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ABSTRACT 50 

Background: Sleep Disordered Breathing (SDB) is characterized by repeated breathing 51 

reductions or cessations during sleep, often accompanied by oxyhemoglobin desaturation. How 52 

SDB affects the molecular environment is still poorly understood.  53 

Methods: We studied the association of three SDB measures: the Apnea Hypopnea Index 54 

(AHI), average and minimum oxyhemoglobin saturation during sleep (AvgO2 and MinO2) with 55 

gene expression measured using RNA-seq in peripheral blood mononuclear cells (PBMCs), 56 

monocytes, and T-cells, in ~500 individuals from the Multi-Ethnic Study of Atherosclerosis 57 

(MESA). We developed genetic instrumental variables (IVs) for the associated transcripts as 58 

polygenic risk scores (tPRS), then generalized and validated the tPRS in the Women’s Health 59 

Initiative (WHI). Next, we constructed the tPRS and studied their association with SDB 60 

measures (to identify potential reverse causal associations) and with serum metabolites (to 61 

identify downstream effects) in ~12,000 and ~4,000 participants, respectively, from the Hispanic 62 

Community Health Study/Study of Latinos (HCHS/SOL). Finally, we estimated the association of 63 

these SDB measures with transcript IV-associated metabolites in HCHS/SOL, to verify complete 64 

association pathways linking SDB, gene expression, and metabolites.    65 

Results: Across the three leukocyte cell types, 96 gene transcripts were associated with at 66 

least one SDB exposure (False Discovery Rate (FDR) p-value <0.1). Across cell populations, 67 

estimated log-fold expression changes were similar between AHI and MinO2 (Spearman 68 

correlations>0.90), and less similar between AvgO2 and the other exposures. Eight and four 69 
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associations had FDR p-value<0.05 when the analysis was not adjusted and adjusted to BMI, 70 

respectively. Associations include known genes that respond to (PDGFC) and regulate 71 

response to (AJUBA) hypoxia. We identified a complete “chain” linking AvgO2, P2RX4, and 72 

butyrylcarnitine (C4), suggesting that increased expression of the purinergic receptor P2RX4 73 

may improve average oxyhemoglobin saturation and decrease butyrylcarnitine (C4) levels.  74 

Conclusions: Our results support a mechanistic role for purinergic signaling and hypoxic 75 

signaling, among others, in SDB. These findings show differential gene expression by blood cell 76 

type in relation to SDB traits and link P2XR4 expression to influencing AvgO2 and 77 

butyrylcarnitine (C4) levels. Overall, we employed novel methods for integrating multi-omic data 78 

to evaluate biological mechanisms underlying multiple SDB traits. 79 

 80 

Keywords 81 

Average oxyhemoglobin saturation, Apnea hypopnea index, Minimum oxyhemoglobin satura-82 

tion, RNA-seq, Peripheral blood mononuclear cells, Monocyte, T-cell, Instrumental variables, 83 

Sleep disordered breathing.  84 
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BACKGROUND  85 

Sleep-disordered breathing (SDB) is a common disorder, affecting an estimated 24% of male 86 

and 9% of female adults in the U.S. (1). SDB is characterized by episodic periods of  breathing 87 

cessations and reductions during sleep, often accompanied by oxyhemoglobin desaturation 88 

(2,3), and is associated with cardiometabolic, vascular, and cognitive outcomes (4–7). SDB is 89 

also strongly associated with inflammation (8,9). While obesity is a strong risk factor for SDB, 90 

SDB is also heritable independent of body mass index (BMI) (10,11). The underlying molecular 91 

processes by which SDB affects health outcomes are still being studied (12), with interest in un-92 

derstanding SDB-related hypoxia  during sleep on cardiometabolic and vascular measures in 93 

humans and in animal models (13–15).  94 

 95 

In investigating the molecular changes caused by SDB, previous studies showed changes in 96 

distributions and activation of white blood cells (16–18) and inflammatory cytokines (19) in 97 

individuals with obstructive sleep apnea (OSA). Other studies reported changes in gene 98 

expression in white blood cells following treatment using continuous positive airway pressure 99 

(CPAP), or following CPAP withdrawal (20–23), supporting a causal role between SDB-related 100 

physiological stressors (such as hypoxia) and immune cell gene expression. Some studies, 101 

including those from our group, also reported cross-sectional transcriptomic association with 102 

SDB measures from observational studies (23,24). However, these studies focused on a single 103 

cell population, and it is unknown whether and how transcriptional effects of SDB differ among 104 

circulating leukocyte subpopulations. Likewise, it is yet unknown how SDB-alterations in gene 105 

expression translate to metabolic changes. A few previous studies reported associations of 106 

blood metabolites with SDB phenotypes, independently of transcriptomics. For example, one 107 

study reported change in serum metabolite levels, evaluated on an untargeted platform that 108 

surveyed a few hundred metabolites, after multi-level sleep surgery (25). Most other studies 109 

considered specific, targeted metabolite changes in sleep disorders (see reviews in (26)). 110 
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 111 

Large, untargeted, omics surveys are now becoming available in cohort studies, providing an 112 

opportunity to study the association of SDB with well-defined, genetically-regulated molecular 113 

measures. We deploy a systems biology approach integrating genomic, transcriptomic, and 114 

metabolomic data to identify potential pathways in tissue-specific mechanisms driving SDB-115 

related morbidity.   116 

 117 

Utilizing data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Hispanic 118 

Community Health Study/Study of Latinos (HCHS/SOL), we examined multi-omics data to 119 

investigate signaling mechanisms underlying SDB traits. First, we used transcriptomics data 120 

measured in peripheral blood mononuclear cells (PBMCs), T-cells and monocytes, assayed by 121 

the Trans-Omics for Precision Medicine (TOPMed) program, to perform transcriptome-wide 122 

association study of SDB-related phenotypes (measured via overnight polysomnography) in 123 

MESA. We compared the results across different peripheral blood cell populations. With these 124 

data, we constructed transcript polygenic risk scores (tPRS) predicting transcript expression 125 

using genetic data. Next, we built these tPRS in the Women’s Health Initiative (WHI) and tested 126 

them for association and generalization with their transcripts in whole blood. We calculated the 127 

tPRS that generalized in HCHS/SOL. Finally, we applied these tPRS to SDB traits and 128 

metabolites in HCHS/SOL to investigate how SDB phenotypes potentially propagate via 129 

transcription to metabolic changes in serum, and on the other direction, to assess potential 130 

reverse association by which transcript expression causes changes in SDB phenotypes. 131 

 132 

METHODS 133 

 134 

Overall study design and purpose 135 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.09.22277444doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.09.22277444
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

The overall purpose of the study was to investigate the multi-omics signaling mechanisms 136 

underlying SDB traits to better understand possible drivers of morbidity in SDB. The study 137 

design and purpose of each analysis component is illustrated in Figure 1. Briefly, panel A 138 

demonstrates the set of associations investigated: SDB phenotypes lead to transcriptional 139 

changes which in turn lead to metabolic changes; panel B describes the analysis steps taken to 140 

study the potential chain of associations, and the goal of each of these steps. To optimize the 141 

available sample size and leverage the fact that transcription is, to some extent, genetically 142 

determined, we utilized two separate cohorts to identify the biological components associated 143 

sleep exposure to metabolomic changes. Figure 2 further illustrates potential causal 144 

relationships underlying a set of measures, and the assumptions that we used to interrogate 145 

some of them. Thus, we first performed transcriptome-wide association studies for SDB 146 

phenotypes in MESA. For each transcript associated with a SDB trait (FDR p-value <0.1), we 147 

used genetic data to construct a transcript Polygenic Risk Score (tPRS) to serve as a predictor 148 

of the transcript. Next, to reduce false positive associations in subsequent analyses, we 149 

constructed these tPRS in the WHI and tested their association and generalization with their 150 

transcripts in whole blood. We proceeded with tPRS results that generalized (p-value <0.05), 151 

and constructed and tested them latter for association with SDB phenotypes in HCHS/SOL. If a 152 

tPRS was associated with the SDB phenotype in HCHS/SOL, it was interpreted as evidence of 153 

reverse association, i.e., the transcript may contribute to SDB. We then calculated the 154 

association of the tPRS with metabolites in HCHS/SOL. Lastly, we used another analytic step to 155 

support the existence of an association chain linking a sleep exposure, a transcript, and a 156 

metabolite: we required evidence of association between the sleep exposure and the metabolite 157 

in HCHS/SOL (i.e. any of the potential pathways in column A of Figure 2). If the tPRS was 158 

associated with the sleep exposure in HCHS/SOL, it lent support to association chains where 159 

the transcript affects both SDB and metabolite levels.  160 

 161 
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Figure 1: Overall study design of the reported analysis.  

   

 

 

Flow charts illustrating the methodology and purpose of the analysis. The chart portrays the three SDB 
phenotypes evaluated in the analysis, the three blood tissues with transcript expression measurement, 
and demonstrates each step of the analysis with associated goals, cohorts, and reasons why step was 
performed. Penal A: conceptual linking between SDB measures, transcript expression, and metabolites. 
Panel B: analytic steps supporting the study of the conceptual links. PBMC tPRS analysis sample sizes 
in MESA correspond to data from two visits (some individuals were used twice, appropriately accounted 
for by mixed models).  

 162 

  163 
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 164 

Figure 2: Potential association “chains” of SDB traits, transcript expression, and 
metabolites, addressed in this study. 

 

The figure illustrates association chains, or pathways, potentially linking an SDB trait, a 
transcript, and a metabolite. Here we assume that an association between a sleep trait and a 
transcript was detected in MESA and is assumed “known” for follow-up analysis in WHI in 
HCHS/SOL. Column A demonstrates potential forms of causal associations between the 
sleep trait and the transcript, including (A.4) the settings where an association exists due to a 
common cause, e.g. BMI. Our metabolomics analysis may only detect transcript-metabolite 
associations, i.e. any sleep-metabolite link is via transcript levels. Column B demonstrate a 
potential conclusion from an association between a tPRS, validated in WHI and used as an 
instrumental variable (IV) of a transcript, and a sleep trait: if an association is detected, it 
provides evidence that changes in transcript levels are upstream (a cause of) changes in 
sleep trait levels. Column C demonstrates potential conclusions from analyses linking tPRS 
and a sleep trait to a metabolite. A tPRS is used to link a transcript to a metabolite, and an 
association, if exists, is likely causal. A sleep-metabolite association should exist if the sleep-
transcript and tPRS-transcript associations hold, and therefore observing such an association 
validates the existence of any of A pathways. Further association between the tPRS and the 
sleep trait narrows down the potential association chains to A.2 or A.3. 

 165 

Participating studies 166 

As described in Figure 1, our analysis included three studies: MESA, WHI, and HCHS/SOL 167 

each contributing to different analytical steps. The three studies are described in the 168 

Supplementary Information. In brief, MESA, our primary study used for discovery of SDB-169 
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transcript associations, is a longitudinal cohort study (27). The 1st and 5th MESA exams took 170 

place between 2000-2002, and 2010-2012, respectively, and whole blood was drawn from 171 

participants in both exams. For about 1,000 participants, blood was used later for RNA 172 

extraction in at least one of the exams. In addition, a sleep study ancillary to MESA occurred 173 

shortly after MESA exam 5 during 2010-2013. Sleep study participants underwent single night 174 

in-home polysomnography, as previously described (28). The number of individuals with each 175 

type of data and at each time point (exam 1 and exam 5) varies. Figure S1 in the 176 

Supplementary Information visualizes the data flow and overlaps across the various measures 177 

used in this study: whole-genome genotyping, RNA-seq, and sleep. All MESA participants 178 

provided written informed consent, and the study was approved by the Institutional Review 179 

Boards at The Lundquist Institute (formerly Los Angeles BioMedical Research Institute) at 180 

Harbor-UCLA Medical Center, University of Washington, Wake Forest School of Medicine, 181 

Northwestern University, University of Minnesota, Columbia University, and Johns Hopkins 182 

University. 183 

 184 

The WHI was here used to identify tPRS that could be confidently used as IVs for their traits. It 185 

is a prospective national health study focused on identifying optimal strategies for preventing 186 

chronic diseases that are the major causes of death and disability in postmenopausal women 187 

(29). 11,071 WHI participants have whole-genome sequencing data via TOPMed, and 1,274 of 188 

these participants have RNA-seq measured in venous blood via TOPMed. All WHI participants 189 

provided informed consent and the study was approved by the IRB of the Fred Hutchinson 190 

Cancer Research Center. 191 

 192 

The HCHS/SOL was used to establish association chains that include an SDB trait, a transcript, 193 

and a metabolite. It is a longitudinal cohort study of U.S. Hispanics/Latinos (30,31). The 194 

HCHS/SOL baseline exam occurred on 2008-2011, where 16,415 participants were enrolled. 195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.09.22277444doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.09.22277444
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

HCHS/SOL individuals who consented further participated in an in-home sleep study, using a 196 

validated type 3 home sleep apnea test recording airflow (via nasal pressure), oximetry, 197 

position, and snoring. Genetic data were measured and imputed to the TOPMed freeze 5b 198 

reference panel, as previously described, for individuals who consented at baseline (32,33). 199 

Metabolomic data were also measured for n=~4,000 individuals selected at random out of those 200 

with genetic data (34). Figure S2 in the Supplementary Information provides the data flow in 201 

HCHS/SOL, focusing on individuals with genetic data and wide consent for genetic data 202 

sharing. The HCHS/SOL was approved by the institutional review boards (IRBs) at each field 203 

center, where all participants gave written informed consent, and by the Non-Biomedical IRB at 204 

the University of North Carolina at Chapel Hill, to the HCHS/SOL Data Coordinating Center. All 205 

IRBs approving the study are: Non-Biomedical IRB at the University of North Carolina at Chapel 206 

Hill. Chapel Hill, NC; Einstein IRB at the Albert Einstein College of Medicine of Yeshiva 207 

University. Bronx, NY; IRB at Office for the Protection of Research Subjects (OPRS), University 208 

of Illinois at Chicago. Chicago, IL; Human Subject Research Office, University of Miami. Miami, 209 

FL; Institutional Review Board of San Diego State University, San Diego, CA. 210 

 211 

RNA sequencing  212 

For both MESA and WHI, RNA-seq was performed via the Trans-Omics in Precision Medicine 213 

(TOPMed) program. In MESA, RNA-seq was generated from three blood cell types: peripheral 214 

blood mononuclear cells (PBMCs; ~n=1,200 measured in blood from visits 1 and 5), and 215 

specific components: T-cells, and monocytes (referred to as T-cell and Mono, for both: n=416), 216 

measured in blood from visit 5. Samples were sequenced at the Broad Institute and at the North 217 

West Genomics Center (NWGC). Both centers used harmonized protocols. RNA samples 218 

quality was assessed using RNA Integrity Number (RIN, Agilent Bioanalyzer) prior to shipment 219 

to sequencing centers. QC was re-performed at sequencing centers by RIN analysis at the 220 

NWGC and by RNA Quality Score analysis (RQS, Caliper) at the Broad Institute. A minimum of 221 
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250ng RNA sample was required as input for library construction, performed using the Illumina 222 

TruSeqTM Stranded mRNA Sample Preparation Kit. RNA was sequenced as 2x101bp paired-223 

end reads on the Illumina HiSeq 4000 according to the manufacturer’s protocols. Target 224 

coverage was of ≥40M reads. Comprehensive information about the RNA-seq pipeline used for 225 

TOPMed can be found in https://github.com/broadinstitute/gtex-226 

pipeline/blob/master/TOPMed_RNAseq_pipeline.md under MESA RNA-seq pilot commit 227 

725a2bc. Here we used gene-level expected counts quantified using RSEM v1.3.0 (35). RNA 228 

sequencing for WHI (whole blood) was performed at the Broad Institute using the unified 229 

TOPMed protocols. More information about RNA-seq in WHI is provided in the Supplemental 230 

Information. 231 

 232 

Metabolomics data in HCHS/SOL 233 

Metabolomics profiling using fasting blood samples was conducted at Metabolon (Durham, NC) 234 

with Discovery HD4 platform in 2017. Serum metabolites were quantified with untargeted, liquid 235 

chromatography-mass spectrometry (LC-MS)-based quantification protocol (36,37). The plat-236 

form captured a total of 1,136 metabolites, including 782 known and 354 unknown (unidentified) 237 

metabolites. Detailed methodologic information is provided elsewhere (34). 238 

 239 

Phenotypic measures of sleep-disordered breathing (SDB) 240 

We used three SDB measures, as measured by overnight sleep studies in MESA and 241 

HCHS/SOL (methods above): (1) the Apnea-Hypopnea Index (AHI), defined in MESA as the 242 

number of apneas (breathing cessation) and hypopneas (at least 30% reduction of breath 243 

volume, accompanied by 3% or higher reduction of oxyhemoglobin saturation) per  hour of 244 

sleep, and in HCHS/SOL, due to differences in the recording montage compared to MESA, as 245 

the number of apnea or hypopnea events with 3% desaturation per hour of sleep; (2) minimum 246 
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oxyhemoglobin saturation during sleep (MinO2), and (3) average oxyhemoglobin saturation 247 

during sleep (AvgO2).   248 

 249 

Testing the association between SDB and blood cell-specific transcriptome-wide gene 250 

expression  251 

We used the Olivia R package (38) to perform association analyses of gene expression in 252 

PBMCs, monocytes, and T-cells with each of the three SDB measures, separately and in a joint 253 

analysis in MESA. SDB phenotypes were treated as the exposures. We followed the 254 

recommended Olivia pipeline. Briefly, we performed median normalization, and then filtered 255 

lowly expressed gene transcripts defined by removing transcripts with proportion of zero higher 256 

than 0.5, median value lower than 1, maximum expression range value lower than 5, and 257 

maximum expression value lower than 10. Transcript counts were log transformed after counts 258 

of zero were replaced with half the minimum of the observed transcript count in the sample. The 259 

analyses were adjusted for age, sex, study center, race/ethnic group, and batch variables: 260 

plates, shipment batch, and study site. Because BMI is a strong risk factor for SDB and is 261 

assumed to be part of the causal chain, we conducted additional analyses adjusting for BMI 262 

(BMIadj). We computed empirical p-values to account for the highly skewed distribution of SDB 263 

phenotypes, which may lead to false negative associations if ignored. Finally, we accounted for 264 

multiple testing by applying False-Discovery Rate (FDR) correction to each of the association 265 

analyses using the Benjamini-Hochberg (BH) procedure (39).  We carried forward transcript 266 

associations with FDR p-value<0.1 for additional analyses and visualized their association with 267 

SDB phenotypes via a hierarchically-clustered heatmap. 268 

 269 

Transcript polygenic risk scores (tPRS) construction and validation 270 

To develop tPRS, we first performed a genome-wide association study (GWAS) for each SDB-271 

associated transcript using the MESA TOPMed WGS dataset; each GWAS adjusted for age 272 
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(years), sex, study site, self-reported race/ethnic background, and 11 principal components, and 273 

analyses were restricted to genetic variants with a minor allele frequency of at least 0.05 (due to 274 

low sample size). For each GWAS, we used the fully-adjusted two-stage procedure for rank-275 

normalizing residuals in association analyses (40) to identify genetic variants associated with 276 

transcript expression. For PBMCs, we used transcript measures from the two MESA visits with 277 

RNA-seq data to increase power. To do this, we removed related individuals, and used a 278 

random effect model that accounted for individuals. Summary statistics from the GWAS for each 279 

transcript were used to develop PRS weights for the corresponding transcript. Next, we 280 

constructed tPRS in MESA. We applied clump and threshold implemented in PRSice2 v2.3.1.e 281 

(41) using clumping parameters R2=0.1, distance of 250Kb, and three p-value thresholds (5x10-282 

8,10-7, 10-6). For each transcript, we constructed the three tPRS in WHI. A tPRS with the 283 

smallest p-value in association with the transcript in WHI, and also having p-284 

value<0.05/3=0.017, was selected and considered validated. We also computed FDR-adjusted 285 

p-values based on all constructed tPRS (3 candidate tPRS per gene across all genes). To test 286 

the association of the tPRS with transcript in WHI, we used logistic mixed models, executed with 287 

the GENESIS R package (42) version 2.16.1. Each tPRS served as the exposure, and 288 

transcripts served as the outcome, here too using the two-stage procedure for rank-289 

normalization (40). Relatedness was modeled via a sparse kinship matrix among TOPMed WHI 290 

individuals. We selected transcripts with p-value <0.017 for follow-up analysis. 291 

 292 

We validated that our approach to construct tPRS is robust. We compared a few polygenic 293 

prediction models developed using bulk RNAseq in monocytes. First, the prediction model 294 

developed using prediXcan based on the MESA dataset (43,44), with weights provided in the 295 

predictDB database (http://www.predictdb.org/). Second, our approach above using genome-296 

wide SNPs (including trans-eQTLs), and third, a similar clump and threshold approach as above 297 

limited to cis-eQTLs defined as SNPs within 1Mbp of the start and end position of the transcript 298 
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(the definition used by prediXcan). We focused on monocytes for this comparison because 299 

prediXcan models were only published based on monocytes.  300 

 301 

 302 

Using tPRS to identify reverse association between gene expression and SDB traits 303 

We constructed generalized tPRS in HCHS/SOL. We used HCHS/SOL genotypes imputed to 304 

the TOPMed freeze5b reference panel. Prior to tPRS construction, we filtered SNPs with impu-305 

tation quality <0.8, minor allele frequency <5%, missingness rate >0.01. As illustrated in column 306 

B of Figure 2, We identified potential reverse causation, where gene expression alters SDB, by 307 

using the tPRS constructed in HCHS/SOL as instrumental variables (IVs) and testing their asso-308 

ciation with their respective SDB phenotypes in HCHS/SOL. We used logistic mixed models, ex-309 

ecuted with the GENESIS R package (42) version 2.16.1. Each tPRS served as the exposure, 310 

and the relevant SDB phenotype served as the outcome. To account for skewness of the SDB 311 

phenotypes, we used the two-stage procedure for rank-normalization (40). Relatedness was 312 

modeled via a sparse kinship matrix, household sharing, and block unit sharing among 313 

HCHS/SOL individuals. Association analyses were adjusted for age, sex, study site, His-314 

panic/Latino background, the first 5 PCs of the genetic data, and log of the sampling weights 315 

used to sample HCHS/SOL individuals into the study. Because the tPRS represent a genetic 316 

proxy for gene expression, if a tPRS was found to be associated with a SDB phenotype (p-317 

value<0.05), it provided evidence that the transcript contributed to the SDB phenotype, rather 318 

than vice versa. However, as illustrated in diagrams A.2 and A.3 in Figure 2 for sleep-transcript 319 

association, bidirectional associations are also plausible.  320 

 321 

Associations between tPRS and metabolites  322 

Treating tPRS as genetic IVs for gene expression, we estimated associations between tPRS 323 

and all identified (named) metabolites with < 25% missing values in HCHS/SOL. We used 324 
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robust survey models implemented in the R survey package version 4.0 (45), accounting for 325 

HCHS/SOL study design (probability sampling and clustering) and providing associations 326 

generalizable to the HCHS/SOL target population. For each metabolite, we first imputed 327 

observations with missing values of that metabolite with its minimum value observed in the 328 

sample, under the assumption that missing values are due to concentrations being below the 329 

detection limit, and then rank-normalized it across the sample.  We used the same covariates as 330 

before: age, sex, study site, Hispanic background, and the first 5 PCs of the genetic data. 331 

Furthermore, we adjusted for BMI depending on the original association of the SDB phenotype 332 

and the transcript (BMI unadjusted or BMI adjusted). For each transcript, we corrected 333 

metabolite associations to account for FDR using the Benjamini-Hochberg (BH) procedure (39). 334 

Associations were considered significant if the FDR p-value was <0.05. 335 

 336 

Association analyses of SDB traits with selected metabolites to verify a complete associ-337 

ation chain 338 

To further validate a complete association “chain” as detailed in Figure 2, we performed 339 

association analyses between the SDB phenotypes and metabolites identified in the tPRS 340 

analysis. Associations between SDB phenotypes and metabolites used a survey sampling 341 

approach to account for HCHS/SOL sampling design and obtained estimates generalizable to 342 

the HCHS/SOL target population. Thus, we used the survey R package (46) with each individual 343 

weighted by their sampling weights, and clustering accounted for when computing robust 344 

standard errors. Analyses were adjusted for age, sex, study site, Hispanic/Latino background. 345 

and BMI depending on the original detected SDB-transcript association (BMI unadjusted or BMI 346 

adjusted). If an SDB phenotype was associated with the metabolite (p-value<0.05), we 347 

interpreted this as validation of a SDB association with this metabolite via the transcript-level 348 

chain.  349 

 350 
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RESULTS 351 

Sample characteristics 352 

Characteristics of the MESA population that participated in the TOPMed omics study, the sleep 353 

study, and the smaller T-cells and monocytes analyses are provided in Table S1; characteristics 354 

of the HCHS/SOL participants with genetic and metabolite data are provided in Table S2. 355 

MESA individuals are a multi-ethnic sample, 69 years old on average during MESA exam 5, and 356 

52% female. HCHS/SOL individuals are from diverse Hispanic/Latino backgrounds with a mean 357 

age of 46 years during the baseline exam, and 59% female. SDB phenotypes were more severe 358 

in MESA, with average AHI=18.6, MinO2=83, and AvgO2=94.1, in contrast to HCHS/SOL with 359 

average AHI=6.4, MinO2=87.1, and AvgO2=96.4, consistent with the older age of the MESA 360 

sample. Characteristics of the WHI participants with RNA-seq data used to validate the tran-361 

script PRS are provided in Table S3. WHI individuals are from a multi-race and ethnic sample 362 

and are 80 years old on average at the Long-Life Study exam when RNA was extracted, and 363 

are all females. 364 

 365 

SDB phenotypes for oxyhemoglobin saturation and AHI are linked to tissue-specific 366 

changes in the transcriptome  367 

In MESA, we identified 96 and 24 differentially expressed transcripts (Table S4, S5 and Table 368 

S6, S7) with FDR p-value < 0.1 in unadjusted and adjusted BMI analyses, respectively, in the 369 

different cell types. Table 1 reports the top differentially expressed transcripts (FDR p-value 370 

<0.05). Three transcripts, AJUBA (Ajuba LIM Protein), ZNF665 (Zinc Finger Protein 665), and 371 

TMC3-AS1 (TMC3 Antisense RNA 1, a long non-coding RNA), are significantly associated with 372 

AvgO2 and AHI in both analyses, in the direction of reduced expression with worse SDB 373 

measures (higher AHI, lower AvgO2). 374 

  375 
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 376 

Table 1. Top results from the tissue-specific transcriptome-wide gene expression 
analysis of SDB phenotypes (FDR p<0.05) in MESA. 

Unadjusted for BMI 

Gene Adj LFC P-value FDR p-

value 

SDB Trait Cell Type 

AJUBA 0.104 2.59E-06 0.050 AvgO2 PBMCs 

PDGFC -0.016 2.59E-06 0.050 MinO2 PBMCs 

SIAE -0.011 1.26E-06 0.020 MinO2 Monocytes 

EMP1 -0.030 6.91E-06 0.050 

LHFPL2 -0.014 9.42E-06 0.050 

ZNF665 -0.011 2.74E-07 0.003 AHI T-cells 

FAM106A -0.032 7.69E-06 0.047 

TMC3-AS1 -0.022 2.74E-07 0.003 

Adjusted for BMI 

Gene Adj LFC P-value FDR- p-

value 

SDB Trait Cell Type 

AJUBA 0.116 2.59E-07 0.005 AvgO2 PBMCs 

ZNF665 -0.012 5.49E-07 0.010 AHI T-cells 

DUX4L27 -0.029 6.59E-06 0.043 

TMC3-AS1 -0.021 7.14E-06 0.043 

The table provides results from analyses of unadjusted (n=8 transcripts) and adjusted 
(n=4 transcripts) for BMI. “Adj LFC” is the covariate-adjusted log2-fold change in gene 
expression per 1 unit increase in SDB exposure. P-value is the raw p-value, and FDR p-
value is the p-value following FDR adjustment using the Benjamini-Hochberg procedure. 
For AvgO2 and MinO2, negative Adj LFC indicates increased expression with worse SDB 
symptoms. For AHI, positive Adj LFC indicates increased expression with worse SDB 
symptoms. 

 377 
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To visualize gene expression and compare across SDB traits and cell types, Spearman 378 

correlation of log-fold change in expression of all SDB-associated transcripts (n=96 transcripts 379 

FDR p<0.1) was illustrated with a heatmap for BMI unadjusted (Figure S3) and BMI adjusted 380 

(Figure S4) analyses, clustered using hierarchical clustering based on the correlation between 381 

the log-fold estimates. These results illustrate concordant and discordant patterns of differential 382 

gene expression by cell type (PBMCs, monocytes, and T-cells) and SDB trait (AvgO2, MinO2, 383 

and AHI). There are a few striking differences in gene expression, particularly the increased 384 

expression of FAM106A, DNAJA3, BCDIN3D-AS1, TGFBRAP1, BEND5, TTC24, TMC3-AS1, 385 

LINC00235, SEC14L2, ARHGEF9, TSHZ1, and LA16c-312E8.4 in T-cells compared to 386 

monocytes and PBMCs. To further investigate the overall patterns in gene expression in relation 387 

to tissue type and SDB traits, a heatmap of the Spearman correlation of the log-fold expression 388 

estimates of SDB phenotypes was plotted Figure 3. Within cell types, the SDB traits AHI and 389 

MinO2 had the highest correlation for gene expression (Spearman R2 between 0.91 to 0.97), 390 

whereas AvgO2 had lower correlations with AHI and MinO2, especially in monocytes. In 391 

addition, a heatmap of estimated log-fold gene expression change (FDR p-value < 0.1) with 392 

SDB phenotypes across tissues adjusted for BMI is shown in Figure S5. The correlations 393 

between the SDB effect estimates for gene expression across cell types are different, and 394 

generally higher, from the phenotypic correlations between the SDB phenotypes, which are at 395 

the range of 0.53 to 0.73 Spearman R2 (Figure S6). When computing correlations over all 396 

genes, estimated associations between AvgO2 with gene expression had almost no correlation 397 

with the other phenotypes (Figure S7). The same patterns (although slightly attenuated) are 398 

observed in BMI adjusted analyses (Figure S8).  399 

  400 
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Figure 3: Spearman correlations between estimated log-fold changes in gene expres-

sion across SDB phenotypes and blood cell types without BMI adjustment in MESA 

 

Heatmap illustrating the Spearman correlations of log-fold change of transcript expression by 
tissue type (monocytes, T-cells, PBMCs) and SDB phenotype (AvgO2, MinO2, AHI) in MESA. 
Correlations were computed over genes with FDR p<0.1. Color legend portrays Spearman R2  

(no/weak correlation = light yellow; complete/strong correlation = green). Estimated AHI effect 
sizes were flipped prior to computation of correlations so that they match the direction of 
MinO2 and AvgO2. 

 401 

 402 

Construction and validation of transcript PRS  403 

We constructed tPRS for gene expression in monocytes using a few methods, focusing on 404 

transcripts that were associated with SDB exposures in our analysis. The performance of 405 
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constructed tPRS was evaluated against whole-blood gene expression levels in n=1,269 WHI 406 

participants. Figure S9 visualizes the results, demonstrating that tPRS constructed using the 407 

clump and threshold for genome-wide SNPs, including trans-eQTLs and tPRS focusing on cis-408 

eQTLs have similar results, and the same generalization rate as that of the prediXcan-based 409 

tPRS.  However, prediXcan tPRS had opposite direction of association with one of the 410 

transcripts in WHI, and, both cis-eQTLs based tPRS (prediXcan and clump and threshold) were 411 

not available for some transcripts due to lack of transcript-associated SNPs near the coding 412 

region. Thus, we moved forward with the genome-wide approach. Of the 96 tPRS (BMI 413 

unadjusted analysis) and 24 tPRS (BMI-adjusted analysis) tested, 26 and 9 tPRS were 414 

associated (p<0.017) with gene expression (Tables S8-S9) in whole blood and considered 415 

validated as IVs.  416 

 417 

Evidence of causal association between transcripts and SDB phenotypes 418 

We tested the association of the validated tPRS, constructed in a cell-specific manner, with SDB 419 

phenotypes in HCHS/SOL (Table S10). Of the 26 tested in BMI unadjusted analysis, 3 tPRS 420 

showed evidence of reverse association with SDB phenotypes (p-value<0.05), supporting a 421 

causal relationship between expression of these transcripts and SDB traits. Among them, the 422 

strongest association was of the tPRS for P2RX4 (Purinergic Receptor P2X 4) in PBMC, in its 423 

association with AvgO2, one standard deviation (SD) increase in the PRS was associated with 424 

increased 1.9% AvgO2. Additionally, tPRS for SEC14L2 (SEC14 Like Lipid Binding 2) was 425 

negatively associated with AHI in T-cells and tPRS for TUBB6 (Tubulin Beta 6 Class V) was 426 

positively associated with MinO2 in monocytes. After BMI adjustment, only P2RX4 remained 427 

positively associated with AvgO2 in PBMCs (p-value <0.05), as shown in Table S11. 428 

 429 

Evidence of causal association between transcripts and metabolites  430 
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We tested the relation between each validated tPRS and metabolites in HCHS/SOL. The tPRS 431 

for P2RX4 and CTD-2366F13.1 (also known as MOCS2-DT, MOCS2 Divergent Transcript) 432 

were associated with a total of 6 and 7 metabolites in unadjusted BMI and adjusted BMI 433 

analyses (FDR p-value <0.05, Table S12 and Tables S13), respectively; the association 434 

“chains” are visualized in Figure 4. Of 7 metabolites, 3 of them (butyrylcarnitine, linoleoyl-435 

arachidonoyl-glycerol (18:2/20:4) , and palmitoleoyl-linoleoyl-glycerol (16:1/18:2)) were also 436 

associated with AvgO2 (Table S15). However, the AvgO2-metabolite associations did not 437 

remain after BMI adjustment, suggesting that BMI, rather than SDB, may be driving these 438 

associations (Table S16). Of the transcripts, P2RX4 had evidence of a complete chain of 439 

association with SDB and metabolites (p-value <0.05) in the BMI unadjusted analysis. 440 

  441 
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 442 

Figure 4. Identified association chains between AvgO2, transcripts, and metabolites  

 

Diagram illustrating the “association chain” relationships between AvgO2, tPRS, and metabolites in 
BMI unadjusted and BMI adjusted analyses. Dark blue color indicates association between tPRS and 
metabolites in both BMI unadjusted and adjusted analyses; The light blue color indicates the 
association between tPRS and metabolite only in BMI adjusted analysis. 

 443 

DISCUSSION 444 

Here, we conducted a robust analysis of SDB phenotypes and their multi-omics correlates. We 445 

first identified transcriptome-wide tissue-specific changes in gene expression associated with 446 

sleep-related oxyhemoglobin saturation traits and AHI in MESA and then used those transcripts 447 

to develop genetic proxies for gene expression (tPRS). Next, we generalized and validated 448 

some of the tPRS in WHI. Finally, we utilized the validated tPRS to further study SDB 449 
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phenotypes and metabolite associations in HCHS/SOL. Our results support SDB-related 450 

leukocyte alterations in gene expression and highlight signaling pathways related to 451 

inflammation, thrombosis, and neurotransmission.  452 

 453 

SDB traits were associated with differential expression of many transcripts across three blood 454 

cell types (Table S4 and S5, 96 genes with FDR p-value<0.1). Of the top transcripts (8 genes 455 

with FDR p-value <0.05), AJUBA expression was positively associated with higher AvgO2 and 456 

PDGFC expression was negatively associated with higher MinO2 in PBMCs. AJUBA is a 457 

scaffold protein in the family of LIM domain-containing protein, considered key regulators of the 458 

hypoxic response (47). Recent research supports a role for AJUBA in interacting with retinoic 459 

acid receptor signaling in an in vitro model (48) and a role for indirectly limiting inflammation by 460 

maintaining mitochondrial quality control in a mouse model (49); therefore, greater AJUBA 461 

expression may be associated with increased AvgO2 through pathways related to inflammation 462 

and retinoic acid.  PDGFC encodes platelet derived growth factor C (50) and is upregulated 463 

during hypoxia in tumor cells (51). The association between higher PDGFC expression and 464 

lower minimum oxygen saturation (MinO2) supports a role for PDGFC signaling in SDB-related 465 

hypoxia. In monocytes, EMP1 was linked to MinO2, and prior studies have shown that EMP1 466 

expression increases during sleep loss and during hypoxia in cancer tissues (52,53). 467 

Correlations between leukocyte subsets and trait-specific gene expression (Figure 3) supported 468 

an overall pattern of similarity between cell populations, but also highlighted some striking 469 

differences. For example, the gene HPCAL4 (Hippocalcin-Like Protein 4) has high expression 470 

changes with “worse” SDB phenotypes (higher AHI, lower AvgO2 and MinO2) in monocytes, but 471 

weak associations in T-cells and PBMCs. However, FAM106A and SERPINE2 have lower 472 

expression with worse SDB phenotypes in T-cells, but weak associations in PBMCs and 473 

monocytes. SERPINE2 (54) encodes glia-derived nexin (GDN, also referred to as protease 474 

nexin-1) with mixed evidence as a genetic factor for COPD (55,56). SERPINE2/GDN inhibits the 475 
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hypoxia-triggered serine protease thrombin (57,58), and a mouse model of SERPINE2 476 

deficiency causes excess thrombin activity and overproduction of cytokines in the lungs (59), 477 

suggesting a role for SERPINE2 in airway inflammation. Since OSA may be associated with a 478 

procoagulant state featuring high thrombin levels (60,61), the hypoxemia associated with OSA 479 

may lead to increased thrombin levels, affecting SERPINE2 expression in T-cells.  480 

 481 

Of the top differentially expressed genes in MESA whose tPRS was validated in an independent 482 

cohort (WHI), only P2RX4 was found to have a complete “chain” of association with SDB and 483 

metabolites when tested in another independent study, HCHS/SOL. The PRS for P2RX4 was 484 

positively associated with AvgO2, both with and without adjustment for BMI, and as such it is a 485 

candidate contributor to oxyhemoglobin saturation in SDB. P2RX4 encodes a purinergic 486 

receptor for ATP, P2X4, which may play a role in the neuroprotective effects of hypoxic 487 

preconditioning (62,63). P2RX4 was further negatively associated with metabolite 488 

butyrylcarnitine, an indicator of fatty acid metabolism previously linked to BMI (64). Higher 489 

oxygen tension promotes increased ATP production (65), which may in turn promote increased 490 

P2RX4 expression (P2X4 as a purinergic ATP receptor) and decreased butyrylcarnitine (66). 491 

P2RX4 can have beneficial or detrimental effects depending on context. A mouse model of 492 

genetically increased P2XR4 expression led to enhanced cardiovascular function (67) and prior 493 

research supports a role for P2XR4 in heart contractility (68), suggesting that P2XR4 may 494 

positively drive AvgO2 via bolstering cardiac force. Likewise, butyrylcarnitine was found to be 495 

associated with time of cardiac isovolumetric relaxation and may be a marker of heart failure 496 

(69), further linking P2XR4 to cardiac function. While CTD-2366F13.1 (MOCS2-DT) was not 497 

associated with SDB traits, two of the four metabolites negatively associated with CTD-498 

2366F13.1 were also associated with AvgO2: linoleoyl-arachidonoyl- glycerol (18:2/20:4) and 499 

palmitoleoyl-linoleoyl- glycerol (16:1/18:2). Levels of 2-Arachidonoylglycerol, an agonist of the 500 

CB1 and CB2 cannabinoid receptors, are increased in the brain during ischemia (70) and in 501 
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macrophages in response to oxidative stress (71). Therefore, greater AvgO2 levels may result 502 

in decreased linoleoyl-arachidonoyl- glycerol (18:2/20:4) levels.  503 

 504 

There are several strengths and some limitations of our analysis. Our unique study design 505 

exploited a stepwise discovery/validation approach across multiple studies and optimized the 506 

availability of SDB-related datasets to study omics markers and SDB. First, we identified SDB-507 

related transcripts. Next, we utilized genetic associations with gene expression to construct 508 

tPRS, serving as “genetic IVs”: exposure variables that are likely associated with the gene 509 

transcripts and are specific to them, thus allowing for downstream association analysis and 510 

causal inference using these IVs instead of the transcript themselves (72). The idea of using 511 

genetic variants as IVs is often used in Mendelian Randomization (MR) analysis. Our analysis is 512 

different than standard one-sample MR in that we did not estimate the effect of the transcript on 513 

the outcome, because we did not have access to RNA-seq in HCHS/SOL. However, for 514 

causality inference, it is sufficient to test the IV association with the outcome of interest (73). We 515 

then studied the evidence for the effect of gene expression on SDB using the tPRS. Still, the 516 

exact form of association between the gene expression and SDB traits cannot be determined 517 

(Figure 2). For example, if no tPRS-SDB association was detected, it is possible that this was 518 

due to lack of power. Even in the absence of tPRS-SDB association, the association between 519 

the SDB and tPRS can be due to either causal effect of SDB on tPRS, or confounding by a 520 

common cause of both. Notably, during the WHI validation step, many transcripts did not have 521 

significant tPRS associations and therefore were not carried forward for the genetic association 522 

analysis in HCHS/SOL; lack of validation may be due to cell type differences, as we validated 523 

tPRS in WHI, where gene expression was measured in whole blood, unlike measurement in 524 

specific cell types in MESA. Finally, we leveraged the validated tPRS to test for associations of 525 

gene transcript expression with metabolites and connect possible “chains” of associations. All 526 

included cohorts are large and represent diverse populations in the U.S. Our sleep cohorts, 527 
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HCHS/SOL and MESA, have objective sleep phenotype measurement without prior selection of 528 

participants based on specific phenotypes. Other limitations of our study include high multiple 529 

testing burden, performing procedures with multiple steps, utilizing multiple data in constructing 530 

tPRS, and differences in sample timing between blood sample collection and overnight PSG in 531 

MESA. However, genetic data should not be affected by differences in timing, and chronic 532 

conditions like SDB may be stable over time, making this limitation less of a concern. It is 533 

notable that the three blood cell types used in MESA are not distinct: PBMCs include monocytes 534 

and T-cells. Further, both monocytes and T-cells are also composed of more granular cell types. 535 

Statistical analyses within one cell type are generally powered to detect associations that hold 536 

across the component, more granular, cell types, and some cell type-specific associations may 537 

be masked. Overall, we utilize robust statistical methods and objective measures, integrating 538 

across multiple layers of biological measures, to interrogate the mechanisms driving SDB-539 

related morbidity.   540 

 541 

CONCLUSION 542 

In summary, we examined multiple levels of biological information to investigate signaling 543 

mechanisms underlying SDB traits to better understand drivers of morbidity in SDB. Our results 544 

highlight differential gene expression by circulating leukocyte populations in relation to multiple 545 

SDB traits related to hypoxia, neurotransmission, and thrombolytic activity. Analyses with 546 

validated tPRS in independent cohorts support a mechanistic role for P2XR4 purinergic 547 

signaling in SDB, a gene known to influence cardiac function, which is relevant to SDB as both 548 

a risk factor and outcome. Overall, we applied novel, robust methods to integrate multi-omic 549 

data and SDB data to discover mechanisms underlying multiple SDB traits. Our multi-550 

dimensional approach using large population cohorts is a promising approach to unravel 551 

biological underpinnings of complex human disorders.    552 

 553 
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MESA is a longitudinal cohort study (27), established in 2000, that prospectively collected risk 883 

factors for development of subclinical and clinical cardiovascular disease among participants in 884 

six field centers across the United States (Baltimore City and Baltimore County, MD; Chicago, 885 

IL; Forsyth County, NC; Los Angeles County, CA; Northern Manhattan and the Bronx, NY; and 886 

St. Paul, MN). The 1st and 5th MESA exams took place between 2000-2002, and 2010-2012, 887 

respectively, and whole blood was drawn from participants in both exams. For about 1,400 888 

participants, blood was used later for RNA extraction and/or proteomics in at least one of the 889 

exams. In addition, a sleep study ancillary to MESA occurred shortly after MESA exam 5 during 890 

2010-2013. Sleep study participants underwent single night in-home polysomnography 891 

(Compumedics Somte Systems, Abbotsville, Australia, AU), as previously described (28). The 892 

number of individuals with each type of data and at each time point (exam 1 and exam 5) varies. 893 

Figure S1 in the Supplementary Information visualizes the data flow and overlaps across the 894 

various measures used in this study: whole-genome genotyping, RNA-seq, and sleep. The 895 

study was approved by Institutional Review Boards in all study centers and participants 896 

provided written informed consent. 897 

 898 

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 899 
 900 
The HCHS/SOL is a longitudinal cohort study of U.S. Hispanics/Latinos (30,31) recruited from 901 

four geographic regions: Bronx NY, Chicago IL, Miami FL, and San Diego CA. The HCHS/SOL 902 

baseline exam occurred on 2008-2011, where 16,415 participants were enrolled via multi-stage 903 

probability sampling. HCHS/SOL individuals who consented further participated in an in-home 904 

sleep study, using a validated type 3 home sleep apnea test recording airflow (via nasal 905 

pressure), oximetry, position, and snoring (ARES Unicorder 5.2; B-Alert). Genetic data were 906 

measured and imputed to the TOPMed freeze 5b reference panel as previously described, for 907 

individuals who consented at baseline (32,33). More information about genotyping and 908 
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imputation is provided in the Supplementary Information. Metabolomic data were also measured 909 

for n=~4,000 individuals selected at random out of those with genetic data (34). Figure S2 in 910 

the Supplementary Information provides the data flow in HCHS/SOL, focusing on individuals 911 

with genetic data and wide consent for genetic data sharing. All participants provided written 912 

informed consent at their recruitment site and the study was approved by the institutional review 913 

boards at all participating institutions.   914 

Genotyping and imputation in HCHS/SOL 915 
 916 
Blood was drawn from HCHS/SOL participants during the baseline exam. Individuals who con-917 

sented to genetic studies were genotyped using an Illumina Omni2.5M array, which included 918 

150,000 custom-selected Single Nucleotide Polymorphisms (SNPs) including ancestry-informa-919 

tive and Amerindian-specific variants. Global ancestry proportions measuring the proportion of 920 

the genome inherited from European, African, and Amerindian ancestors and genetic principal 921 

components were computed as previously reported [1]. The genotypes were imputed to the 922 

Trans-Omics in Precision Medicine (TOPMed) freeze 5b reference panel as described in [2].  923 

 924 
The Women’s Health Initiative (WHI) 925 
 926 
The WHI is a prospective national health study focused on identifying optimal strategies for pre-927 

venting chronic diseases that are the major causes of death and disability in postmenopausal 928 

women [3]. The WHI initially recruited 161,808 women between 1993 and 1997 with the goal of 929 

including a socio-demographically diverse population with racial/ethnic minority groups propor-930 

tionate to the total minority population of US women aged 50-79 years. The WHI consists of two 931 

major parts: a set of randomized Clinical Trials and an Observational Study. The WHI Clinical 932 

Trials (CT; N=68,132) includes three overlapping components, each a randomized controlled 933 

comparison: the Hormone Therapy Trials (HT), Dietary Modification Trial, and Calcium and Vita-934 

min D Trial. A parallel prospective observational study (OS; N = 93,676) examined biomarkers 935 
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and risk factors associated with various chronic diseases. While the HT trials ended in the mid-936 

2000s, active follow up of the WHI-CT and WHI-OS cohorts has continued for over 25 years 937 

with the accumulation of large numbers of diverse clinical outcomes, risk factor measurements, 938 

medication use, and many other types of data.  939 

A total of 11,071 WHI participants have whole-genome sequencing data via TOPMed, and 940 

1,274 of these participants have RNA-seq measured in venous blood via TOPMed.  941 

 942 
RNA sequencing in WHI 943 
 944 
RNA-seq was performed via the Trans-Omics in Precision Medicine (TOPMed) program. The 945 

WHI RNA samples (N=1,335) were collected from Long Life Study (LLS) participants as part of 946 

the LLS Blood Protocol using the PreAnalytiX PAXgene blood tubes, a collection system de-947 

signed to preserve RNA from whole blood. After collection in participant’s homes throughout the 948 

US, PAXgene tubes were the last of five tubes drawn from each participant, mixed carefully (in-949 

verted 8-10 times), kept at room temperature for a minimum of 2 hours post draw, and shipped 950 

overnight with cool packs to the Fred Hutch Specimen Processing Lab (SPL). Upon receipt at 951 

the SPL, PAXgene tubes were stored at -80 degrees C until they could be transferred to the 952 

Fred Hutch Public Health Sciences Biomarker Lab, where the vials were kept frozen at -80 de-953 

grees C. Within about a month of collection, the lab extracted total RNA, including miRNA, using 954 

the PreAnalytiX method (PAXgene Blood miRNA Kit Handbook, Qiagen, 05/2009) designed for 955 

use with the PAXgene blood collection tubes. A qualitative assessment by agarose gel electro-956 

phoresis of RNA integrity was done at the time of extraction. The RNA was quantified by 957 

NanoDrop. The elution volume of 76 μL of extracted RNA was divided between two RNA ‘Par-958 

ent’ vials without further dilution, frozen at -80 degrees C, and shipped overnight on dry ice to 959 

the WHI biorepository for long-term storage at -80 degrees C. RNA sequencing for WHI was 960 

performed at the Broad Institute using the unified TOPMed protocols. More information about 961 
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RNA sequencing protocols in TOPMed is available here https://github.com/broadinstitute/gtex-962 

pipeline/blob/master/TOPMed_RNAseq_pipeline.md.  963 

 964 

 965 

Supplemental figures 966 
 967 

Figure S1: MESA data flow across various measures in the 1st and 5th exam, and the 
sleep ancillary study. 

 
The figure focuses on n=5,468 individuals having at least one of the displayed measures.  
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Figure S2: HCHS/SOL data flow across genotyping, metabolomics, and sleep data. 

 
The figure focuses on n=11,872 with genetic data.  
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Figure S3: Heatmap of estimated log-fold gene expression change with SDB phenotypes across tissues with-
out BMI adjustment in MESA 
 

 
 
Genes displayed in this figure are those that had FDR p-value<0.1 in association analysis without BMI adjustment. FDR adjust-
ment was computed separately in each set of associations defined by cell type and SDB phenotype. Red color indicated 
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Figure S4: Heatmap of estimated log-fold gene expression change with SDB phenotypes 
across tissues from BMI-adjusted analysis in MESA 

 

 
Genes displayed in this figure are those that had FDR p-value<0.1 in association analysis with BMI adjustment. 
FDR adjustment was computed separately in each set of associations defined by cell type and SDB phenotype. 
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Figure S5: Spearman correlations between estimated log-fold changes in gene expres-
sion across SDB phenotypes and tissues in BMI adjusted analysis in MESA (top genes) 

 

Heatmap illustrating the Spearman correlations of log-fold change of transcript expression by 
tissue type (monocytes, T-cells, PBMCs) and SDB phenotype (AvgO2, MinO2, AHI) in MESA. 
Correlations were computed over genes with FDR p<0.1. Color legend portrays Spearman R2  

(no/weak correlation = light yellow; complete/strong correlation = green). Estimated AHI effect 
sizes are flipped prior to computation of correlations so that they match the direction of MinO2 
and AvgO2. 
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Table S6. Correlation between the SDB phenotypes 

 
Heatmap illustrating the Spearman correlations SDB phenotype (AvgO2, MinO2, AHI). Color 
legend portrays Spearman R2  (no/weak correlation = light yellow; complete/strong correlation 
= green). 
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Figure S7: Spearman correlations between estimated log-fold changes in gene expres-
sion across SDB phenotypes and tissues in analysis without BMI adjustment (all genes). 

 

Heatmap illustrating the Spearman correlations of log-fold change of transcript expression by 
tissue type (monocytes, T-cells, PBMCs) and SDB phenotype (AvgO2, MinO2, AHI). Color 
legend portrays Spearman R2  (no/weak correlation = light yellow; complete/strong correlation 
= green).  
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Figure S8: Spearman correlations between estimated log-fold changes in gene expres-
sion across SDB phenotypes and tissues in analysis BMI adjustment (all genes). 

 
Heatmap illustrating the Spearman correlations of log-fold change of transcript expression by 
tissue type (monocytes, T-cells, PBMCs) and SDB phenotype (AvgO2, MinO2, AHI). Color 
legend portrays Spearman R2  (no/weak correlation = light yellow; complete/strong correlation 
= green). 
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Figure S9. Comparison of the associations between monocyte-based tPRSs  and whole-blood 
gene expression in WHI 

 
For each transcript associated with an SDB phenotype, the figure provides the estimated association effect, 95% confidence 
interval, and p-value, of tPRSs constructed in different approaches with whole-blood transcript expression in WHI.  tPRS1 
and tPRS3 were constructed using the clump and threshold approach implemented in PRSice2 using summary statistics from 
GWAS of transcript expression in monocytes in MESA, and with clumping guided by LD in MESA (the same individuals 
used for GWAS). tPRS1 allows for genome-wide SNPs, and tPRS3 focused on cis-eQTLs. tPRS2 is the prediXcan model 
(also using cis-eQLTs only). For tPRS1 and 3 we considered three p-value threshold (5x10-8, 10-7, and 10-6), and the tPRS 
with smallest p-value is displayed. PRS associations were estimated in models adjusted for sex, age, study site, race/ethnic 
background, batch effects, and 11 ancestral principal components.  
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