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ABSTRACT 12 

Studies of the health effects of the microbiome often measure overall associations by using 13 

diversity metrics, and individual taxa associations in separate analyses, but do not consider the 14 

correlated relationships between taxa in the microbiome. In this study, we applied random subset 15 

weighted quantile sum regression with repeated holdouts (WQSRSRH), a mixture method 16 

successfully applied to ‘omic data to account for relationships between many predictors, to 17 

processed amplicon sequencing data from the Human Microbiome Project.  We simulated a 18 

binary variable associated with 20 operational taxonomic units (OTUs). WQSRSRH was used to 19 

test for the association between the microbiome and the simulated variable, adjusted for sex, and 20 

sensitivity and specificity were calculated. The WQSRSRH method was also compared to other 21 

standard methods for microbiome analysis. The method was further illustrated using real data 22 

from the Growth and Obesity Cohort in Chile to assess the association between the gut 23 

microbiome and body mass index. In the analysis with simulated data, WQSRSRH predicted the 24 

correct directionality of association between the microbiome and the simulated variable, with an 25 

average sensitivity and specificity of 75% and 70%, respectively, in identifying the 20 associated 26 

OTUs. WQSRSRH performed better than all other comparison methods. In the illustration analysis 27 

of the gut microbiome and obesity, the WQSRSRH analysis identified an inverse association 28 

between body mass index and the gut microbe mixture, identifying Bacteroides, Clostridium, 29 

and Ruminococcus, among others, as important genera in the negative association. The 30 

application of WQSRSRH to the microbiome allows for analysis of the mixture effect of all the 31 

taxa in the microbiome, while simultaneously identifying the most important to the mixture, and 32 

allowing for covariate adjustment. It outperformed other methods when using simulated data, 33 

and in analysis with real data found results consistent with other study findings. 34 
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INTRODUCTION 39 

The human microbiome is increasingly recognized as an important component of human 40 

health. Studies show links between the composition and function of the human gut microbiome 41 

and many health outcomes, including inflammatory and autoimmune conditions, obesity, 42 

infection, and neurological outcomes 1–4. Animal studies have shown prospective changes in the 43 

microbiome from different exposures, and changes in physiology and health status after changes 44 

to the microbiome. While some clinical trials have been done, many human microbiome studies 45 

have been observational. 46 

In observational studies, the microbiome is typically characterized in a few key ways. 47 

The first is by measuring and comparing within individual diversity, or α-diversity. These 48 

measures, adopted from the field of ecology, measure the number of different taxa present, and 49 

the evenness of abundance among those taxa within a single sample 5–7. That diversity level can 50 

then be compared across individuals. However, α-diversity cannot be directly translated to health 51 

status, thus its meaningful utility is limited. A second way to characterize the microbiome is by 52 

assessing community composition, or β-diversity. This is typically done by measuring the 53 

similarity or dissimilarity of the composition of one sample compared to another, using the 54 

number of different taxa 8, the abundance of each taxa 9, and sometimes the phylogenetic 55 

relationships between taxa 10. Researchers can compare groups, for instance exposed and 56 

unexposed groups, to see if the samples within one group are more similar than samples across 57 
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groups (i.e. controls are more similar to other controls than to the exposed group). We use these 58 

measures of diversity to try to gain an understanding of the effect of or on the microbiome as a 59 

whole, but changes in diversity can only indicate a general difference without indicating how 60 

specifically the microbiome is different, or what the important players within the microbiome 61 

are.  62 

To determine which specific taxa contribute to differences in diversity, researchers can 63 

also assess each taxa individually by measuring the amount of variability each one contributes, 64 

or by assessing trends in the presence/absence or abundance of individual taxa. While 65 

combinations of these strategies are often used, these scenarios must be adjusted for multiple 66 

comparisons across hundreds or thousands of taxa, which limit the ability to identify statistically 67 

significant associations. Furthermore, the microbiome is an ecosystem of bacterial communities 68 

with complex interactions and associations, and using these modeling strategies to assess them 69 

individually does not account for their intricate correlations.  70 

Interest in microbiome research has grown rapidly over the last fifteen years, yet the 71 

complexity of the data, e.g. zero inflation, variation across individuals, correlated taxa, etc., 72 

continues to be a challenge for researchers. There has been a push for new statistical 73 

methodologies, including machine learning methods, and new microbial data applications of 74 

existing statistical methods, in an effort to improve the accuracy of findings from microbiome 75 

analyses11. Some of these methods include random forest12, negative binomials13, and 76 

clustering14, to name a few. Similarly, there has been a push in the field of environmental 77 

epidemiology to develope new strategies to model the health effects of multiple co-exposures to 78 

improve the accuracy of chemical exposure studies. Some of the newly developed methods allow 79 

for analysis of overall mixture effects, and indicate the importance of each chemical within that 80 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.07.11.22277512doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.11.22277512
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

mixture. One such method is weighted quantile sum (WQS) regression15. WQS regression uses 81 

an empirically-weighted index of many correlated chemical exposure measurements, and models 82 

the mixture effect of the whole index, while also providing weights for each component within 83 

the mixture to indicate the relative importance. WQS regression also allows for the inclusion of 84 

covariates, to reduce the effects of confounding. Applying this method to analysis of microbiome 85 

data allows for the evaluation of the overall mixture effect of the microbiome, and 86 

simultaneously identifies the most important individual taxa in the mixture while accounting for 87 

a correlated data structure. 88 

The goal of this study is to demonstrate the novel application of WQS regression to 89 

assess covariate adjusted associations between health exposures and microbiome sequencing 90 

abundance data as a mixture of potentially correlated bacterial taxa. Our analysis adjusted and 91 

combined WQS regression with random subset selection16 and repeated holdout17 (WQSRSRH) 92 

frameworks, and applied them to publicly available Human Microbiome Project 16S amplicon 93 

sequencing data. We further demonstrate the utility of the method using data from the Growth 94 

and Obesity Cohort in Chile.  95 

The random subset extension of WQS is used in cases where the number of components 96 

in the WQS index is greater than the number of observations, and uses random subsets of 97 

components to calculate the WQS index. The repeated holdout extension of WQS allows for 98 

more robust estimates by using different observations in the training and validation sets of the 99 

data over multiple iterations of WQS analysis. We illustrate the utility of WQSRSRH and estimate 100 

specificity (correctly determining OTUs were not associated with the outcome) and sensitivity 101 

(correctly identifying associated OTUs) of the method. This methodological application allows 102 
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for more comprehensive investigation of the association between the gut microbiome and many 103 

health exposures and outcomes by assessing the microbiome as a mixture. 104 

 105 

METHODS  106 

Figure 1 illustrates a simplified flow chart of the methods used for this study. All 107 

methods were performed in accordance with the relevant guidelines and regulations. 108 

 109 

Data Source and Processing for Simulation 110 

 Data for the simulation analysis came from the Human Microbiome Project 1 (HMP), 111 

version 1, which has been well described in previous literature18–20. We used 16S amplicon 112 

sequencing data, processed using QIIME19,21. HMP guidelines were followed in this analysis and 113 

publication. 114 

 We used data from each participant’s first stool sample (n=210). As a data reduction step, 115 

we filtered out any operational taxonomic unit (OTU) that had 0 abundance in more than 90% of 116 

samples, resulting in a total of 868 OTUs. This data reduction step also ensures that there are 117 

enough participants with non-zero values to calculate tertiles above zero for the WQSRSRH 118 

indices. Relative abundances were calculated to account for variations between individuals 119 

within the sample population. These data processing steps were performed in SAS v 9.4, R v 120 

3.6.1, and RStudio v 1.2.5001, using the HMP16SDATA package22. 121 

 122 

Data Simulation Method 123 

Twenty OTUs were chosen based on a literature review of bacterial species that have 124 

been linked to health-related variables such as body mass index (BMI) and smoking status (see 125 
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Table 1). These 20 OTUs were then randomly categorized to represent levels of association 126 

(strong, medium, and weak) with a simulated binary variable. To simulate the “test” variable, the 127 

intercept (β0) was set to -5, and the potency adjusted relative abundance (calculated as 128 

log2(log10(x+1)/log10(max+1)) for each of the 20 OTUs) was multiplied by a β coefficient of 8 129 

for the strong group, 4 for the medium group, and 2 for the weak group. Potency adjustment was 130 

needed to standardize the simulated association across samples because the abundance of each 131 

OTU varied greatly, i.e. multiplying by 8 leads to a different scale of association for an 132 

abundance of 5 vs. an abundance of 30. Beta coefficient values were chosen for each level of 133 

association that would result in logit values across the range of OTUs between roughly -3.5 and 134 

3.5. In prior attempts at simulation, larger coefficient values resulted in unlikely and extreme 135 

logit values (i.e. greater than 3.5). All other OTUs were not assigned an association with the test 136 

variable (i.e., assumed to be a value of 0). The resulting test variable was positive for 13% of the 137 

participants. We adjusted the simulation model for sex using a beta coefficient of -1 for females; 138 

i.e., males were the reference group. We also simulated a random “control” variable that was not 139 

assigned an association to any OTU, and used it as a negative control to compare the ability of 140 

each model to detect the intended simulated association. 141 

 142 

Weighted Quantile Sum Regression Analysis with Random Subsets and Repeated Holdouts 143 

WQS is a method applied to mixtures of variables (e.g. chemicals, or in this case OTUs) 144 

by which the total effect of a group of potentially correlated predictors is estimated through the 145 

derivation of an index, a weighted sum of the quantiled exposure variables15. The WQS index is 146 

calculated as ��� � ∑ ����,�, where WQS is the mixture index, ��,�  is the quantiled variable for 147 

the ith exposure variable and jth subject and ��  is the weight corresponding to �� . In WQS with 148 
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Random Subsets (WQSRS), subsets of the variables in the mixture are randomly chosen and used 149 

to predict weights in order to maximize the association between the index and the outcome. Such 150 

subsets are computed numerous times (e.g., 1,000 times) with adjustments for covariates. The 151 

average weights across the subsets sum to 1 and are used to compute the final WQS index for a 152 

given health outcome. For the calculation of the weighted index, effects can be constrained in the 153 

positive or negative direction, or weights can be calculated without constraining direction. The 154 

WQS index is then used in a generalized linear model (GLM), so that 	
�� 
  � � ����� �155 

 ��, where g() indicates a link function, μ is the sample mean, α is the intercept, ��is the effect 156 

parameter corresponding to the WQS index, and Z represents a set of covariates with 157 

corresponding effect estimates δ 16. To increase generalizability, the weights are estimated and 158 

tested in randomly selected training (40% subjects) and validation (60% subjects) datasets. 159 

Although analysis can be constrained in the positive or negative direction for the weighted index 160 

calculation, estimates from the GLM in the validation dataset are not constrained. Therefore,  161 

GLM estimates can be in either direction regardless of constraint direction in the index 162 

calculation. WQSRS with Repeated Holdouts (WQSRSRH) then repeats the WQSRS process a 163 

specified number of times, with different observations in the training and validation datasets, and 164 

provides effect estimates and mixture weights for each repetition of the analysis. In each 165 

repetition of the analysis, the predictors with the largest weights within the WQS index 166 

contribute most to the estimated effect parameter. An equi-weight (1/the number of components 167 

in the index) cut-point is often used to determine which components within the mixture are most 168 

important, as it indicates if an individual weight is higher than if all components of the mixture 169 

were given equal weight. Across repeated holdouts, average effect estimates and average 170 

component weights are calculated for more robust estimates. 171 
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For this analysis, we looked at the association between the test variable and the gut 172 

microbiome, in order to demonstrate the application of WQS to microbiome data. Because of the 173 

large amount of zeros across the dataset, using quantiles in the WQS index was not ideal due to 174 

having so many ties with a 0 score. Instead we ranked the relative abundance of each OTU to 4 175 

levels, 0, 1, 2, or 3, where the observed 0s were scored as 0, and values above 0 were tertile 176 

scored.  Due to the large number of variables (OTUs) in the index, the random subset variation 177 

of WQS was used in this analysis. To address generalizability we conducted 30 repeated holdout 178 

analyses where the distribution of weights were based on the 30 training sets (40%) and the 179 

distribution of the 30 estimates of �� was based on the 30 holdout validation sets (60%). The 180 

weights within each training set were based on 1000 random subsets of size 30 OTUs. To 181 

calculate the WQS index weights from the 1000 random subsets, three weighted averages were 182 

evaluated using different signal functions. The signal function gives additional emphasis to 183 

subsets with a larger association to the outcome, compared to those sets with negligible 184 

association. The three signal functions tested were: (i) the default in the gWQS R package, which 185 

weights each random subset based on the squared t statistic for the corresponding beta parameter; 186 

(ii) a more severe weighted average, which weights using exp(t); i.e., the absolute value of the t 187 

statistic exponentiated; and (iii) a less severe weighted average, using the abosulte value of the t 188 

statistic.  189 

Sensitivity and specificity of this application were then calculated based on the WQSRSRH 190 

index weights of the OTUs across the 30 repeated holdout sets. Both sensitivity and specificity 191 

were calculated over a range of cutpoints to guide cutpoint selection. Sensitivity was calculated 192 

as the proportion of the 20 selected OTUs that had weights exceeding the given cutpoint; 193 

specificity was calculated as the proportion of the remaining 848 OTUs that had weights below 194 
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the cutpoint.  We evaluated the impact of the signal function in the weighted averages of the 195 

WQSRSRH indexes using analysis of variance for sensitivity and specificity for the 30 holdout 196 

datasets across the 3 signal functions and selected cutpoints. Cutpoints ranged between 0.0005 197 

and 0.002, where 1/868=0.00115 (the equi-weighted cutpoint). The test for interaction was used 198 

as a goodness-of-fit test for the main effect ANOVA model.  199 

 200 

Comparison to Other Microbiome Analysis Methods 201 

 We also compared the WQSRSRH method to more standard methods of microbiome 202 

analysis, using the same data set with the same test and control variables. We used the Vegan 203 

package 23 in R to calculate α-diversity using the Shannon index6, and β-diversity distance using 204 

the Bray-Curtis dissimilarity index9. We performed two linear regressions with Shannon 205 

diversity as the outcome and the test variable, and the control variable as the primary exposure in 206 

each model, both adjusted for sex. The adonis2 function in Vegan was then used to perform two 207 

permutational analysis of variance (PERMANOVA) analyses, based on the Bray-Curtis index, 208 

with the same variables as the linear regression, using 9,999 permutations. As a sensitivity 209 

analysis, we also conducted the same PERMANOVA anlysis using the Aitchison distance24. 210 

Similarity percentage (SIMPER) analysis was then used, with 999 permutations, to determine 211 

which OTUs contributed 70% of the variance to the β-diversity differences between the levels of 212 

the simulated variable, and the random variable in a separate analysis. As an additional 213 

comparison, Random Forest analysis was conducted using the randomForest package 25, with 214 

100 trees, to identify the OTUs most associated with the test and control variables. Separate 215 

models were run with the test and control variables as the response in each model, and the 868 216 

OTUs and sex as predictors. 217 
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 218 

Data Source and Processing for Demonstration with Real Data 219 

We further demonstrated the utility of the WQSRSRH method by using it to examine the 220 

relationship between BMI and the gut microbiome using real (not simulated) data from a cohort 221 

of adolescent girls from Chile. The study design of the Growth and Obesity Cohort Study 222 

(GOCS) in Chile has been previously described26,27, The current study assesses a subset of 161 223 

girls that contributed stool samples, BMI z-score for age and sex, calculated using the World 224 

Health Organization Anthro Survey Analysers, and complete covariate data.  Covariate and 225 

outcome data collected at the stool sample collection clinic visit include BMI, age, and antibiotic 226 

use in the past six months  (yes/no). Covariate data collected from survey at study baseline 227 

(around 10 years of age) included birth mode (vaginal/c-section), maternal education (high 228 

school or less versus more than high school), and number of days the girl was breastfed as an 229 

infant.  230 

Data for this project was obtained from the publicly available data in the Human Health 231 

Exposure Analysis Resource (HHEAR) Data Repository, which has been approved under Icahn 232 

School of Medicine at Mount Sinai IRB Protocol # 16-00947.  HHEAR data use guidelines were 233 

followed in this analysis and publication. 234 

The microbiome taxonomy was assigned as amplicon sequence variant (ASV)s, as 235 

previously described26. ASV data was then further processed by removing any ASVs with 236 

ambiguous taxonomy, and limiting to ASVs detected in at least 10% of subjects (ASV n=500). 237 

The relative abundance of ASVs were calculated for each subject.  238 

 239 

WQSRSRH Demonstration with Real Data 240 
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The WQSRSRH method was applied to these data, with BMI category (normal vs 241 

overweight/obese) as the outcome. The WHO BMI for sex- and age- z-score categories were 242 

categorized as between -2 to +1 as normal weight, and 2+ as overweight/obese28. The ASV 243 

relative abundances were scored into 3 groups such that 0 abundance was maintained at 0, and 244 

the remaining abundances were split as less than the median (1) or greater than or equal to the 245 

median (2). The WQS microbiome mixture was analyzed at the ASV level of taxonomy, thus  246 

the weights estimated in relation to the BMI category were per ASV. Before implementing the 247 

WQSRSRH, WQSRS analysis, adjusted for covariates, without directional constraints was run to 248 

determine the directionality of the association between the microbiome mixture and BMI, and 249 

then run again with directional constraints to confirm the direction of the association. There were 250 

2000 random subsets with 22 ASVs randomly selected to contribute to each of the random 251 

subsets. The WQSRSRH analysis was run with 30 repeated holdouts with the same parameters 252 

(2000 random subsets with 22 ASVs per subset) and adjusted for covariates. All WQS analyses 253 

were trained on 40% of the subjects and validated on the remaining 60%.  ASV weights were 254 

then summed by taxonomy into genus-level weights, calculated as the sum of all ASVs within 255 

the genus. A genus-level threshold was calculated as 1/c, c being the number of genera found in 256 

the microbiome mixture. Weights above the 1/c threshold indicate that the genus was more 257 

impactful on the outcome (BMI) than under the assumption that all genera were equally 258 

weighted, such that all genera had the same impact on BMI.  259 

Because the WQSRSRH selects to train and validate on 40% and 60% of the subjects 260 

respectively, the random selection of categorical variables (outcome and covariates) in this split 261 

can select a subset that contains all of the same category (say 0 or 1) of one or more variables. In 262 

this case, the analysis will not run. To avoid this issue, we partitioned the data such that the 263 
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training and validation splits across the repeated holdouts ensured the outcome in each analysis 264 

maintained variability by containing subjects with each categorical level.    265 

 266 

Comparison Method Analysis with Real Data 267 

We compared the WQSRSRH method to more standard methods of microbiome analysis 268 

using the real data from GOCS as well. We used the phyloseq package in R to calculate α-269 

diversity using the Shannon index6,29, and β-diversity distance using the Bray-Curtis dissimilarity 270 

index9. We used linear regressions with Shannon diversity as the outcome and BMI category as 271 

the primary exposure variable, adjusted for maternal education, birth mode, age, duration of 272 

breastfeeding, and antibiotic use. The adonis2 function in Vegan was used to perform 273 

PERMANOVA analysis, based on the Bray-Curtis index, with the same variables as the linear 274 

regression. SIMPER analysis was used to determine which OTUs contributed 70% of the 275 

variance to the β-diversity differences between the levels of BMI. Random Forest analysis was 276 

conducted using the randomForest package 25  to identify the OTUs most predictive of BMI 277 

category.  278 

 279 

RESULTS 280 

OTU Distribution 281 

Table 1 shows a description of the 20 OTUs that were assigned an association with the 282 

test variable. The percentage of the 210 participants that had 0 abundance for each of the 20 283 

OTUs ranged between 35.2% and 88.1%, with the Staphylococcus OTU having the most non-284 

zero abundance. The OTU with the highest maximum relative abundance was the Dorea genus, 285 

with a relative abundance of 19.75% for one participant.  286 
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 287 

WQSRSRH Results 288 

WQSRSRH regression was conducted with an average of 13% positive in the test variable, 289 

and was adjusted for sex. Each model in the 30 repeated holdout sets used 1000 randomly 290 

selected sets of size 30 OTUs. The beta coefficient estimates in the 30 repeated holdout datasets 291 

were all positively associated with the test variable (Figure 2). In comparison, the WQSRSRH 292 

index was not significantly associated with a random control variable in the same dataset (Figure 293 

2). This test of association indicates that there is an association between the microbiome as a 294 

whole and the simulated test variable.  295 

The WQS weights indicate the importance of each individual OTU on the association 296 

between the simulated variable and the microbiome. Here, the maximum average weight across 297 

the repeated holdouts is 0.0107, roughly 10 times the size of the average weight, while the lowest 298 

quartile weight was 0.00036, roughly 1/3 of the average weight.  299 

 300 

WQSRSRH Sensitivity and Specificity 301 

A range of cutoff threshold values were evaluated for identifying OTUs associated with 302 

the probability of observing the binary outcome variable. Sensitivity (the proportion correctly 303 

identified with weights above the cutoff) and specificity (the proportion correctly not identified 304 

with weights less than the cutoff) were evaluated for each cutoff (Supplemental Fig 1). The equi-305 

weighted cutoff is 1/868=0.00115.  The specificity is improved from the equi-weighted cutoff 306 

with a value of  0.00131 where both sensitivity and specificity are roughly 73%. Using the equi-307 

weighted cutoff,  average sensitivity is 75%, average specificity is 70%. The two OTUs modeled 308 

with a ‘strong’ association had average sensitivity of 87%; the 8 OTUs with a ‘medium’ 309 
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association had an average sensitivity of 90%;  and on average 61% of the 10 weak components 310 

were identified correctly (Table 2). 311 

 312 

WQSRSRH Signal Functions 313 

We next evaluated potential differences in sensitivity and specificity using different 314 

signal functions; i.e., (i) the absolute value of the t statistic corresponding to the beta coefficient 315 

for WQS; (ii) the square of the t statistic; (iii) exp(t).  In the analysis of both the sensitivity and 316 

specificity estimates across the signal functions and cutpoints in ANOVA, the cross-product term 317 

was not significant, indicating an adequate fit for the main-effects ANOVA model.  In reduced 318 

main-effect models, as anticipated, there was a significant improvement in specificity with more 319 

severe weighting: i.e., in increasing order of abs(t), t2, exp(t) (p<0.001; Supplemental Fig 2A).  320 

However, there was no difference in sensitivity with changes in the signal function (p=0.597; 321 

Supplemental Fig 2B). 322 

 323 

Diversity Comparison 324 

 The average Shannon diversity (α-diversity) score was 4.14, ranging from 1.58-5.02. In a 325 

linear regression with Shannon diversity as the outcome, the test variable was associated with 326 

0.14 increased score (p=0.20), adjusted for sex (Male β= -0.06, p=0.41). The same regression 327 

was performed with the random variable as the primary predictor, and found no association 328 

between the random variable and Shannon diversity (β= -0.03, p=0.67).  329 

 β-Diversity was calculated with the Bray-Curtis dissimilarity index (Figure 3). Using 330 

PERMANOVA, we assessed the association between the test variable, adjusted for sex, and β-331 

diversity. We found no association with the test variable (R2=0.005, p=0.35) or sex (R2=0.005, 332 
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p=0.35). We also found no association in the model with the control variable (R2=0.004, p=0.71) 333 

and sex (R2=0.005, p=0.47). In sensitivity analysis using the Aitchison distance instead of Bray-334 

Curtis, results were similar with no association found with the test variable (R2=0.005, p=0.38) 335 

or the control variable (R2=0.005, p=0.54). 336 

 337 

Comparison of OTU Identification 338 

 We used SIMPER analysis to identify the OTUs contributing 70% of the variance to the 339 

differences in composition (β-diversity) by level of the exposure variable. We ran separate 340 

analyses using the test and control variables as the exposure variable, obtaining very similar 341 

results. Both analyses identified 1 of 2 OTUs assigned a strong association, 5 of 8 OTUs 342 

assigned a medium association, and 2 of 10 OTUs assigned a weak association. Sensitivity and 343 

specificity with the test variable as the exposure were 0.4 and 0.75, respectively (Table 3). The 344 

model with the control variable as the exposure had an overall sensitivity of 0.4, and specificity 345 

of 0.76.  346 

 As an alternative method of identifying OTUs associated with the response variable, we 347 

conducted Random Forest analysis. Each model, one with the test variable as the response, and 348 

one with the control variable, provides a score of importance of each predictor variable (OTUs + 349 

sex). We converted each score to a proportion out of 1 and set a cutoff of importance at 1/869 350 

(the total number of predictors) to calculate sensitivity and specificity. The random forest model 351 

of the test variable was able to identify all of the strong (2) and medium (8) associated OTUs, 352 

and 3 of 10 weak OTUs, for an overall sensitivity of 0.65 and specificity of 0.7. The model with 353 

the control variable as the response identified 7 of the 20 OTUs associated with the simulated 354 

variable, and had a specificity of 0.35 and sensitivity of 0.63.  355 
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 356 

Results of Real Data Demonstration 357 

The study population was composed of 159 adolescent Chilean girls around age 15 with 358 

complete covariate data. There were 119 girls of normal weight and 40 girls who were 359 

overweight/obese. See Table 3 for further demographics and characteristics of the population.    360 

Covariate adjusted WQSRS without constraints in the positive or negative direction 361 

showed that the microbiome mixture in relation to BMI had a negative association, where 1228 362 

out of 2000 of the estimated coefficients linking the WQSRS mixture to BMI were negatively 363 

associated. We then ran a single adjusted WQSRS with positive constraints (OR=0.08, 364 

95%CI=0.001, 12.3), and a single adjusted WQSRS with negative constraints (OR=0.11, 365 

95%CI=0.002, 6.79) to confirm the negative direction before running the WQSRSRH. Although 366 

insignificant in both the negatively and positively constratined directions, the direction of the 367 

estimated odds ratios from both models indicated an overall negative association between the 368 

microbiome mixture and BMI group. The WQSRSRH analysis was then performed with 369 

constraints in the negative direction. The WQSRSRH analysis (Table 4) showed that the 370 

microbiome mixture had a negative association with BMI such that, for each unit increase in the 371 

WQS microbiome mixture, there was a 98% decrease in the odds of being overweight/obese 372 

versus normal weight (OR=0.03, 95%CI: (0.00, 2.09). Of the 30 repeated holdout iterations, 28 373 

(93%) had WQS estimates in the negative direction. This indicates that, as the abundance and/or 374 

the potency of the bacteria (with non-negligible weights) increase, the odds of being 375 

overweight/obese seems to decrease.   376 

The genus-level threshold that informs which taxa have a greater impact than taxa 377 

assumed to be equally weighted can be found in Figure 4. Of 48 genera within the mixture, 7 378 
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were above the weight threshold, indicating that these genera had a greater contribution than all 379 

other genera to the negative association between the microbiome mixture and the odds of being 380 

overweight/obese in this population.  These genera included Bacteroides, Prevotella, 381 

Colstridium, Ruminococcus, and unidentified genera from the Firmicute, Actinobacter, and 382 

Bacteroidetes phyla. 383 

 384 

Comparison Methods Demonstration with Real Data 385 

Adjusted linear regression analysis identified no association between BMI level and 386 

Shannon diversity (β=0.0, 95%CI = -0.12-0.12) in the GOCS cohort. Adjusted PERMANOVA 387 

analysis showed a small but significant association between β-diversity and BMI level (R2=0.01,  388 

p=0.002). Of the 109 ASVs that contributed to the highly weighted genera in the WQSRSRH 389 

analysis, 37 (34%) were also selected by the Random Forest analysis, and 50 (46%) were also 390 

selected by SIMPER as associated with BMI level. Bacteroides, Prevotella, Clostridium, and 391 

Ruminococcus were identified in association with BMI across all three methods. Collinsella, 392 

Shigella, Bifidobacterium, Akkermansia, Faecalibacterium, Lactobacillus, Lachnospira, and 393 

Robinsella were identified by SIMPER and Random Forest, but not WQSRSRH. 394 

 395 

DISCUSSION 396 

This simulation study demonstrated the novel use of the WQS analysis framework in 397 

microbiome data analysis. The WQSRSRH model was able to detect a significant association in the 398 

correct direction between the test variable and the microbiome, in a dataset of 210 microbiome 399 

samples. With a WQS equi-weighted cut-point (1/868), average sensitivity and specificity across 400 

30 random holdout models were 75% and 70%, respectively. In this simulation, we also 401 
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demonstrated that the signal function based on the exp(t) improved specificity but was not 402 

different from less severe signal functions in assessing sensitivity.This method has potential for 403 

broad applications within microbiome research. WQSRSRH can be used to assess associations 404 

between exposures of interest and the microbiome, as well as associations between the 405 

microbiome and health outcomes. Compared to standard methods of microbiome analysis, 406 

WQSRSRH performed similarly or better than all other tested methods at identifying an overall 407 

association in the correct direction, and in sensitivity and specificity at correctly identifying the 408 

20 OTUs with an association to the test variable. In further demonstration of the method with 409 

real data, the method was adjustable to accommodate the different composition of the dataset. 410 

Furthermore, the WQSRSRH model found a negative association between the gut microbiome and 411 

BMI, and identified important bacterial taxa consistent with previously published studies.  412 

Our simulated variable was associated with the abundance of several OTUs across all 413 

participants. The abundance of those 20 OTUs contribute to the calculation of α-diversity, 414 

however, because α-diversity evaluates the association of single sample composition, and 415 

WQSRSRH evaluates the OTU combination association across the population, it is not surprising 416 

that WQSRSRH was able to detect an association with the test variable while α-diversity analysis 417 

was not.  418 

Alternatively, β-diversity directly compares composition of each sample to all others. 419 

There are many different methods to calculate similarity and dissimilarity distance for β-diversity 420 

analysis. In this analysis we saw similar null results using both the Bray-Curtis and Aitchison 421 

distances. If the OTUs that we used to simulate an association are not major contributors to the 422 

overall composition of samples, PERMANOVA would not find significant variance by the test 423 

variable. Moreover, if the 20 OTUs that were selected for association, were overwhelmed or 424 
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drowned out by the richness and abundance of the other OTUs in each sample being compared, 425 

PERMANOVA would not detect a significant amount of variance associated with the test 426 

variable. Likewise, SIMPER identifies which OTUs contributed the most to the variance 427 

detected between levels of exposure, so again if the OTUs with a simulated association are not 428 

major contributors to the composition of many of the samples, they would likely not contribute 429 

much variance. It’s noteworthy that SIMPER detected the same OTUs of the 20 simulated 430 

associations for both the test and control variables. It indicates that SIMPER is really constructed 431 

to identify the OTUs contributing most to the composition overall, those that are most abundant, 432 

and not necessarily the OTUs most associated with an exposure. 433 

WQSRSRH in contrast does not compare samples directly to each other, it evaluates the 434 

combination of all the OTUs across all samples, and weights the association of each OTU within 435 

the combination. This allows for identification of important OTUs even when their relative 436 

contribution to the composition of an individual sample may be small. It also allows for the 437 

identification of important OTUs across samples with very different composition. For instance, 438 

in observational studies, microbial composition of samples from different individuals can be 439 

difficult to compare to each other because there may be limited overlap in OTU composition, 440 

thus PERMANOVA and SIMPER analysis of β-diversity can fail to identify important 441 

associations. But using WQSRSRH, OTUs are evaluated in combination across all samples, so 2 442 

samples with completely different composition can both contribute heavily weighted OTUs to 443 

the combination, i.e. associated OTUs can be identified even when they are only in some of the 444 

study samples. WQS evaluates the association of the combination of OTUs, and indicates which 445 

are the most associated with exposure, without having to do direct sample comparisons, or 446 
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relying only on the most abundant OTUs. The signal function in the weighted average across the 447 

random subsets further enhances the impact of random sets with important OTUs.   448 

The Random Forest analysis performed similarly to WQSRSRH in sensitivity and 449 

specificity when using the simulated variable as the response. The test model also performed 450 

much better than the control model, indicating that it is better suited than methods like SIMPER 451 

to pick out the most associated OTUs. It is worth noting that when creating the simulated 452 

variable, all OTUs that were not assigned an association were assumed to have an association of 453 

0. However, it is likely that some of those OTUs were correlated with some of the 20 OTUs that 454 

were assigned an association. These correlations likely account for some of the variation we see 455 

in sensitivity and specificity calculations across WQSRSRH, Random Forest, and SIMPER.  456 

While Random Forest performed well in this application, there are some potential 457 

advantages of using WQSRSRH instead. WQSRSRH simulatniously identifies the most important 458 

OTUs and estimates an overall mixture effect (or association in this case), instead of just 459 

identifying the importance of OTUs as the Random Forest does.  In a situation like the one 460 

demonstrated in this simulation analysis, where there is an underlying association that is not 461 

detected by α and β-diversity, WQSRSRH provides an additional measurement of association with 462 

the overall microbial composition that Random Forest does not. Additionally, incorporation and 463 

interpretation of covariates is simpler in WQSRSRH models, as they are modeled as they would be 464 

in traditional regression methods instead of being included as a potential predictor along with the 465 

OTUs in a Random Forest model. 466 

In the demonstration with data from GOCS, the WQSRSRH method is adaptable to 467 

different datasets, and perfomed well in identifying bacteria related to high BMI. We were able 468 

to adjust the parameters of the model in several ways to accommodate the different datasets. We 469 
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set the ranking mechanism to split the ASV abundance into three levels rather than four as shown 470 

in the simulation analysis. This adjustment was made to accommodate the smaller sample size 471 

and fewer microbiome mixture components (ASVs) in the GOCS dataset. The ranking levels can 472 

be adjusted to any number as appropriate for the dataset in use. Moreover, if the ranking is split 473 

once at zero, the microbiome mixture can be analyzed with presence/absence data rather than 474 

abudance. We also adjusted the number and size of the random subsets used to calculate the 475 

weighted index. The size of the random subsets should correspond to the number of observations 476 

in the dataset. The number of random subsets used is relatively arbitrary, but the larger the 477 

number of subsets, the more robust the estimate. We were also able to specify the data subsets to 478 

use in each repeated holdout iteration to ensure the variability of the categorical outcome in each 479 

subset.  Although the WQSRSRH estimate was not statistically significantly associated with BMI 480 

in this cohort, evidence of the trend in the negative direction was strengthened by 93% of the 481 

repeated holdout iterations producing a negative estimate.  Analysis of association with α-482 

diversity also found no association with BMI in this cohort. The bacterial taxa identified as 483 

heavily weighted within the negative association were consistent with bacterial genera negatively 484 

associated with obesity in other studies, and were also identified by the Random Forest and 485 

SIMPER methods. Although different species within the same genera may associate differently 486 

with obesity30, several other studies have found a negative association between obesity and 487 

Bacteroides31, Ruminococcus32, and Clostridium33 genera. While the Random Forest and 488 

SIMPER methods identified additional genera in association with BMI, it is important to note 489 

that these methods consider associations between each ASV and BMI individually, while 490 

WQSRSRH is considering which ASVs are the most important in the gut microbiome mixture.  491 
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There are many potential advantages of using WQSRSRH for microbiome analysis, 492 

however, we are not suggesting that WQSRSRH performs statistically differently than other 493 

methods that were compared.  WQSRSRH works with both continuous and categorical variables, 494 

and allows for the adjustment of covariates in an interpretable fashion. It accounts for the 495 

correlated nature of the taxa within the microbiome, and gives an overall effect estimate and the 496 

weight of importance when all taxa in the index are considered together. WQSRSRH allows for 497 

analysis of associations in positive and negative directions separately, and allows flexibility in 498 

choosing the signal function in the weighting step.  It accommodates samples from populations 499 

with widely varied microbial composition, identifying associations with OTUs present in a 500 

relatively small proportion of the population. WQSRSRH also gives robust estimates over many 501 

repitions of the analysis. WQSRSRH could be used in a broad range of health research, as well as 502 

in a drug discovery framework. It could identify groups of bacteria that are associated together 503 

with an outcome of interest, which could be targeted together in developing probiotics. When the 504 

analyst is interested in determining a small subset of OTUs associated with the outcome, as in a 505 

drug discovery framework, the bottom 90-95% of the weights can be set to zero to test for 506 

significance in the top 5-10%. This may lead to better identification of bacteria to include in 507 

probiotics that will be successful within the gut microbiome ecosystem. 508 

While this demonstration of the application of WQS to microbiome data establishes a 509 

novel analytical method with potential for broad use, it does have some limitations. The first is 510 

that, while the overall WQSRSRH estimate identifies the direction of association between the 511 

variable of interest and the abundance of taxa within the microbiome, it is not directly 512 

translatable to a value measure (i.e. a measureable unit of some health outcome). However, the 513 

current standard microbiome analyses using α-diversity, β-diversity, and principal components 514 
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analysis suffer from a similar limitation. Another limiting consideration is that the sensitivity and 515 

specificity of this WQSRSRH method application depends on the number of taxa in the data set, 516 

and the cutoff point chosen to identify the taxa of most importance. Of course, in an analysis of 517 

microbiome data with a real variable with unknown association, we would not know the truth to 518 

determine a good cutoff for both sensitivity and specificity. As demonstrated with the GOCS 519 

data, the equiweighted cutpoint can be used as a default with unkown sensitivity and specificity. 520 

But relevant cut points could be determined by investigating the significance of the index across 521 

repeated holdout data sets. Lastly, in calculating the α and β-diversity for comparison to 522 

WQSRSRH, we used the same data set, which was limited to OTUs detected in at least 10% of 523 

samples, and converted to relative abundance. These processing steps affected the diversity 524 

calculations that rely on singletons. While this allows us to do a direct comparison with the 525 

WQSRSRH method, these calculated values are not generalizable outside this study. 526 

This simulation study is the first step in exploring the use of WQS methods on the 527 

analysis of microbiome data. We plan to apply WQS methods to other forms of microbiome data 528 

beyond 16s rRNA amplicon sequencing, including metagenomic sequence data. Further 529 

development of the general WQS method is still underway, including the use of stratification, 530 

and Bayesian statistical applications, thus as those methods continue to develop, we will test 531 

their application on microbiome data.  532 

 In conclusion, this study demonstrated the application of WQSRSRH to microbiome 533 

sequencing abundance data. In our analysis, the WQSRSRH method was able to detect a 534 

significant association between the test variable and the overall abundance of the microbiome in 535 

the correct direction, and identified the assigned associated OTUs with acceptable levels of 536 

sensitivity and specificity. In further demonstration with real data, the model identified a 537 
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direction of association with heavily weighted taxa consistent with other studies of BMI and the 538 

gut microbiome. This method has potential for broad application within microbiome research, 539 

and we plan to continue to refine and apply WQS methods to different analyses of microbiome 540 

data.  541 

 542 
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FIGURES 664 

Figure 1: Study Schematic. A simplified flow-chart of the study procedures. Abbreviations: 665 

Amplicon Sequence Variant (ASV); Body Mass Index (BMI); Human Health Exposure Analysis 666 

Resource (HHEAR); Human Microbiome Project (HMP); Operational Taxonomic Unit (OTU); 667 

Permutational Analysis of Variance (PERMANOVA); Quantitative Insights Into Microbial 668 

Ecology (QIIME);  Similarity Percentage (SIMPER); Weighted Quantile Sum Regression with 669 

Random Subsets (WQSRS); Weighted Quantile Sum Regression with Random Subsets and 670 

Repeated Holdouts (WQSRSRH). 671 

 672 

 Figure 2: Simulated Variable Associations with the Human Gut Microbiome. Box plots 673 

show the beta coefficients estimated as the association between the human gut microbiome and 674 

the simulated test and control variables, using weighted quantile sum regression with random 675 

subsets and 30 repeated holdouts. Associations with error bars that do not cross 0 are considered 676 

statistically significant. Data come from the Human Microbiome Project I with simulated test 677 

and control variables. Abbreviations: Weighted Quantile Sum Regression (WQS). 678 

 679 

Figure 3: Human Gut Microbiome Beta Diversity by Level of the Simulated Variables. 680 

Bray-Curtis dissimilarity distance (beta diversity) shown using multidimentional scaling (MDS) 681 

ordination plots of (a) the test variable, and (b) the control variable. Data points represent 682 

individual observations. Data points closer together represent gut microbiome composition that is 683 

more similar, while data points farther apart represent gut microbiome composition that is more 684 

different. Data come from the Human Microbiome Project I with simulated test and control 685 

variables. 686 

 687 

 688 

Figure  4: Bacterial Genera Negatively Associated with Obesity. Data points indicate the sum 689 

of weights in association with BMI level for each of the 30 repeated houdout analyses (from 690 

weighted quantile sum regression with random subsets and 30 repeated holdouts) for amplicon 691 

sequence variants (ASVs), pooled by genus and sorted by phylum. Only genera with pooled 692 

weights above the equiweighted threshold are shown, and are considered important within the 693 

gut microbiome mixture. Box plots show 25th, 50th, and 75th percentiles of the sum of weights 694 

within genera. Closed diamonds show the sum of the mean weights within each genus. Data 695 

come from the Growth and Obesity Cohort Study. 696 

 697 
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TABLES 698 

Table 1. Description of the 20 operational taxonomic units (OTUs) that were assigned an association with the simulated binary (test) variable. In the 
weighted quantile sum regression, relative abundance of each OTU within the gut microbiome from each participant was ranked as 0 if relative 
abundance was 0, and then by tertiles above 0 for ranks 1-3. Table columns represent the taxonomy, sample size, row percent of observations at each 
rank level, median and maximum of non-zero relative abundance, and level of assigned association with the test variable (β=8, 4, 2 for strong, medium, 
and weak, respectively) for the 20 OTUs assigned an association. 

Phylum Family  Genus N Rank 0 
% 

Rank 1 
% 

Rank 2 
% 

Rank 3 
% 

Median of 
non-zero 
valuesa 

Maximuma Assigned 
Association 

Actinobacteria Micrococcaceae Rothia34 210 81.4 6.2 6.2 6.2 0.12 8.33 Medium 

 Coriobacteriaceae Atopobium34 210 82.9 5.7 5.7 5.7 0.03 0.94 Weak 
    unclassified34 210 83.3 5.7 5.2 5.7 0.05 1.65 Medium 
Bacteroidetes Bacteroidaceae Bacteroides35 210 82.4 5.7 6.2 5.7 0.03 0.75 Strong 
  Rikenellaceae Alistipes1 210 87.1 4.3 4.3 4.3 0.37 16.06 Medium 
Firmicutes Staphylococcaceae Staphylococcus36 210 35.2 21.4 21.9 21.4 0.51 4.71 Weak 

 Lactobacillaceae Lactobacillus37,38 210 85.7 4.8 4.8 4.8 0.03 0.88 Weak 

 Eubacteriaceae Eubacterium33,35 210 63.8 11.9 12.4 11.9 0.24 3.79 Medium 

 
Lachnospiraceae Coprococcus39,40 210 86.7 4.3 4.8 4.3 0.05 2.03 Weak 

  Dorea39,40 210 58.1 13.8 14.3 13.8 0.81 19.75 Medium 

  Roseburia1,33 210 57.6 14.3 13.8 14.3 0.19 3.25 Weak 

   unclassified39,40 210 58.6 13.8 13.8 13.8 0.28 14.60 Strong 

 Ruminococcaceae Faecalibacterium1,41 210 61.9 12.9 12.4 12.9 0.22 4.90 Medium 

   unclassified36 210 85.2 4.8 5.2 4.8 0.07 2.80 Weak 

 Erysipelotrichaceae Coprobacillus34 210 81.0 6.2 6.7 6.2 0.05 1.24 Medium 

  Holdemania34 210 87.6 4.3 3.8 4.3 0.05 1.97 Weak 

  Solobacterium34 210 86.2 4.8 4.3 4.8 0.02 0.83 Weak 
    Turicibacter34 210 84.8 5.2 4.8 5.2 0.04 1.24 Medium 
Proteobacteria Enterobacteriaceae Serratia42 210 80.0 6.7 6.7 6.7 0.03 0.84 Weak 
Verrucomicrobia Verrucomicrobiaceae Akkermansia36 210 88.1 3.8 4.3 3.8 0.03 1.65 Weak 
a = shown in percent relative abundance          

 699 
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Table 2:  Sensitivity and specificity in identifying the 20 associated operational taxonomic units (OTUs) for weighted quantile sum 700 

regression with random subsets and repeated holdouts (WQSRSRH), similarity percentage (SIMPER), and Random Forest models. 701 

For WQSRSRH the sensitivity and specificity were averaged across 30 repeated holdout datasets with a cutoff of 0.00115 (= 1/868). 702 

For SIMPER, one model was conducted with 999 permutations, and the cutoff of importance was 70% cumulative variance. For 703 

Random Forest, one model was conducted with 100 trees, and importance scores were converted to a proportion, with a cutoff of 704 

0.00115.  705 

  Denominator WQSRSRH 
Proportion1 

SIMPER 
Proportion1 

Random Forest 
Proportion1 

Overall Sensitivity 20 0.75 (0.60-0.90) 0.40 (0.19-0.61) 0.65 (0.44-0.86) 

Overall Specificity 848 0.70 (0.54-0.86) 0.75 (0.72-0.78) 0.70 (0.67-0.73) 

Sensitivity: Strong 2 0.87 0.50 1.00 

Sensitivity: Medium 8 0.90 0.63 1.00 

Sensitivity: Weak 10 0.61 0.20 0.30 
1 Confidence intervals (CIs) were calculated as p±1.96* √pq/n, where p is the proportion estimate, q is 1-p, and n is the number of 706 

observations. For the WQSRSRH CI, n = 30 for the number of repeated holdouts averaged in the estimate, and for SIMPER and 707 

Random Forest CIs, n = the value from the denominator column. CIs are included for the overall estimates of specificity and 708 

sensitivity, but not for the subset sensitivity analyses due to small denominators. CIs are provided to demonstrate the reasonable 709 

range of the estimate, not to indicate statistical significance between the methods. 710 
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 712 

Table 3: Description of the study population from the Growth and Obesity Cohort Study data used in the illustration analysis. 713 

Characteristic N Normal Weight, N = 1191 Overweight/Obese, N = 401 P-value2 

Age (years) 159 15.4 (0.6) 15.3 (0.6) 0.2 

Number of days breastfed as infant 159 89.8 (76.4) 104.4 (87.8) 0.4 

Birth mode (vaginal versus c-section) 159   0.2 

C-section  31 (26%) 15 (38%)  

Vaginal  88 (74%) 25 (62%)  

Were antibiotics used in the past 6 months (yes vs no) 159 19 (16%) 5 (12%) 0.6 

Maternal education 159   0.12 

High school or less  94 (79%) 36 (90%)  

More than high school  25 (21%) 4 (10%)  

1Mean (SD); n (%) 2Welch Two Sample t-test; Pearson's Chi-squared test  

 714 
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Table 4. Estimates of association with body mass index (BMI), shown as odds ratios from the Weighted Quantile Sum regression 716 

with Random Subsets and Repeated Holdouts analysis. The weighted quantile sum (WQS) variable represents the estimate for the 717 

association between the gut microbiome mixture and BMI. Odds ratios with confidence intervals (CIs) that do not cross 1.0 are 718 

considered statistically significant. Data come from the Growth and Obesity Cohort Study. 719 

Variable OR (95% CI)  
WQS  0.03 (0.00, 2.09) 
Maternal Education (More than High School)  0.22 (0.00, 89.77) 
Birth Mode (Vaginal)  0.72 (0.34, 1.52) 
Age at Stool Sample  0.68 (0.37, 1.25) 
Number of Days Breastfed as an Infant  1.00 (1.00, 1.01) 
Antibiotic Use in Past 6 Months  0.50 (0.00, 3.08) 
 720 

 721 
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