SSE curve strictly increases for κ ∈ [0, 0.7),298

remains approximately constant for κ ∈ [0.7, 0.8), and strictly decreases for κ ∈ [0.8, 1].299

The curves intersect between κ = 0.4 and κ = 0.5.300

(a) (b)

(c) (d)

Figure 4: (a) Distributions of Stops Times (b) Variances of Stop Times for IHQ (c) Probabilities
of Extinction for IHQ (d) Means of Cumulative Total of SSE- and Non-SSE-Related Infections for
IHQ

Varying Quarantine Violation (RHQlqv and RHQhqv)301

In RHQlqv, RHQ’s quarantine violation level is halved, and in RHQhqv, RHQ’s quar-302

antine violation level is doubled. Figures 5(a), 5(b), 5(c), and 5(d) contain curves for303

RHQlqv, RHQ, and RHQhqv; these curves are labelled as Low Quarantine Violation,304

Medium Quarantine Violation, and High Quarantine Violation in the legends. Figures305

5(a) and 5(b) show the means and variances of stop times for each quarantine viola-306

tion level. For RHQlqv, both strictly increase for κ ∈ [0, 0.2) but strictly decrease for307

κ ∈ [0.2, 1]; for RHQ and RHQhqv, both strictly increase for κ ∈ [0, 1]. The means308

and variances of stop times strictly decrease going from RHQlqv to RHQ to RHQhqv309
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for each κ ∈ [0, 1], but their differences are greater for smaller κ. Figure 5(c) shows310

the probabilities of extinction. They strictly decrease for κ ∈ [0, 1] but do so more311

quickly for smaller κ. The probabilities of extinction also strictly decrease going from312

RHQlqv to RHQ to RHQhqv for κ ∈ [0, 1], but their differences are greater for smaller313

κ. They decrease more quickly for RHQlqv than RHQ and RHQhqv. Figure 5(d) shows314

the cumulative numbers of SSE-related infections. They strictly decrease for κ ∈ [0, 1]315

but do so more quickly for smaller κ, the exception being RHQlqv for κ ∈ [0, 0.2).316

(a) (b)

(c) (d)

Figure 5: (a) Means of Stops Times for RHQlqv, RHQ, and RHQhqv (b) Variances of Stop Times
for RHQlqv, RHQ, and RHQhqv (c) Probabilities of Extinction for RHQlqv, RHQ, and RHQhqv (d)
Means of Cumulative Total of SSE-Related Infections for RHQlqv, RHQ, and RHQhqv

4 Discussion317

In what follows, recall that as κ increases, SSE rates decrease, and as SSE rates de-318

crease, non-SSE rates increase. The relative SSE and non-SSE rates are governed by319

the constancy condition in Section 2.3. For both NHQ and RHQ, most outbreaks are320

more variable but less severe when SSE rates are higher, as evidenced by the variances321

of stop times in Figures 2(b) and 3(b) and the distributions of stop times in Figures322

2(a) and 3(a). Here, severity is based on stop times; more severe outbreaks are quicker323
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to attain 50 active infections, while less severe outbreaks are slower. Though most324

SSE-dominated outbreaks are less severe, the most severe SSE-dominated outbreaks325

are more severe than the most severe non-SSE-dominated outbreaks, as evidenced by326

the minimum stop times in Figures 2(a) and 3(a). Outbreaks are also more likely to327

go extinct when SSE rates are higher, as evidenced by the probabilities of extinction328

in 2(c) and 3(c). All of the aforementioned observations hold for IHQ when κ ∈ [0.7, 1]329

but not when κ ∈ [0, 0.7). For IHQ when κ ∈ [0, 0.7), most outbreaks are less variable330

(see Figure 4(b)) but more severe (see Figure 4(a)) when SSE rates are higher. The331

most severe SSE-dominated outbreaks are still more severe than the most severe non-332

SSE-dominated outbreaks (see Figure 4(a)), and outbreaks are still more likely to go333

extinct (see Figure 4(c)) when SSE rates are higher. Going from NHQ (κ ∈ [0, 1]) to334

RHQ (κ ∈ [0, 1]) to IHQ (κ ∈ [0.7, 1]), outbreaks increase in variability (see Figures335

2(b), 3(b), and 4(b)), decrease in severity (see Figures 2(a), 3(a), and 4(a)), and are336

more likely to go extinct (see Figures 2(c), 3(c), and 4(c)).337

Differences for IHQ when κ ∈ [0, 0.7) are likely related to high probabilities of extinc-338

tion. For κ ∈ [0, 0.7), outbreaks may be less variable but more severe when SSE rates339

are higher because surviving outbreaks are restricted to those with many SSE-related340

infections early on. This is evidenced by the means of cumulative SSE-related infections341

remaining approximately constant when κ ∈ [0, 0.5) despite decreasing SSE rates, after342

which they decrease with decreasing SSE rates, as expected (see Figure 4(d)). Mean-343

while, the means of total non-SSE-related infections increase with increasing non-SSE344

rates when κ ∈ [0, 0.7), as expected, but decrease when κ ∈ [0.7, 1] despite increasing345

non-SSE rates (see Figure 4(d)). The weakening pull towards extinction may allow 50346

current infections to be attained more quickly (see Figure 4(a)), to the extent that the347

number of cumulative infections is reduced. For NQH and RHQ, the probabilities of348

extinction are lower than for IHQ (see Figures 2(c), 3(c), and 4(c)), and the means349

of cumulative SSE-related and non-SSE-related infections for NHQ and RHQ decrease350

with decreasing SSE rates and increase with increasing non-SSE rates (see Figures351

2(d) and 3(d)), as expected. Note that for NHQ and RHQ, the means of cumulative352

SSE-related infections decrease more quickly for smaller κ (see Figures 2(d) and 3(d)),353

while for IHQ, the means of cumulative SSE-related infections decrease more slowly354

for smaller κ when κ ∈ [0.5, 0.7) but more quickly for smaller κ when κ ∈ [0.7, 1] (see355

Figure 4(d)). This, in conjunction with the slight lag between the means of cumulative356

SSE-related infections decreasing and outbreaks becoming more variable but less severe357

when SSE rates are higher, suggests that κ ∈ [0.5, 0.7) corresponds to a transitional358

period. During this period, dynamics change from those only observed for IHQ to359

those also observed for NHQ and RHQ.360

Greater variability in SSE-dominated outbreak profiles may limit predictions. In-361

creased variability increases prediction uncertainty, which may decrease prediction362

accuracy. Increased prediction uncertainty also shortens the time period over which363

predictions hold. Such limitations impede public health responses. Meanwhile, taking364

more time in most cases to attain 50 current infections when SSE rates are higher may365

allow the virus avoid detection for longer; more sensitive and stable surveillance sys-366

tems are necessary to detect the virus at low levels. Because even slow SSE-dominated367

outbreaks may abruptly take off, timeliness is also key. For further information on the368
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stability, sensitivity, and timeliness of surveillance systems, see [12, 15]. Persistence at369

low levels also facilitates the evolution of more infectious variants [5, 46]. The pub-370

lic health consequences associated with SSE-dominated outbreaks are, in some cases,371

mitigated by high probabilities of extinction. For IHQ, SSE-dominated outbreaks al-372

most always go extinct; for RHQ, SSE-dominated outbreaks are somewhat likely to go373

extinct. Public health consequences are thus mostly mitigated for IHQ and somewhat374

mitigated for RHQ. They are not, however, mitigated for NHQ, as outbreaks (SSE- or375

non-SSE-dominated) seldom go extinct in this scenario.376

Across-the-board decreases in probabilities of extinction going from IHQ to RHQ to377

NHQ suggest that increasing hospitalisation and quarantine and decreasing prema-378

ture hospital discharge and quarantine violation forces more outbreaks to extinc-379

tion. Greater differences for SSE-dominated outbreaks versus non-SSE-dominated380

outbreaks imply that hospitalisation and quarantine are more effective at controlling381

SSE-dominated outbreaks; likewise, premature hospital discharge and quarantine vi-382

olation are more consequential for such outbreaks. Quicker decreases in probabilities383

of extinction for IHQ, RHQ, and NHQ when SSE rates are higher further imply that384

SSE-dominated outbreaks are more sensitive to changes in hospitalisation, quarantine,385

premature hospital discharge, and quarantine violation. High probabilities of extinction386

for IHQ when SSE rates are higher, in conjunction with the quicker decreases, imply387

that reducing premature hospital discharge and quarantine violation substantially in-388

creases the effectiveness of hospitalisation and quarantine at forcing SSE-dominated389

outbreaks to extinction. When weighing the benefits and detriments of control mea-390

sures, the relative rates of SSEs versus non-SSEs should thus be considered; for more391

on the benefits and detriments of control measures, see [27, Chapter 17]. Note that in392

all of the aforementioned, the effectiveness of hospitalisation and quarantine and the393

consequences of premature hospital discharge and quarantine violation were evaluated394

using probabilities of extinction versus other metrics, such as cumulative infections or395

deaths; the latter metrics would be misleading because simulations were ended once396

either the disease went extinct or 50 active infections were attained (see Section 2).397

For RHQlqv, outbreaks are more variable but less severe on average when SSE rates are398

higher (see Figures 5(b) and 5(a)), similar to NHQ and RHQ; for RHQhqv, outbreaks399

are less variable but more severe on average for κ ∈ [0, 0.2) and more variable but400

less severe on average for κ ∈ [0.2, 1] when SSE rates are higher (see Figures 5(b)401

and 5(a)), similar to IHQ. For RHQlqv and RHQhqv, outbreaks are more likely to402

go extinct when SSE rates are higher (see Figure 5(c)), similar to NHQ, RHQ, and403

IHQ. The means of total SSE-related infections decrease with decreasing SSE rates for404

RHQlqv, RHQ, and RHQhqv, but they do so more slowly for RHQlqv than RHQ or405

RHQhqv when SSE rates are higher (see Figure 5(d)). We expect the opposite, given406

that quarantined individuals cannot cause SSEs. Going from RHQ to RHQhqv, the407

means of total SSE-related infections decrease more slowly, as expected. Differences408

for RHQlqv when κ ∈ [0, 0.2) may thus be related to high probabilities of extinction409

(see Figure 5(c)), with κ ∈ [0, 0.2) corresponding to a transitional period, similar to410

IHQ with κ ∈ [0.5, 0.7).411

Going from RHQlqv (κ ∈ [0, 1]) to RHQ (κ ∈ [0, 1]) to RHQhqv (κ ∈ [0.2, 1]), outbreaks412
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decrease in variability, increase in severity, and are less likely to go extinct (see Fig-413

ures 5(b), 5(a), and 5(c)). These differences are greater for SSE-dominated outbreaks,414

most notably with respect to variability and extinction. Taking less time on average to415

attain 50 current infections when quarantine violation is higher shortens the time pe-416

riod during which outbreaks may feasibly be contained; the further outbreaks progress,417

the harder it becomes to contain them [33]. While lesser variability in outbreak pro-418

files when quarantine violation is higher allows for lesser prediction uncertainty, it419

also allows for a greater number of more severe outbreaks, given that outbreaks are420

more severe on average when quarantine violation is higher. Larger numbers of infec-421

tions over shorter time periods may strain resources [14]. Across-the-board decreases in422

probabilities of extinction going from RHQlqv to RHQ to RHQhqv suggest that decreas-423

ing quarantine violation forces more outbreaks to extinction. Greater differences for424

SSE-dominated versus non-SSE-dominated outbreaks imply that quarantine violation425

is more consequential for SSE-dominated outbreaks. Quicker decreases in probabilities426

of extinction for RHQlqv, RHQ, and RHQhqv when SSE rates are higher further imply427

that SSE-dominated outbreaks are more sensitive to changes in quarantine violation.428

High probabilities of extinction for RHQlqv when SSE rates are higher, in conjunc-429

tion with the quicker decreases, imply that reducing quarantine violation substantially430

increases the effectiveness of quarantine at forcing SSE-dominated outbreaks to extinc-431

tion. This reinforces our previous findings regarding premature hospital discharge and432

quarantine violation. Again note that in all of the aforementioned, the effectiveness of433

quarantine and consequences of quarantine violation were evaluated using probabilities434

of extinction versus other metrics, such as cumulative infections or deaths; the latter435

metrics would be misleading because simulations were ended once either the disease436

went extinct or 50 active infections were attained (see Section 2).437

Comparison with SI models in literature438

Lloyd, et al [32] and James, et al [26] utilize discrete-time Markov Chain (DTMC)439

models to investigate the relative influences of SIs and SSEs on outbreak dynamics.440

Their models’ underlying biological process is more simplistic than ours; susceptible441

individuals are infected and infected individuals recover. There are neither exposed,442

asymptomatic, hospitalized, nor quarantined individuals. DTMC models also evolve443

through time differently, and their state changes have different meanings (see Section444

2.5).445

Lloyd, et al [32] and James, et al [26] found that increasing SIs or SSEs relative to446

non-SIs or non-SSEs increases the probability that outbreaks go extinct but decreases447

the variability of surviving outbreaks, which are more severe when dominated by SIs448

or SSEs. This partialy agrees with our findings for NHQ (κ ∈ [0, 1]), RHQ (κ ∈449

[0, 1]), and IHQ (κ ∈ [0.7, 1]) – increasing SSEs relative to non-SSEs increases both the450

probability that outbreaks go extinct and the variability of surviving outbreaks, which451

are less severe when dominated by SSEs – and fully agrees with our findings for IHQ452

(κ ∈ [0, 0.7)). While the probabilities of extinction increase with increasing influence453

of SIs or SSEs relative to non-SIs or non-SSEs for Lloyd et al’s, James et al’s, and our454

model, they approach different values. For the individual-based model, they approach455

1, but for the event-based models, they do not. This suggests that SSE-dominated456
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outbreaks are more likely to survive than SI-dominated outbreaks.457

Differences in the variability and severity of surviving outbreaks between Lloyd, et al’s458

[32], James et al’s [26], and our model for NQH (κ ∈ [0, 1]), RHQ (κ ∈ [0, 1]), and459

IHQ (κ ∈ [0, 0.7)) may be related to differences in probabilities of extinction, which are460

higher for Lloyd, et al’s [32], James, et al’s [26], and our model for IHQ (κ ∈ [0.7, 1]).461

As discussed above, high probabilities of extinction may limit surviving outbreaks to462

more severe outbreaks. As the pull towards extinction weakens, a larger variety of463

outbreaks may survive. Recall that, while most SSE-dominated outbreaks are less464

severe than non-SSE-dominated oubreaks for NHQ (κ ∈ [0, 1]), RHQ (κ ∈ [0, 1]),465

and IHQ (κ ∈ [0.7, 1]), the most severe SSE-dominated outbreaks are more severe466

than the most severe non-SSE-dominated outbreaks; this implies that, if sufficiently467

many of the less severe SSE-dominated outbreaks were to go extinct, most of the468

surviving SSE-dominated outbreaks may be more severe than the non-SSE-dominated469

outbreaks, which would agree with the Lloyd, et al’s, James, et al’s, and our results for470

IHQ (κ ∈ [0, 0.7)). Overall, differences between the individual-based and event-based471

models suggest that, if outbreaks are SI- and/or SSE-dominated, SIs and SSEs must472

be considered separately, as they have distinct influences on outbreak dynamics.473

5 Conclusion474

This study had three main goals: investigating (1) the influence of SSEs relative to475

that of non-SSEs on outbreak dynamics, (2) the effectiveness of hospitalisation and476

quarantine as control measures for SSE- versus non-SSE-dominated outbreaks, and (3)477

the influence of quarantine violation on the effectiveness of quarantine for SSE- versus478

non-SSE-dominated outbreaks.479

To accomplish these goals, we incorporated SSEs into a continuous-time Markov480

chain (CTMC) model (Section 2.2), imposed a constancy condition (Section 2.3), sim-481

ulated the CTMC model under multiple scenarios (Section 2.4), and varied quarantine482

violation levels (Section 2.4). The scenarios differed in their inclusion/exclusion of483

hospitalisation, quarantine, premature hospital discharge, and quarantine violation.484

When hospitalisation and quarantine are excluded or when hospitalisation, quarantine,485

premature hospital discharge, and quarantine violation are included, SSE-dominated486

outbreaks are more variable, less severe, and more likely to go extinct than non-487

SSE-dominated outbreaks. While most SSE-dominated outbreaks are less severe,488

the most severe SSE-dominated outbreak is more severe than the most severe non-489

SSE-dominated outbreaks. When hospitalisation and quarantine are included but490

premature hospital discharge and quarantine violation are excluded, SSE-dominated491

outbreaks are more likely to go extinct than non-SSE-dominated outbreaks but less492

variable and more severe. When hospitalisation, quarantine, premature hospital dis-493

charge, and quarantine violation are included and quarantine violation is halved, SSE-494

dominated outbreaks behave similarly to when hospitalisation and quarantine are in-495

cluded but premature hospital discharge and quarantine violation are excluded; when496

quarantine violation is doubled, outbreaks behave similarly to when hospitalisation497

and quarantine are excluded.498
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In all scenarios, hospitalisation and quarantine are more effective at controlling SSE-499

dominated outbreaks than non-SSE-dominated outbreaks. Similarly, premature hos-500

pital discharge and quarantine violation are more consequential for SSE-dominated501

outbreaks. When hospitalisation and quarantine are excluded, SSE-dominated out-502

breaks are highly unlikely to go extinct; when hospitalisation, quarantine, premature503

hospital discharge, and quarantine violation are included, SSE-dominated outbreaks504

are moderately unlikely to go extinct; and when hospitalisation and quarantine are in-505

cluded but premature hospital discharge and quarantine violation are excluded, SSE-506

dominated outbreaks are highly likely to go extinct. Halving quarantine violation507

significantly increases the likelihood that SSE-dominated outbreaks go extinct, while508

doubling quarantine violation somewhat decreases the likelihood that SSE-dominated509

outbreaks go extinct.510

Altogether, SSE-dominated outbreaks notably differ from non-SSE-dominated out-511

breaks in terms of variability, severity, and likelihood of extinction; they also differ512

from SI-dominated outbreaks, albeit more subtly (see Section 4). SSE-dominated out-513

breaks’ dynamics are strongly influenced by whether individuals may be hospitalised or514

quarantined, as well as whether they may be prematurely discharged from the hospital515

or violate quarantine. Both hospitalisation and quarantine are highly effective control516

measures for SSE-dominated outbreaks, but premature hospital discharge and quaran-517

tine violation substantially reduce their effectiveness. Note that we evaluated control518

measures using the likelihood of extinction. All of the aforementioned has important519

public health implications (see Section 4), which necessitates that SARS-CoV-2 mod-520

elers 1) determine the extent to which SSEs and/or SIs contribute to spread and 2)521

distinguish between SSEs, SIs, and non-SSEs/non-SIs in their models. Finally, further522

exploration of the individual and combined influences of SSEs and SIs on outbreak dy-523

namics, as well as the effectiveness of control measures for different types of outbreaks,524

is necessary to better inform containment and eradication efforts.525
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