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+ Abstract

5 Estimating the differences in the incubation-period, serial-interval, and

3 generation-interval distributions of SARS-CoV-2 variants is critical to

3 understanding their transmission and control. However, the impact of epidemic
s dynamics is often neglected in estimating the timing of infection and
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3 transmission—for example, when an epidemic is growing exponentially, a cohort of
w0 infected individuals who developed symptoms at the same time are more likely to
s have been infected recently. Here, we re-analyze incubation-period and

2 serial-interval data describing transmissions of the Delta and Omicron variants

ss from the Netherlands at the end of December 2021. Previous analysis of the same
4 data set reported shorter mean observed incubation period (3.2 days vs 4.4 days)
s and serial interval (3.5 days vs 4.1 days) for the Omicron variant, but the number
s of infections caused by the Delta variant decreased during this period as the

s number of Omicron infections increased. When we account for growth-rate

s differences of two variants during the study period, we estimate similar mean

» incubation periods (3.8-4.5 days) for both variants but a shorter mean generation
so interval for the Omicron variant (3.0 days; 95% CI: 2.7-3.2 days) than for the Delta
si variant (3.8 days; 95% CI: 3.7-4.0 days). We further note that the differences in

52 estimated generation intervals may be driven by the “network effect”—higher

53 effective transmissibility of the Omicron variant can cause faster susceptible

s« depletion among contact networks, which in turn prevents late transmission

s (therefore shortening realized generation intervals). Using up-to-date

ss generation-interval distributions is critical to accurately estimating the

57 reproduction advantage of the Omicron variant.

» Significance

5o Recent studies suggest that individuals infected with the Omicron variant develop
o symptoms earlier (shorter incubation period) and transmit faster (shorter

e generation interval) than those infected with the Delta variant. However, these

&2 studies typically neglect population-level effects: when an epidemic is growing, a
3 greater proportion of current cases were infected recently, biasing us toward

s« Observing faster transmission events. Accounting for this dynamical bias, we find
s that Omicron infections from the Netherlands at the end of December 2021 had

s similar incubation periods, but shorter generation intervals, compared to Delta

7 infections from the same period. Shorter generation intervals of the Omicron

¢ variant might be due to its higher effective reproduction number, which can cause
o faster local susceptible depletion around the contact network.
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» 1 Introduction

7 Estimating transmission advantages of new SARS-CoV-2 variants is critical to pre-
72 dicting and controlling the course of the COVID-19 pandemic [I]. Transmission ad-
73 vantages of invading variants are typically characterized by the ratios of reproduction
7« numbers, Riny/Ries, and the differences in growth rates, ri,, — 7es. These quantities
s are linked by the generation-interval distributions of the resident and invading vari-
7 ants. For example, an invading variant with shorter generation intervals—defined
77 as the time between infection of the infector and the infectee—will exhibit faster
s epidemic growth (ry, > 7es > 0) even if their reproduction numbers are identical
79 (Rinv = Ryes > 1).

80 Estimating the generation-interval distribution is challenging, in part due to dif-
a1 ficulties in observing actual infection events. Many researchers primarily focus on
g2 comparisons of other transmission intervals, such as the time between symptom on-
s3 sets (also referred to as serial intervals) or between testing events [2] of the infector
s« and the infectee. Each of these transmission-interval distributions can be subject to
s dynamical effects, which can cause transmission-interval distributions to systemati-
s cally differ from the corresponding generation-interval distribution.

87 For example, when the epidemic is growing, there will be more recent infections,
ss and we are therefore more likely to observe recently infected individuals among a
so cohort of infectors who developed symptoms at the same time. In this case, their
o incubation periods will be shorter, on average, than those of their infectees, causing
o1 the mean serial interval to be longer than the mean generation interval [3]. We refer
2 to such effects of growth rate on expected intervals as “dynamical bias” Because of
s dynamical bias, observed differences in transmission-interval distributions between
o variants are not necessarily equivalent to differences in the underlying generation-
s interval distributions when their growth rates differ.

% Here, we re-analyze serial-interval data collected by [4], representing within- and
o7 between-household transmissions of the B.1.617.2 (Delta) and B.1.1.529 (Omicron)
s variants from the Netherlands between 13 and 26 December 2021. The study found
9% shorter mean within-household serial intervals (3.5 vs 4.1 days) and mean incubation
o periods (3.2 vs 4.4 days) for transmission pairs with S-gene target failure (mostly
101 Omicron during the study period) than without (mostly Delta), but did not con-
102 sider dynamical biases caused by growth-rate differences in their inference: during
103 this period, the incidence of Omicron cases were increasing, whereas the incidence
s of Delta cases were decreasing. We take the epidemiological context in the Nether-
s lands during the study period into account to provide corrected estimates for the
s incubation periods and generation-interval distributions of the Delta and Omicron
w7 variants. We show that using up-to-date generation-interval distributions is critical
s to accurately estimating the reproduction advantage (i.e., the ratio between the re-
1o production numbers of the invading and resident variants) of emerging SARS-CoV-2
1o variants.
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n 2 Methods

e 2.1 Data

s We analyze time series of reported COVID-19 cases (https://data.rivm.nl/covid-19/)
s and proportions of SARS-CoV-2 variants detected (https://www.rivm.nl/coronavirus-covid-19/
us virus/varianten) from the Netherlands between 29 November 2021 and 30 January
us  2022. Data sets are publicly available on the National Institute for Public Health
u7 and the Environment (RIVM) website.

118 Serial-interval data are taken from [4]. Infector-infectee pairs were identified
o through contact tracing, and their symptom onset dates were reported through a
120 national surveillance database. Serial intervals were then calculated by taking the
21 difference between symptom onset dates of the infector and the infectee. In order
122 to ensure independence between serial intervals, one infectee was chosen at random
123 for each infector in the original analysis. See original article for additional details of
124 data collection.

125 Publicly available data are aggregated by the length of the serial interval in days
126 and do not include additional individual-level information, such as exposure dates,
127 symptom onset dates, or age. The original article presented serial-interval estimates
s stratified by the vaccination status in supplementary materials, but stratified data
129 are not publicly available; we rely on publicly available data to keep the analysis
130 simple and to focus on the qualitative effects of dynamical biases. The aggregated
1 data consists of 2529 transmission pairs and are further stratified by the presence of
132 S gene target failure (SGTF), week of infectors’ symptom onset date (week 50, 1319
133 December 2021, and week 51, 20-26 December 2021), and the type of transmission
1 (within- or between-household transmission). In the main text, we combine data
135 from weeks 50 and 51 of 2021 (13-26 December) and present a stratified analysis
136 in Supplementary Material. For simplicity, we refer to transmission pairs with and
17 without SGTFs as Omicron and Delta transmission pairs, respectively. Incubation
133 period data were originally collected from 513 individuals (consisting of 258 Omicron
1o and 255 Delta cases), with symptom onsets between 1 December 2021 and 2 January
o 2022; however, the data are not publicly available with the original article. Instead,
1 we rely on previous estimates [4] to derive growth-rate-adjusted incubation-period
142 distributions.

ws 2.2 Estimating epidemic growth rates

s In order to accurately estimate incubation-period and generation-interval distribu-
s tions of the Delta and Omicron variants, we have to take their epidemiological
us dynamics—in particular, their growth rates—into account. To estimate the growth
17 rates of the Delta and Omicron variants, we first estimate the number of COVID-19
g cases infected with each variant by multiplying reported weekly numbers of cases by
149 the proportion of Delta and Omicron variants detected—we use weekly time series
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150 to smooth over patterns of testing and reporting within each week. We note that
151 the proportion of Delta and Omicron variants detected is reported with the date
12 of sampling, whereas the case data are reported with the date of report, meaning
153 that there is some delay between the two data sets (typically around 2 days). For
152 simplicity, we do not account for this delay in our growth-rate estimates; instead, we
155 later perform sensitivity analysis to assess how growth rates affect the inferences of
155 the incubation-period and generation-interval distributions. We also do not account
157 for uncertainties around the estimates of the proportion of each variant—almost
155, 2000 samples were tested on each week between the week of November 28, 2021,
150 and the week of January 23, 2022, making uncertainty due to sample size small; we
1o note however that this estimate is also sensitive to the assumption that sampling is
11 random.

162 We then fit a generalized additive model [5] to the logged weekly case estimates
163 to obtain smooth trajectories for case time series. More specifically, we model the
164 logged weekly numbers of cases infected with each variant as a function of time us-
165 ing a penalized cubic spline fitted with restricted maximum likelihood (specified as
166 gam(log(cases)~s(time, bs="cs"), method="REML") using the MGCV R package):
17 We use Gaussian likelihoods to fit to logged cases in part for convenience, and in part
168 because the inferred numbers of cases infected with each variant are not whole num-
160 bers. In principle, it might be preferable to explicitly model the process of sampling
1o for strain testing, and then using negative-binomial likelihoods for case numbers [0],
i1 but our main purpose here is simply to roughly estimate growth rates with reason-
12 able uncertainties. Finally, we take the derivative of the predicted logged numbers
13 of cases infected with each variant to obtain time-varying growth rate estimates.

174 To obtain confidence intervals on the estimated time-varying growth rates, we
175 generate 1000 parameter sets by resampling spline coefficients from a multivariate
e normal distribution using the estimated variance-covariance matrices. We calculate
77 time-varying growth rates from each parameter set and use equi-tailed quantiles to
s generate 95% confidence limits. We note that this method of calculating confidence
179 intervals gives point-wise confidence intervals, meaning that the confidence intervals
0 give 95% coverage for the set of estimates at each time point; these intervals are
e narrower than simultaneous confidence intervals, which give 95% coverage for the set
132 of estimated time series across the whole time period [7].

w5 2.3 Estimating forward incubation-period distributions from
164 backward incubation-period distributions

155 The incubation-period distributions from 513 individuals (consisting of 258 Omicron
s and 255 Delta cases), with symptom onsets between 1 December 2021 and 2 January
157 2022, were previously reported in [4]. These data cover a wider time period than the
s serial-interval data. [4] used the methods of [8], which estimates incubation period
189 by inferring distributions of time of infection for each individual from their known
wo exposure dates. In particular, the methods of [8] assume that the infection time
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11 is uniformly distributed across exposure dates and compares the inferred infection
12 time to a known symptom-onset time to calculate the incubation period for each
13 individual. Even if this method can accurately estimate the infection time, and
104 therefore the incubation period, of each individual, dynamical biases can still affect
15 this sort of cohort-based estimation of incubation period.

196 More specifically, incubation periods (and other epidemiological delays) can be
w7 measured in two ways: forward and backward [3]. Forward incubation periods are
18 measured from a cohort of individuals who were infected at the same time. We expect
o the forward incubation-period distribution f;(7) to remain relatively constant over
200 the course of an epidemic of one given variant, although biases can arise in observing
201 incubation periods, based on public or medical awareness of the disease. Backward
202 incubation periods are measured from a cohort of individuals who developed symp-
203 toms at the same time. The backward incubation-period distribution is sensitive to
204 epidemic dynamics: the difference between the forward and backward distribution
205 arises because forward incubation periods look forward from the reference point to-
206 wards symptom development, which is an individual-level process, while backward
207 incubation periods look backwards towards an infection event, which requires an
28 interaction with an infectious individual.

200 In particular, when incidence of infection is growing exponentially, we are more
a0 likely to observe backward incubation periods that are shorter than the corresponding
an forward incubation periods because there will be relatively more individuals who were
a2 infected recently. Assuming that incidence of infection is changing exponentially at a
213 constant rate r across the study period, the backward incubation-period distribution
2a by(7) corresponds to:

exp(—r7) fr(7)
bi(7T) = —= : (1)
[ exp(—ra) f1(z) da

25 where the denominator is a normalization constant so that b;(7) integrates to 1.
26 Therefore, the backward incubation-period distribution b;(7) gives a biased estimate
a7 of the corresponding forward distribution f;(7). The method of [§] starts from ob-
218 served symptom onsets, and estimates the backward incubation-period distribution.
219 Assuming a constant growth rate r, the corresponding forward incubation-period
20 distributions can be calculated by inverting Eq. , taking into account that f; is a
21 probability distribution and therefore needs to be normalised to integrate to 1:

f]<7> _ eXp(’/’T)bI(T) (2)

J5° exp(ra)br(z) da’

22 Since incubation-period data are not provided, we are not able to fit Eq. directly;
»; instead we take the backward incubation-period distributions b;(x) estimated by [4],
24 which was originally assumed to follow a Weibull distribution, and apply Eq. . In
»s particular, [4] estimated the scale and shape parameters of the Weibull distribution
26 to be 4.93 (95% CI: 4.51-5.37) and 1.83 (95% CI: 1.59-2.08), respectively, for the
27 Delta cases, and 3.60 (95% CI: 3.23-3.98) and 1.50 ((95% CI: 1.32-1.70), respectively,
28 for Omicron cases.
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220 We also model the backward incubation-period distribution b;(7) using a Weibull
20 distribution based on the assumptions of [4]. To account for uncertainties in the orig-
231 inal parameter estimates, we rely on a sampling scheme, similar to the one we used
2 for the growth rate analysis (in Section 2.2). First, we approximate the previously
233 inferred posterior distributions of the shape and scale parameters of the Weibull dis-
23 tribution using a lognormal distribution—we parameterize the lognormal distribution
235 such that (i) its median matches the median of the posterior distributions and (ii) the
236 probability that a random variable following the specified lognormal distribution falls
27 between the lower and upper credible limits is 95% [9]. We draw 1000 samples of the
23 shape and scale parameters (for the backward distribution b;(7)) from the specified
230 lognormal distributions and estimate the corresponding forward distribution using
20 Eq. . We take 95% equi-tailed quantiles to obtain 95% confidence intervals. We
21 repeat the analysis across plausible ranges of r for the Delta and Omicron variants
22 separately (discussed later).

x 2.4 Estimating forward generation-interval distributions from
2u4 forward serial-interval distributions

25 Dynamical biases in the serial-interval distributions are more complex because the se-
26 rial interval depends on the incubation periods of the infector and the infectee as well
27 as the generation interval between them (Fig.[I). For example, [4] measured the for-
xus  ward serial-interval distributions from cohorts of infectors who developed symptoms
a9 during the same week. In this case, the forward serial interval 7, can be expressed
20 in the form [3]:

Ts = —Ti1 +Tg7symp +7_i72, (3)

251 where 7;; represents the backward incubation period of the infector (because all
22 infectors developed symptoms at the same time), and 7,5, represents the forward
23 incubation period of the infectee. Here, 7,4mp represents the generation interval
s between the infector and the infectee; we use the subscript symp to indicate that
55 these generation intervals are measured from infectors who developed symptoms at
6 the same time.

The generation-interval distribution for a symptom-based cohort (7, symp in Eq. )
is biased (compared to the generation-interval distribution for an infection-based co-
hort) because infectors who developed symptoms at the same time will have shorter
incubation periods (when the epidemic is growing) and are therefore likely to transmit
earlier (Fig. [JA). This generation-interval distribution for a symptom-based cohort
depends on the backward incubation-period distribution:

Forapmptom(7) = /0 " e ()i () da, (4)

where fq(7|2) represents the forward generation-interval distribution conditional
on a known value of the incubation period, x, and b;(z) represents the backward
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Figure 1:  Schematic diagrams of serial and generation intervals from
symptom- and infection-based infector cohorts. (A) Forward serial intervals
are measured from the cohort of infectors who develop symptoms at the same time.
In this case, infectors will have shorter incubation periods than their infectees on
average; the corresponding generation intervals will be also short because infectors
with short incubation periods will transmit earlier. (B) Generation intervals for the
cohort of infectors who are infected at the same time are not biased by dynamical
effects on incubation periods.
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incubation-period distribution. Instead, the forward generation-interval distribution
measured from a cohort of individuals who were infected at the time is expected
to provide reliable estimates of the distribution across individuals (because their
incubation-period distribution is expected to remain constant over time, Fig. ):

Fomi(r) = / " fou(rle) fula) da (5)

7 Previous analyses of serial-interval distributions typically assumed that the incuba-
258 tion periods and generation intervals are independent [10]; in this case, the generation-
0 interval distribution for the symptom-based and infection-based cohorts are identical.
260 In summary, when an epidemic is growing exponentially, there are two opposing
1 effects affecting the relationship between the mean forward serial and generation in-
»2 terval. First, infectors who developed symptoms at the same time are more likely
%3 to have shorter (backward) incubation periods than the corresponding forward in-
264 cubation periods of their infectees on average, E[r;1] < E[r;5], causing the mean
s forward serial interval to be longer than the mean symptom-based generation inter-
266 val (E[75] > E[7ysymp]). Second, the mean symptom-based generation interval will
27 be shorter than the mean infection-based generation interval: E[7yn] > E[7y symp)
x%s due to correlations between incubation periods and generation intervals. Therefore,
x%0  the difference between the mean forward serial interval and the mean infection-based
o0 generation interval is difficult to predict in general; in most cases, however, we expect
o the former effect to dominate, causing the mean forward serial interval to be longer
22 than the mean infection-based generation interval: E[r,] > E[7,n¢| [3]. Earlier work
213 on serial-interval distributions neglected dynamical biases in the incubation periods
e of the infectors [I1] [12], which allowed the authors to conclude that the mean gener-
;s ation and serial intervals are identical. For simplicity, we will use the term “forward
26 generation-interval” to refer to the infection-based generation-interval distribution
27 (measured from a cohort of infectors who were infected at the same infection time,
s Fig. [IB), and drop the subscript inf.

279 Assuming that the incidence of infection will continue to change exponentially at
250 a constant rate r, the forward serial-interval distribution for a cohort of infectors who
1 developed symptoms at the same time ¢ is expected to remain unchanged through
22 time [3]. Then, we can focus on the forward serial-interval distribution at ¢t = 0,
23 which in turn allows us to reparameterize the incubation-period and generation-
28 Interval distributions in terms of the infection time of the infector a; < 0 and of
s the infectee as > 7. Under this parameterization, for a given length of a serial
286 interval 7, we can rewrite the incubation period of the infector as —aq; the generation
27 interval as as — aq; and the incubation period of the infectee as 7 — ay. Then, the
s forward serial-interval distribution fg(7) for a cohort of infectors who developed
20 Symptoms at time ¢ = 0 can be expressed in terms of three distributions (Eq. (3)):
200 the backward incubation-period distribution of the infector b;(—cay) (taken from
201 Eq. ), the forward generation-interval distribution conditional on a known value
22 of the incubation period x, fgr(a — a1| — aq), and the forward incubation-period
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203 distribution of the infectee f;(7—as). Integrating across infection time of the infector
20 1 < 0 and of the infectee ay > a7 and rewriting the backward incubation-period
205 distribution b;(—a;) in terms of the forward distribution, we obtain [3]:

0 pr
fs(T) = %/OO /OL1 exp(ron) fair(oe — ar| — aq) fi(—on) fi(T — ag) dag day, — (6)

26 where ¢ is a normalization constant chosen so that [ fs(z)dz = 1. As discussed
207 earlier, this method assumes that the incidence is changing exponentially at a con-
208 stant rate r across the study period. As we show in Results, the exponential growth
200 rate changes over the study period, including weeks 50 and 51 (13-26 December
30 2021); for illustrative purposes, we choose representative values of r that for Delta
5o and Omicron during this period and also explore across plausible ranges of r (see
302 bGIOW).

303 While the derivation of the forward serial-interval distribution Eq. @ may be
s complex, its implementation is simple. The main difference between our model and
s previous models that neglect dynamical effects [10, 13| 14, [I5] is the exponential
w6 growth term exp(ra;) and the normalization term ¢—it is relatively straightforward
57 to include these terms in existing models of serial intervals. [16] [17] also included this
;s term in their analyses of serial-interval data, but only accounted for the epidemic
30 growth effect (and not the decay effect).

310 We model the forward incubation-period f;(7) and generation-interval fg(7) dis-
su  tributions using a bivariate lognormal distribution. The joint distribution is pa-
22 rameterized by log-scale means, p; and pg, log-scale variances, o7 and 0%, and
sz the log-scale correlation coefficient p. Thus, the forward generation-interval dis-
sa  tribution conditional on the incubation period fg7(7|7;1) has a log-scale mean of
a5 pg +ogp(log(rin) — pur)/or and a log-scale variance of o2(1 — p?). For a given value
a6 of 7, we first estimate the forward incubation-period distribution from the backward
u7  distribution, previously estimated by [4], using Eq. . We then approximate the
sis forward incubation-period distribution with a lognormal distribution by matching
a0 the mean and standard deviation (also known as the method of moments); we note
0 that we are unable to directly fit a lognormal distribution to the forward incubation-
s period distribution because we are relying on existing estimates rather than raw
s data. Using this incubation-period distribution, we fit Eq. @ to the observed serial-
23 interval data by minimizing the negative log-likelihood. We then calculate the mean
324 forward generation interval using Eq. . The 95% confidence intervals are calcu-
s lated by taking the estimated variance-covariance matrix for our mean and standard
16 deviation parameters and calculating the corresponding variance-covariance for the
327 overall mean using Taylor expansion—this method is also known as the Delta method
2 [I8]. We assume p = 0.75 throughout based on [19]—since we do not have individual-
30 level data on infection and symptom onset times, we expect this parameter to be
s unidentifiable in practice. In Supplementary Material, we explore how assumptions
s about p affect inferences of the generation-interval distribution.
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w» 2.5 Estimating instantaneous reproduction numbers

;33 We use our estimates of the generation-interval distributions to infer instantaneous
s reproduction numbers R(t) of the Delta and Omicron variant, as well as the ratio
335 between the two reproduction numbers. Estimating the instantaneous reproduction
;35 number—defined as the average number of secondary infections that a primary case
s will generate if epidemiological conditions remain constant [20]—requires the intrinsic
1 generation-interval distribution g(7):

i(t)

R{t) = JCi(t — 2)g(x) dz’ (7)
10 where i(t) represents incidence of infection. Here, we approximate the intrinsic
a0 generation-interval distribution with the forward generation-interval that we esti-
s mate for weeks 50 and 51 of 2021 (13-26 December)—when the epidemic is growing
sz or decaying exponentially, we expect the forward generation-interval to be a good
u3 proxy for the intrinsic generation-interval distribution [21],22]. Incidence of infection
us  is approximated by shifting the smoothed case trajectories by one week to account
us  for reporting delays. This method of approximating incidence of infection assumes
us  a fixed delay between infection and case reporting; in practice, deconvolution is re-
s quired to accurately estimate the incidence of infection [23]. Case reports are also
us  sensitive to changes in testing behavior, and therefore our estimates of R(t) must be
s interpreted with care. Confidence intervals are calculated by sampling parameters of
0 the smoothed case trajectories as well as the generation-interval distributions from
51 multivariate normal distributions and repeating the analysis 1000 times.

w» 3 Results

353 Fig. [2l summarizes the epidemiological context in the Netherlands during the study
3« period. The first known Omicron case in the Netherlands was sampled on 19 Novem-
ss ber 2021 [4], during a period when COVID-19 incidence was decreasing (Fig.[2A). As
s the Omicron variant continued to spread and increase in proportion (Fig. [2B), the
37 number of COVID-19 cases started to increase (Fig. ) Multiplying the proportion
38 of each variant with the number of reported COVID-19 cases further allows us to esti-
» mate the epidemiological dynamics of each (Fig.[2C). The number of COVID-19 cases
w0 infected with the Delta variant continued to decrease throughout the study period
31 with time-varying growth rates decreasing from r ~ —0.01/day to r =~ —0.09/day by
2 the week of January 16, 2022, and increasing back up to r ~ —0.04/day by the end of
3 January, 2022 (Fig. ) The number of COVID-19 cases infected with the Omicron
¢ variant increased rapidly but decelerated over time with time-varying growth rates
15 decreasing from r = 0.18/day on the week of December 19, 2021, to r = 0.04/day
s by the end of January, 2022. These changes in growth rates coincide with the in-
37 troduction of lockdown on 19 December 2021 [24] and its relaxation beginning 15
e January 2022 |25, 26]. We note that the growth-rate difference between the Delta
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30 and Omicron variants decreased over time. Hereafter, we use r = —0.05/day for the
s Delta variant and r = 0.15/day for the Omicron variant as representative growth
sn rates—these growth rates correspond to the mean growth rates between 1 December
sz 2021 and 2 January 2022, during which the incubation-period data were collected.
w3 We then evaluate the growth-rate effects across r = —0.1/day—0.0/day for the Delta
sa variant and r = 0.1/day—0.2/day for the Omicron variant as a sensitivity analysis.
375 Previous analysis of a cohort of individuals who developed symptoms between 1
s December 2021 and 2 January 2022 found longer mean (backward) incubation period
s for the Delta variant than for the Omicron variant [4] (Fig. [3A). However, when we
srs account for growth-rate differences and re-estimate the forward incubation periods,
s we find that both variants have similar incubation-period distributions with a mean
s0 of 4.1 days (95% CI: 3.8-4.4 days) for the Delta variant and 4.2 days (95% CI: 3.6-
s 4.9 days) for the Omicron variant Fig. [BB). In this case, the difference between the
;2 mean backward and forward incubation periods correspond to —22% and 7% bias
3 for the Omicron and Delta variants, respectively. Although the exact estimate of
s the mean forward incubation periods of both variants are sensitive to the assumed
s growth/decay rates, we find similar means across a plausible ranges of growth rates
6 (Fig. fD). For example, the mean forward incubation period of the Delta variant
s changes from 3.8 days (95% CI: 3.5-4.1 days) to 4.4 days (95% CI: 4.0-4.8 days)
% as we change the assumed values of r from —0.1/days to 0.0/days (Fig. BC), while
;0 the mean forward incubation period of the Omicron variant changes from 3.8 days
w0 (95% CI: 3.4-4.4 days) to 4.5 days (95% CI: 3.9-5.5 days) as we change the assumed
. values of 7 from 0.1/days to 0.2/days (Fig. D). Wider confidence intervals for the
s2 Omicron variant are driven by greater uncertainties from the dynamical correction,
33 which is larger for Omicron because of higher absolute growth rates.

304 We can use these estimates of the forward incubation-period distributions to esti-
;s mate the forward generation-interval distributions. For illustrative purposes, we first
w6 focus on aggregated serial intervals from infectors who developed symptoms dur-
w7 ing week 50-51 (13-26 December, 2021). For within-household transmission pairs
9 (Fig. [4A), the Omicron variant has shorter mean serial interval (3.1 days; 95% CI:
10 2.9-3.3 days) than that of the Delta variant (3.7 days; 95% CI: 3.5-3.8 days). When
w0 we account for growth-rate differences (assuming r = —0.05/day and r = 0.15/day
s for the Delta and Omicron variants, respectively), the estimated mean forward gen-
w2 eration interval exhibits a slightly larger difference (Fig. ): 3.0 days (95% CI:
w3 2.7-3.2 days) for the Omicron variant and 3.8 days (95% CI: 3.7-4.0 days) for the
ss  Delta variant. Our estimate of this difference in these mean generation intervals is
w5 robust across plausible ranges of assumptions about the growth rates of the vari-
ws ants (Fig. [JC-D). Assuming lower values of the correlation p between the incubation
w7 period and generation intervals leads to larger differences in the mean generation
ws intervals of the Delta and Omicron variants (Supplementary Figure S1). In partic-
w0 ular, the generation-interval estimates of the Omicron variant are more sensitive to
a0 the assumed values of p due to faster changes in incidence of infection—for example,
an  changing p from 0.85 to 0.5 changes the mean generation-interval estimates for the
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Figure 2: Epidemic dynamics of the Delta and Omicron variants in
the Netherlands between November 2021 and January 2022. (A) Daily
numbers of reported COVID-19 cases in the Netherlands (points). The solid

line represents the 7-day moving average. Data are publicly available at https:
//data.rivm.nl/covid-19/. (B) Proportion of SARS-CoV-2 variants detected
from the Netherlands. Data are publicly available at https://www.rivm.nl/
coronavirus-covid-19/virus/varianten. (C) Weekly numbers of COVID-19
cases infected with the Delta (black points) and Omicron (orange triangles) variants
are estimated by multiplying the weekly numbers of cases (A) with the proportion of
each variant (B). Solid lines and shaded areas represent fitted lines and corresponding
95% confidence intervals using generalized additive model. (D) Estimated growth
rates of the Delta (black) and Omicron variants (orange) and their growth-rate dif-
ferences (purple). Lines and shaded areas represent medians and corresponding 95%
confidence intervals. Growth rates are estimated by taking the derivative of the
generalized additive model estimates of logged number of cases.

sz Omicron variant from 3.1 days (95% CI: 2.8-3.3 days) to 2.7 days (95% CI: 2.5-2.9
a3 days). We explore a wide range of p to consider the possibility that our original
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Figure 3: Observed and corrected differences in incubation-period distri-
butions of Delta and Omicron variants. (A) Posterior median estimates of the
observed (backward) incubation periods of the Delta (black) and Omicron (orange)
variants by [4]. (B) Forward incubation-period distributions assuming r = —0.05/day
and r = 0.15/day for the Delta (black) and Omicron (orange) variants, respectively.
(C-D) Corrected estimates of the mean forward incubation-period for different as-
sumptions about the growth rates of the Delta (C) and Omicron variants (D). Lines
represent median estimates. Shaded regions represent the corresponding 95% confi-
dence intervals.

ne assumption (p = 0.75) may under or over-estimate the true p.

a15 Similar pictures arise for between-household transmission pairs, but the differ-
a5 ences in mean serial intervals are unclear (Fig. {E): 3.0 days (95% CI: 2.7-3.3 days)
sz for the Omicron variant and 3.3 days (95% CI: 3.0 days—3.6 days) for the Delta
ns  variant. Consistent with the original study, which also reported shorter mean serial
no intervals for between-household pairs [4], we estimate shorter mean generation in-
220 tervals for between-household Delta pairs. While the difference in mean generation
21 intervals is larger, there is greater uncertainty in their mean estimates (Fig. ): 2.9
w2 days (95% CI: 2.5-3.3 days) for the Omicron variant and 3.5 days (95% CI: 3.2-3.8
w3 days) for the Delta variant. Once again, these patterns are robust across plausible
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24 ranges of assumptions about the growth rates of the Delta and Omicron variants
425 (Fig. *H).

426 In Supplementary Figure S2, we present generation-interval estimates that are
2 further stratified by the week of infectors’” symptom onset (13-19 December 2021
w8 and 20-26 December 2021). While we generally estimate shorter mean generation
20 intervals for the Omicron variant, but the differences are unclear across all strata,
a0 except for within-household transmission pairs during week 50 (13-19 December
am 2021). We also estimate a reduction in the mean forward generation intervals from
s week 50 (13-19 December 2021) to week 51 (20-26 December 2021), especially for
i3 the Delta variant; this decrease in the mean generation interval is likely associated
sa with the lockdown.

>
o]

o

N

i
IS
o
»
o

-8~ Delta
Omicron

o
[
g
°
w

o

[

I
o
N}

w
o
L

Density (1/day)
w
o

Density (1/day)

I
e

o
&
Mean within-household’
generation interval (days)
&
Mean within-househol&’
generation interval (days)
w
(4]

N
2
g
2

o
o
=]

? T T T 0.0 T T T T T T T T T T T T
-5 0 5 10 15 0 5 10 -0.100-0.075-0.050-0.025 0.000 0.100 0.125 0.150 0.175 0.200
Within—household Within—household Delta growth rate (1/day) Omicron growth rate (1/day
serial intervals (days) generation intervals (day:

%
-~

m
m

IN
=}

] 4.04
[4 -8~ Delta

Omicron

o

N}

?
o
w

o
e
T

3.54

o
N
I
o
N}
w
o

3.0

Density (1/day)
Density (1/day)

°

o

g
o
[

Mean between-househdld
generation interval (days)
N w
g T q .
Mean between—househatd
generation interval (days)

& 2.54

o
o
o

S T &4 -+ 0.0 T u T T T T T T T T T T

-5 0 5 10 15 0 5 10 -0.100-0.075-0.050-0.025 0.000 0.100 0.125 0.150 0.175 0.200
Between—-household Between—household Delta growth rate (1/day) Omicron growth rate (1/day
serial intervals (days) generation intervals (days)

Figure 4: Estimated forward generation-interval distributions of Delta
and Omicron variants. (A, E) Observed and fitted forward serial-interval dis-
tributions for within-household (A) and between-household (E) transmission pairs
in the Netherlands for the Delta (black) and Omicron (orange) variants [4]. Serial
intervals are calculated for infectors who developed symptoms on weeks 50 and 51
(13-26 December, 2021). Points represent the observed data. Lines represent the
fitted lines assuming r = —0.05/day for the Delta variant and r = 0.15/day for
the Omicron variant. (B, F) Estimated forward generation-interval distributions for
within-household (B) and between-household (F) transmission pairs in the Nether-
lands. (C, D, G, H) Sensitivity of the mean forward generation-interval estimates to
assumed growth rates of the Delta (C, G) and Omicron variants (G, H) for within-
household (C, D) and between-household (G, H) transmission pairs. Lines represent
maximum likelihood estimates. Shaded regions represent the corresponding 95%
confidence intervals.

435 Accounting for differences in the generation-interval distributions, we estimate
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a6 that the instantaneous reproduction number of the Omicron variant decreased from
s 1.73 (95% CI: 1.59-1.89) to 1.14 (95% CI: 1.00-1.32) between December 12, 2021,
s and January 23, 2022(Fig. ) On the other hand, the instantaneous reproduc-
s tion number of the Delta variant decreased from 0.90 (95% CI: 0.83-0.97) to 0.69
a0 (95% CI: 0.65-0.75) between December 5, 2021, and January 9, 2022, and increased
w back up to 0.83 (95% CI: 0.73-0.94) by January 23, 2022 (Fig. fJA). We estimate
a2 the reproduction advantage (i.e., the ratio between the instantaneous reproduction
a3 numbers of the Omicron and Delta variants) stayed roughly constant at around 2.10
me (95% CI: 1.90-2.33) between December 12-26, 2021, and slowly decreased to 1.38
as (95% CI: 1.15-1.65). However, if we neglect differences in the generation-interval
us distributions and solely rely on the generation-interval-distribution estimate for the
a7 Delta variant, we over-estimate the reproduction number of the Omicron variant
s and therefore the reproduction advantage (Fig. ) In this case, the reproduction
1o advantage decreases from 2.38 (95% CI: 2.13-2.67) to 1.43 (95% CI: 1.17-1.75), cor-
s0 responding to roughly 4-13% bias. Using between-household generation intervals
i1 also gives similar conclusions about changes and biases in the reproduction number
2 estimates (Supplementary Figure S3).

453 In both cases, the decrease in the reproduction advantage coincides with the
s decrease in the reproduction number of the Omicron variant, implying that epidemi-
5 ological changes driving the dynamic had larger effects on the transmission of the
ss6  Omicron variant than on the transmission of Delta variant; a larger reduction in
ss7 the reproduction number of the Omicron variant also caused its growth rate to de-
s crease faster, causing changes in the observed growth-rate difference shown earlier

459 (Fig. )

« 4 Discussion

w1 We compare estimates of the forward incubation-period and generation-interval dis-
w2 tributions of the Delta and Omicron variants from the Netherlands in late 2021 and
w3 early 2022. The original analysis detailing the data set previously reported a shorter
s mean incubation period and serial interval for the Omicron variant [4]. Accounting
w5 for differences in epidemic growth rates, however, we find similar incubation-period
w6 distributions for both variants but a shorter (by 0.3-0.8 days) mean generation inter-
w7 val for the Omicron variant relative to that of the Delta variant. Finally, we estimate
ws that the transmission advantage of the Omicron variant decreased from 2.1-fold to
w0 1.4-fold between early December and late January. Improving generation-interval
a0 estimates by taking dynamical effects into account may improve understanding of
an  epidemic dynamics and control measures.

an2 The generation-interval distribution describes changes in the individual-level trans-
a3 mission dynamics over the course of infection and therefore provides crucial infor-
s mation for epidemic control. A few studies have estimated the generation-interval
a5 distributions of SARS-CoV-2 infections from serial-interval data, but most of them
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Figure 5: Estimated instantaneous reproduction number advantages of the
Omicron variant. (A) Estimated instantaneous reproduction numbers and their
ratios over time while accounting for differences in the generation-interval distribu-
tions. (B) Estimated instantaneous reproduction numbers and their ratios over time
while assuming identical generation-interval distributions. The instantaneous repro-
duction number of each variant is estimated using the renewal equation by shifting
the smoothed case curves by one week (Fig. ) The intrinsic generation-interval
distribution is approximated by the maximum likelihood estimates of the forward
generation-interval distributions for within-household transmission pairs based on
r = —0.05 for the Delta variant (black) and r = 0.15 for the Omicron variant (or-
ange). Purple lines represent the ratio between the effective reproduction numbers
of the Delta and Omicron variants. Lines and shaded regions represent medians and
corresponding 95% confidence intervals.

ws neglect the effects of epidemic growth rates [10, [13], 14, [15]—these practices can be
ar largely attributed to historical work that concluded that serial and generation in-
as tervals have the same means based on the assumption that infectors and infectees
wo have identical incubation-period distributions [I1], 12, 27]. We build on newer work
0 [3], which demonstrated theoretically that forward serial-interval distributions de-
i1 pend on epidemic growth rates, and further confirm that estimates of the forward
2 generation-interval distributions are indeed sensitive to epidemic growth rates. These
w3 effects are also pertinent to epidemiological inferences of past events from a cohort of
s infected individuals who experienced a later event at the same time—this includes in-
w5 ferences of other delay distributions, such as incubation-period distributions, as well
6 as viral load trajectories [28]. Our sensitivity analysis also shows that the assump-
w7 tions about the correlation between incubation periods and generation intervals can
s also have important effects on the estimates of the generation-interval distributions
s0  (Supplementary Figure S1).

490 This study presents a method for accounting for dynamical biases when in-
w1 ferring incubation-period distributions based on epidemic growth rates. Observed
w2 incubation-period distributions based on symptom-based cohorts are generally ex-
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w3 pected to be biased, and similar kinds of corrections will be necessary to accurately
s0a estimate the incubation-period distribution. We note that making these kinds of cor-
05 rections will also depend on data availability, model complexity, and other epidemio-
w6 logical covariates affecting incubation periods, such as vaccine statuses. Accounting
w7 for different sources of biases is critical to accurately estimating incubation-period
sws distributions (and other epidemiological distributions alike) but will necessarily in-
w0 crease uncertainties in the estimates. On the other hand, it is still possible to char-
so0 acterize the forward incubation-period distributions without making growth-rate-
s based corrections through a careful cohorting of individuals with similar infection
sz times when detailed information about infection time is available—we were not able
s to explore this in our analysis because we relied on publicly available information,
soa. which do not contain individual-level information, such as exposure or symptom
sos onset dates.

506 A few studies have suggested that the incubation period of the Omicron variant
so7  may be shorter than that of the Delta variant. The median estimates of the Omicron
ss incubation period typically range between 3-4 days, consistent with earlier findings
so0 of [4]. However, these data were collected when the number of Omicron infections
s0 was growing rapidly [29] [30], suggesting that they may have been subject to similar
s biases. On the other hand, incubation-period estimates based on individuals who
sz were exposed from the same event are likely more reliable (because they look forward
si3 in time): [31] estimated the median incubation period of the Omicron variant to be
sie 3 days among those who attended the same holiday party (n = 117) on 26 November
sis 2021 in Norway. However, we cannot rule out the possibility that some of these
si6  attendees were infected prior to the party given that some individuals had COVID-
si7  like symptoms prior to the party with at least 96 of the attendees sharing offices;
sis neglecting these factors can lead to underestimation of the mean incubation period.
s Systematic comparisons of data collection methods and epidemiological contexts are
s20 needed to properly assess the differences in incubation period distributions of the
s Delta and Omicron variants.

522 A few studies have estimated that the Omicron variant has shorter transmis-
s23 sion intervals than the Delta variant [2, [32] B0], but there has been a lack of direct
¢ generation-interval estimates. [33] B34] tried to estimate the generation-interval dis-
ss  tributions of the Omicron variant but they both relied on population-level epidemic
s dynamics (rather than individual-level transmission data). Although we estimate a
so7  shorter mean generation interval for the Omicron variant, we find the generation-
s2s  interval distribution of the Omicron and Delta variants have similar modes (around
s0 2.5 days), implying that the realized transmissibility of the Omicron variant decays
s30 faster. We tentatively hypothesize that these differences may be primarily driven by
sun  the network effect [22] [I5]: a higher reproduction number of the Omicron variant
s leads to faster susceptible depletion among close contacts, which in turn prevents
533 long generation intervals from generating infections. Previous simulations showed
s that network effects can have considerable impact on realized generation intervals
s even during the initial exponential growth phase, when susceptible depletion is negli-
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s3  gible at the population level [22]. While the network effect is expected to be strongest
s among household contacts, it is also applicable to other forms of contact structures
s33  that involve repeated contacts between the same group of individuals (because only
s. the first infectious contact results in infection). Shorter generation-interval estimates
s« for between-household contacts may be attributable to behavioral effects: individuals
se0. who have symptoms or tested positive may be more likely to stay home, preventing
s22  long between-household transmission. Other factors, such as more stringent contact
s3 tracing measures against the Omicron variant in the Netherlands [4] faster within-
s4¢  host clearance of the Omicron variant [35], and viral kinetics of reinfection and
sss  breakthrough infections, also likely contributed to shortening of generation intervals.
ss6  1f shorter generation intervals of the Omicron variant represents an increased pro-
sa7  portion of presymptomatic transmission, control measures that target symptomatic
s individuals can become less effective.

549 While our study indicates that the Omicron variant has a shorter mean real-
sso ized generation interval than that of the Delta variant, it is still uncertain how
ss1  infectiousness profiles differ intrinsically between Omicron and Delta. In particular,
s> similarities in the incubation-period distributions of the Delta and Omicron variants
53 suggest that the differences in their true infectiousness profile may be smaller than
ssa the estimated differences in their realized generation-interval distributions. In ad-
55 dition, the “intrinsic” generation intervals of both Omicron and Delta variants are
ss6  likely longer than what we estimate given existing levels of interventions, includ-
ss7 ing vaccination, and pandemic awareness—estimating intrinsic (or “unmitigated”)
58 generation-interval distributions of SARS-CoV-2 variants is expected to be a diffi-
ss9 cult problem as it requires data from times when awareness levels were low [19].
sso  Nonetheless, estimates of realized generation-interval distributions describe current
so1  epidemic dynamics, implicitly accounting for intervention and behavioral effects, and
se2 can therefore be expected to improve estimates of effective reproduction numbers.
563 Our study also has important implications for estimating transmission advantages
sea  Of new SARS-CoV-2 variants. In the example we consider, neglecting differences in
ses the generation-interval distributions leads to =~ 10% bias in the estimates of the
se6 reproduction advantage (i.e., the ratio between the reproduction numbers of the
sv - Omicron and Delta variants). More generally, the bias in inferring the reproduc-
ses  tion advantage of an emerging variant is expected to be sensitive to the assumed
se0 generation-interval distribution of the resident variant. For example, [36] estimated
s a much higher reproduction advantage of the Omicron variant (> 4-fold) compared
s to the Delta variant in South Africa but also assumed a longer mean generation in-
sz terval for the Delta and Omicron variants (6.4 vs 5.2 days, respectively). With our
s73 - generation-interval estimates, we estimate a 2.6-fold reproduction advantage for the
sz Omicron variant assuming r = —0.06 and r = 0.26 for the Delta and Omicron vari-
sis - ants, respectively—these growth rates were chosen to match the 4-fold reproduction
s advantage with the previously assumed generation-interval distributions and esti-
s7 mated growth-rate differences of 0.32/day for the Gauteng province, South Africa
578 [36]
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579 We considered two ways of measuring transmission advantages: growth-rate dif-
ss0 ferences and reproduction advantage. Characterizing new variants in terms of their
ss1 reproduction advantage is useful because it is directly related to the amount of in-
s22  creased transmissibility and immune evasion [36]. On the other hand, the growth-
ss3 rate difference is easier to estimate in real time, and is also more directly relevant to
ssa  short-term dynamics. For example, when two strains have the same R > 1, the one
sss  with shorter generation intervals will grow faster and become dominant as long as
sss )X > 1; however, when R is reduced below 1 (either due to intervention or susceptible
se7 depletion), the one with longer generation interval will grow faster. These transmis-
sss  sion advantages are captured by the growth-rate difference, but not by the ratio of
ss0  reproduction numbers of two strains. Therefore, we suggest using growth-rate dif-
so0 ferences and reproduction advantage as complementary measures for understanding
so0  the dynamics of emerging SARS-CoV-2 variants.

502 There are several limitations to our analysis. First, we primarily rely on case data
s to understand epidemic patterns of the Delta and Omicron variants. In doing so,
se - we implicitly assume that the delay between infection and reports is fixed. However,
sos changes in case trajectories are sensitive to testing patterns and therefore may not
sos accurately reflect patterns of infections. While this limitation does not affect our
so7  generation-interval estimates, our inferences of the transmission advantages of the
ss  Omicron variant should be interpreted with care.

599 We assume a constant growth rate for each variant throughout our analysis. Dur-
oo ing the study period, growth rates of both the Delta and Omicron variants changed
s1  slowly, and therefore our constant-growth-rate assumption provides a reasonable ap-
02 proximation for their dynamics across two weeks. However, this assumption might
s03 be problematic when growth rates are changing rapidly (e.g., due to an introduction
s0¢ Of stringent control measures) or if the sampling window is too wide. Extending
ss our framework to account for time-varying growth rates is relatively simple when in-
s ferring the forward incubation-period distribution from the corresponding backward
sor distribution—we can simply replace r with r(¢) in Eq. because the backward
s incubation-period distribution is a weighted average of the forward incubation-period
s00 distributions and the number of individuals in each cohort (i.e., individuals who were
s infected at the same time). However, such extensions are more complicated for link-
s ing generation- and serial-interval distributions because the forward serial-interval
12 distribution also depends on the cohort reproduction number—for example, if a cer-
a3 tain cohort of infectors had higher reproduction number (e.g., because they were
s1e infected before control measures were observed), we are more likely to observe trans-
s mission from this cohort (see [3] for more details). Assuming exponential growth
s allows us to avoid this complexity. Extending our framework to account for time-
e17 varying growth rates can provide more accurate tools for inferring epidemiological
s delay distributions.

619 We do not account for individual-level heterogeneity, such as age, vaccination
s20 status, or previous exposure history. In general, epidemic growth rates may dif-
ez fer between infection groups (e.g., the incidence of infection caused by any vari-
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2 ant is expected to grow faster among immunologically naive individuals), and these
o3 growth-rate differences can affect estimates of epidemiological delay distributions,
es including the incubation-period and generation-interval distributions. We are not
s able to perform stratified analyses because individual-level information was not pub-
e26 licly available. Therefore, while we estimate unclear differences in incubation-period
e7  distributions between Delta and Omicron infections, controlling for other covariates,
e such as age and immune history, may help better characterize differences in Delta
20 and Omicron infections.

630 Finally, there are several sources of biases in serial-interval data that we did
631 not consider. For example, the direction of transmission is difficult to establish for
62 SARS-CoV-2 due to pre-symptomatic transmission. Other sources of information,
633 such as exposure history and positive test results, can help resolve uncertainties but
e3¢ are imperfect. Serial-interval data also depend on the ability of infected individuals
635 to accurately recall when their symptoms started. Future studies may explore how
36 these biases affect the inference of generation intervals from serial intervals. While
s37 comparisons of incubation-period and serial-interval distributions can shed insight
ss  on pathogen dynamics, both distributions typically do not account for the dynamics
630 of asymptomatic infections; neglecting these differences can further bias estimates of
o0 transmissibility of a pathogen [37].

641 Monitoring changes in key epidemiological parameters is critical to understand-
s2 ing the evolution of SARS-CoV-2 and predicting its future dynamics [38]. Our study
&3 synthesizes a previously developed theoretical framework on serial- and generation-
s interval distributions and presents methodological advances in monitoring epidemi-
a5 ological parameters. Similar efforts will be critical to improve estimates of the infec-
ess tiousness profiles of future SARS-CoV-2 variants, especially among asymptomatically
sa7 infected individuals. These conclusions are relevant for other emerging and endemic
s pathogens in general.

« Data availability

0 All data and code are stored in a publicly available GitHub repository (https:
es1 |//github.com/parksw3/omicron-generation).
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« Supplementary Materials
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Figure S1: Sensitivity of the estimates of the mean generation interval to
the assumed values of the correlation coefficient of the lognormal distri-
bution. Lines and shaded regions represent maximum likelihood estimates and the
corresponding 95% confidence intervals for the Delta (black, solid lines) and Omicron
variants (orange, dashed lines). For illustrative purposes we use within-household
serial-interval data from the cohort of infectors who developed symptoms during
weeks 50 (13-19 December) and 51 (20-26 December) of 2021.
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Figure S2: Estimated mean forward generation intervals of Delta and Omi-
cron variants across different stratifications. Sensitivity of the mean forward
generation-interval estimates to assumed growth rates of the Delta and Omicron
variants stratified by the types of transmission (within- vs between-household trans-
mission) and the week of infectors’ symptom onset (week 50, 13—19 December 2021,
vs week 51, 20-26 December 2021,). Lines represent maximum likelihood estimates.
Shaded regions represent the corresponding 95% confidence intervals.
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Figure S3: Estimated time-varying reproduction number advantages of
the Omicron variant using between-household generation-interval distri-
butions. (A) Estimated instantaneous reproduction numbers and their ratios over
time while accounting for differences in the generation-interval distributions. (B) Es-
timated instantaneous reproduction numbers and their ratios over time while assum-
ing identical generation-interval distributions. The instantaneous reproduction num-
ber of each variant is estimated using the renewal equation by shifting the smoothed
case curves by one week (Fig. ) The intrinsic generation-interval distribution is ap-
proximated by the maximum likelihood estimates of the forward generation-interval
distributions for between-household transmission pairs based on r = —0.05 for the
Delta variant (black) and r = 0.15 for the Omicron variant (orange). Purple lines
represent the ratio between the effective reproduction numbers of the Delta and Omi-
cron variants. Lines and shaded regions represent medians and corresponding 95%
confidence intervals.
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