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Abstract

Background: Count data regression modeling has received much attention in
several science fields in which the Poisson, Negative binomial, and Zero-Inflated
models are some of the primary regression techniques. Negative binomial
regression is applied to modeling count variables, usually when they are
over-dispersed. A Poisson distribution is also utilized for counting data where the
mean is equal to the variance. This situation is often unrealistic since the
distribution of counts will usually have a variance that is not equal to its mean.
Modeling it as Poisson distributed leads to ignoring under- or overdispersion,
depending on if the variance is smaller or larger than the mean. Also, situations
with outcomes having a larger number of zeros such as RNASeq data require
Zero-inflated models. Variable selection through shrinkage priors has been a
popular method to address the curse of dimensionality and achieve the
identification of significant variables.

Methods: We present a unified Bayesian hierarchical framework that implements
and compares shrinkage priors in negative-binomial and zero-inflated negative
binomial regression models. The key feature is the representation of the likelihood
by a Polya-Gamma data augmentation, which admits a natural integration with a
family of shrinkage priors. We specifically focus on the Horseshoe, Dirichlet
Laplace, and Double Pareto priors. Extensive simulation studies address the
efficiency of the model and mean square errors are reported. Further, the models
are applied to data sets such as the Covid-19 vaccine, and Covid-19 RNA-Seq
data among others.

Results: The models are robust enough to address variable selection, and MSE
decreases as the sample size increases, having lower errors in p > n cases. The
noteworthy results showed that the adverse events of Covid-19 vaccines were
dependent on age, recovery, medical history, and prior vaccination with a
remarkable reduction in MSE of the fitted values. No. of publications of Ph.D.
students were dependent on the no. of children, and the no. of articles in the last
three years.

Conclusions: The models are robust enough to conduct both variable selections
and produce effective fit because of their high shrinkage property and applicability
to a broad range of biometric and public health high dimensional problems.

Keywords: shrinkage priors; negative binomial regression; horseshoe; Dirichlet
Laplace; MCMC; Polya-Gamma; vaccine; RNASeq; Covid-19 vaccine; data
augmentation
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1 Introduction
The extension of linear models to generalized linear models (GLMs) introduced by

[1] framework to handle data that are not typically modeled using a normal dis-

tribution (e.g., binary, count data) is a moment of immense success in the history

of statistics. Most of the real-life datasets have number of explanatory variables

(p) greater than the number of observations (n).The methodology for analyzing

RNA sequencing data is rapidly expanding. Methods having application of shrink-

age, flexibility of the designs, are highly in demand [2]. High-dimensional predictor

selection and sparse signal recovery are routine statistical and machine learning

practices.Sparsity relies on the property of a few large signals among many (nearly)

zero noisy observations. A common goal in high-dimensional inference is to recover

the low-dimensional signals observed in noisy observations[3]. The idea of global-

local shrinkage hierarchies[4] has become the foremost research areas in Bayesian

literature that incorporates heavy tailed prior distributions for coefficients in gen-

eralized linear regression models. In the exponential rise in the development of

research in shrinkage priors, works that have gained mass popularity are [5], [6], [7],

[8], [9], [10], [11], [12], [13], [14] among many. An overview of several shrinkage priors

with several data applications is given in [15]. Here we discuss the posterior sim-

ulation for negative binomial (NB) regression and Zero-inflated Negative binomial

(ZINB) for count data. Our main focus is the utilization of the Polya-Gamma (PG)

data augmentation strategy [16] which utilizes Polya-Gamma random variables to

enhance posterior simulations. The performance of three different priors Horseshoe

(H)[17],Dirichlet Laplace (DL) [14], Double Pareto (DP)[13] are measured and also

the method is applied to benchmark data sets. Bayesian global-local (GL) shrink-

age estimation is the state-of the art for Gaussian regression models, extension to

non-standard regression techniques such as Poisson and NB are the ones that we

concentrate in our methodology. Here two extensions of the global-local shrinkage

framework is implemented. Firstly, the utilization of the PG data augmentation

technique to generate simple algorithms for sampling with NB and ZINB regression

likelihoods. Results show that the priors are highly competitive on the basis of mean

square errors (MSE). Extensive simulation studies and real data applications are

conducted to evaluate the performance of the these priors with respect to prediction

accuracy and MSE for variable selection.

The rest of the section follows as section 2 describes in detail the tradition meth-

ods such as Poisson and NB and their Bayesian counterpart such as BNB and

BZINB.Section3 explains the simulation details and parameters, followed by results

4. Real data scenarios are explained in Section 5, finally summarizing manuscript

with a discussion 6.

2 Method
2.1 Poisson Regression

In modeling the number of times an event occurs a generalized linear model

(GLM) such as Poisson or negative binomial regression is commonly applied.Let

y = (y1, y2, . . . , yn) denote the vector of n count measurements of a dependent vari-

able of interest, and xi = (xi,1, . . . , xi,p) denote the vector of predictors (explana-

tory variables, covariates) associated with the response yi. Let X = (x1, . . . , xn)
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be the n × p matrix of explanatory variables. The GLM contains Poisson dis-

tribution which has a probability function f(yi;λi) =
λyi e

−λi
yi!

where the mean

and variance are equal. E(yi) = var(yi) = λi. The log-likelihood is given by

l(λ | y) =
∑n
i=1(yilogλi − λi − log(yi!)). In GLM , a non-linear transformation or

a link function of the mean response λi is applied which is a linear function of the

covariates X [18],[19]. The link function for Poisson regression is log(λi) = β0+xTi β,

where β0 is the intercept and β is the vector regression coefficients. Poisson distri-

bution depending on single parameter λ is equi-dispersed. If the Poisson mean is

assumed to have a random intercept term and this term enters the conditional mean

function in a multiplicative manner, the following relationship is achieved [20]:

λi = exp(β0 + xTi β + εi)

= e(xTi β)e(β0+εi)

= e(β0+xTi β)eεi

λi = µiνi (1)

Here, exp(β0 + εi) is defined as the random intercept; mui = exp(β0 + xTi β) is

the log-link function between the mean E(yi) and the independent fixed covariate

matrix X. The real data, however, often shows that the variance is larger than

the mean, which is called overdispersion. The two-parameter negative binomial

distribution has more flexible and can efficiently model overdispersed count data

leading to correct standard errors and inferences [21]. Many parametric models for

count data are obtained by additionally introducing a heterogeneity term in the

Poisson model. Unobserved heterogeneity is usually included as a multiple of the

Poisson mean. y | µ, ν ∼ Poi(µν) and the random heterogeneity term ν ≥ 0 is

integrated out to obtain the distribution of y | µ. These model structures are well-

known as doubly stochastic Poisson by Cox [22] and a Cox process by Kingman [23].

In general, E(ν) = 1 is the setting for several leading models. Different distributions

of v leads to various generalizations of Poisson and here the Poisson-Gamma mixture

is explained which leads to Negative Binomial distribution.

2.2 Negative Binomial as Poisson-Gamma Mixture

The NB model is derived from a Poisson-gamma mixture distribution [18]. The in-

terpretation and derivation of NB from Poisson-Gamma is detailed in [24]. The het-

erogeneity parameter is assumed to have a Gamma distribution. νi ∼ Gamma(d, b).

The two-parameter Gamma distribution is represented as

k(νi; d, b) =
bd

Γ(d)
e−bνiνi

d−1 (2)

E(νi) = d
b , V ar(νi) = d

b2 , setting E(νi) = 1 we get d = b, leading to a one-

parameter Gamma distribution with E(νi) = 1, V ar(νi) = d
d2 = 1

d . Now the Poisson

model Poi(µν) can have easier interpretation if worked with the transformation

λ = µν, i.e. ν = λ
µ . The Jacobian is obtained as dν

dλ = 1
µ . The probability density
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function (p.d.f) of λ is then given as

g(λ | d, µ) =
1

µ

dd

Γ(d)

λ

µ

d−1

e−
λ
µd

=
( dµ )d

Γd
λd−1e−

λ
µd (3)

The Poisson-gamma mixture is

h(y | µ, d) =

∫
f(y | λ)g(λ | d, µ)dλ

=

∫
e−λλy

y!
×

( dµ )d

Γ(d)
λd−1e−

λ
µd

=
( dµ )d

Γ(d)y!

∫
λy+d−1exp(−(1 +

d

µ
)λ)dλ

=
( dµ )d

Γ(d)Γ(y + 1)
(1 +

d

µ
)−(d+y)Γ(d+ y)

=
Γ(y + d)

Γ(y + 1)Γ(d)
(

d

µ+ d
)d(

µ

µ+ d
)y (4)

The property of the gamma function is utilized in getting the above form: Γ(m) =∫∞
0
tm−1e−tdt for any m ≥ 0 Γ(m − 1) = m!, c−mΓ(m) =

∫∞
0
tm−1e−ctdt for any

c ≥ 0.

The equation (4) can also be represented as

(
y + d− 1

d− 1

)
(

d

µ+ d
)d(

µ

µ+ d
)y (5)

Taking α = 1
d , we get the probability mass function (p.m.f) of the NB distribution

as

f(yi;µ, α) =
Γ(yi + 1

α )

Γ(yi + 1)Γ( 1
α )

(
1

1 + αµi
)

1
α (1− 1

1 + αµi
)yi (6)

Here, E(y | µ, α) = µ, V ar(y | µ, α) = µ(1 + αµ) ≥ µ, since α ≥ 0. The variance

can also be represented as µ + µ2

φ , φ = d is the dispersion parameter. Most often

it is expressed as α = 1
φ = 1

d , α is the parameter responsible for heterogeneity and

models the over-dispersion amount in the data An alternative parametrization of

NB used in many references as well as algorithms is

Pr(Y = y) =

(
y + h− 1

h− 1

)
(1− p)hpy, y = 0, 1, 2, . . . , (7)

where 0 < p < 1 and h ≥ 0. Then E(y) = ph
1−p and V ar(Y ) = ph

(1−p)2 . Letting

h = 1
α , p = αµ

1+αµ , yields the same parametrization of NB distribution in (6) and

h = d in (5).
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The log-likelihood of NB can be expressed as

l(µ; y, α) = Πn
1=1exp(logΓ(yi +

1

α
)− logΓ(yi + 1)− logΓ(

1

α
) +

1

α
log(

1

1 + αµi
) + yilog(1− 1

1 + αµi
)) (8)

The mean of (7) is

E(y) =
ph

1− p
E(

y

h
) =

p

1− p
(9)

The link function in this parametrization of (7) is log-odds, i.e.

log(E(yih )) = log( p
1−p ) = β0 + xTi β. So, the likelihood for the Negative Binomial

distribution ignoring the constant term is

l(β; y, h) ∝
n∏
i=1

(1− p)hpyi =
n∏
i=1

exp(xTi βyi)

(1 + exp(xTi β))yi+h
(10)

, where pi =
exp(xTi β)

1+exp(xTi β)
. This β vector is assumed to include the intercept term,

i.e. β = (β0, β1, . . . , βp).

2.3 Bayesian Negative Binomial Regression with Hierarchical Prior Structures (BNB)

The likelihood of NB (10) is not in a closed form and will require Polya-Gamma (PG)

data augmentation. The auxillary variables will be sampled from Polya-gamma dis-

tribution with parameter yi + h and xTi β. The Polya-Gamma distribution is the

exact distribution needed to augment this posterior for simulation thus obtaining

closed form posterior distributions that can be easily handled via Gibbs sampling.

The method is useful when modeling proportions on the log-odds scale. Binary

logistic regression [?] and negative binomial regression (NB) are the two fore fron-

tiers that meets the criteria. To facilitate posterior sampling, we introduce a set of

auxillary variables that follow Polya-Gamma distribution that are represented as

scale mixtures of normals. Conditional on the latent variables, inference proceeds

via straightforward Gibbs sampling. A Polya-Gamma variable, w ∼ PG(b, c) with

b > 0 and c ∈ R, can be defined as follows.

w =
1

2π2

∞∑
i=1

Zi

(k − 1
2 )2 + c2

4π2

;Zi
i.i.d∼ Gamma(b, 1) (11)

The variable distribution is similar to Gamma distribution and, as b increases, it

becomes approximately normal [25]. So here Yi ∼ NB(h,
exp(xTi β)

1+exp(xTi β)
) and Wi ∼

PG(h, |xTi β). Similar, to logistic regression case, the joint posterior density of the

parameter β and W with prior π(β) is obtained as

π(β,w | Y ) =
π(β)

c(Y )
f(w | β)

n∏
i=1

exp(xTi βyi)

1 + exp(xTi β)
(12)
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Here c(Y ) is the marginal distribution of Y . We can see that

∫
π(β,w | Y )dw = π(β | Y )

which is our targeted density. The conditional independence of Yi and Wi implies

that π(w | β, y) = f(w | β). Thus, we can draw from π(w | β, y) by making

n independent draws from the Polya-Gamma distribution. The other conditional

density π(β | w, y) is multivariate normal.

A hierarchical representation of the Horseshoe prior [9] is stated as

βj | Λ2
jτ

2 ∼ Np(0,Λ2
jτ

2), j = 1, 2, ..., p

Λ2
j | γj ∼ IG

(
1

2
,

1

γj

)
τ2 | ξ ∼ IG

(
1

2
,

1

ξ

)
γ1, γ2, ..., γp, ξ ∼ IG

(
1

2
, 1

)
(13)

Here, Σ of the distribution of β is a diagonal matrix with elements(
Λ1τ

2,Λ2τ
2, ...,Λpτ

2
)
. From equations (12), and the above hierarchical prior struc-

ture, the full posterior distribution is given by:

π
(
β,Λ2

j , wi, γj , τ
2, ξ | Y

)
∝

n∏
i=1

exp(xTi βyi)

(1 + exp(xTi β))h
(1 + exp(xTi β))hh (wi)

exp(−
(
xTi β

)2
wi

2
)
exp(− 1

2 (βTΣ−1β))
√

2πΣ

p∏
j=1

(Λ2
j )
−( 1

2 +1) exp( −1
γjΛ2

j
)

γ
1
2
j

(τ2)−( 1
2 +1) exp( −1

τ2ξ )

ξ
1
2

γ
−( 1

2 +1)
j exp(

−1

γj
) ξ−( 1

2 +1) exp(
−1

ξ
) (14)

where h(wi) is obtained from

h(w) =
∞∑
k=0

(−1)k
2k + 1√

2πw
exp(− (2k + 1)2

8w
), 0 < w <∞ (15)

The conditional distributions required for our analysis follows:

The conditional density of β given y, w is

π (β | Σ,WD, Y ) ∼ Np
((
XTWDX + Σ−1

)−1
XT y∗,

(
XTWDX + Σ−1

)−1
)

(16)

where, WD and Σ are diagonal matrices where the elements are (w1, w2, ..., wn),

(Λ2
1τ

2, ...,Λ2
pτ

2) respectively and, y∗ =
(
y1−h

2 , ...., yn−h2

)
.
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The conditional density of wi given xi, β is

π (wi | β) ∼ PG
(
yi + h, xTi β

)
(17)

The conditional density of the hyper-parameters are as follows

π(Λ2
j | γj , βj , ξ,Λ2

j ) ∼ IG

(
1,

1

γj
+

β2
j

2τ2

)

π(γj | Λ2
j , βj , ξ, τ

2) ∼ IG

(
1, 1 +

1

Λ2
j

)

π(τ2 | γj , βj , ξ,Λ2
j ) ∼ IG

p+ 1

2
,

1

ξ
+

p∑
j=1

β2
j

2Λ2
j


π(ξ | τ2) ∼ IG

(
1, 1 +

1

τ2

)
(18)

Again, here all the posterior densities are in the closed form, and follow simple den-

sities like Normal, Polya-Gamma and Inverse-Gamma making sampling from them

trivial. Exploiting the scale-mixture representation of the global-local shrinkage pri-

ors, it is straightforward to formulate the Gibbs sampler.

The hierarchical structure of the Dirichlet Laplace prior Bhattacharya:2015 is

βj ∼ Np
(
0, ψjφ

2
jτ

2
)
,

ψj ∼ exp
(

1

2

)
φ ∼ Dir (a, a, ..., a)

τ ∼ G
(
pa,

1

2

)
(19)

The conditional posterior distributions remain same for β | yi and wi | β is similar

to that of equations (16) and (17).

The conditional density of the hyper-parameters as obtained similar to Theorem

2.2 in [14] are as follows:

π(ψ | φ, τ, β) ∼ IG
(
φjτ

|βj |
, 1

)

π(τ | φ, β) ∼ GIG

pa− p, 1, 2 p∑
j=1

|βj |
φj

 (20)

To sample π(φ | βj) sample Tj ∼ GIG (a− 1, 1, 2|βj |), set φj =
Tj
T , T =

∑p
j=1 Tj .

where GIG(a, b, c) is the Generalized Inverse Gaussian distribution with density

f(x; a, b, c) ∝ x(c−1)e
−1
2 (ax+ b

x ).
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The hierarchical structure of Double Pareto prior[26] is

β | Λ, τ ∼ Np(0, Dτ ),

wi | xi, β ∼ PG
(
1, xTi β

)
,

τj | Λj ∼ exp(
Λ2

2
)

Λj ∼ G(ζ, η) (21)

Again, the conditional densities of β | yi and wi | β remains same as (??). Here

Σ = Dτ is a diagonal matrix with elements (τ1, τ2, ..., τp).

The conditional density of rest of the hyper-parameters are as follows:

π (τj | β,Λ, y) ∼ GIG
(

1

2
,Λ2

j , β
2
j

)
π (Λ | β, y) ∼ Gamma (ζ + 1, η + |βj |) (22)

2.4 Bayesian Zero-Inflated Model with Hierarchical Prior Structures (BZINB)

Zero-inflated models represents the excess zeros, and a count distribution for the

remaining values, thus forming a mixture of zeros. The model is very useful when

there is an excess number of two types of zeros in the concerned response variable.

By construction, zero-inflated models partition zeros into two types. The first type,

typically referred to as a “structural” zero, corresponds to individuals who are not at

risk for an event, and therefore have no opportunity for a positive count. The second

type, termed the “at-risk” or “chance” zero, applies to a latent class of individuals

who are at risk for an event but nevertheless have an observed response of zero[27].

For example, in our application with Covid-19 vaccine data set, examining the

number of adverse events, the structural zeros might represent patients who had

no adverse event thus have no recorded adverse event. In contrast, the at-risk zeros

might correspond to patients with a single occurrence of adverse event which has

been determined not clinically significant , thus contributes to at-risk zero. Similarly

for RNA Seq datasets, where the genes are counts containing a high proportion of

zeros, the zero-inflated models can be viewed as latent class models in which the

classes are formed by the two types of zeros. The zero-inflated model has two parts

that models consisting of negative binomial distribution, and the logit distribution.

f(yi) = piI(wi=1)NB(µi, r) + (1− pi)I(wi=0)g(yi = 0) (23)

f(yi|r, β, wi = 1) =
Γ(yi + r)

Γ(r)yi!
(1− φi)rφyii (24)

,where φi =
exp(xTi β)

1+exp(xTi β)
where NB(µi, r) takes the form of equation 6. Here yi is the

count response for the ith individual. The latent indicator variable wi that takes

values 1 and 0 with probabilities pi and 1 − pi where yi ∼ NB(µi, r) and yi = 0.

The indicatorwi variable is binary, thus modelled with logistic regression as follows:

logit(pi) = logit[P (wi = 1|α)] = xTi α (25)
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The negative binomial distribution has likelihood similar to equation 10 and the

posterior distribution of the coefficients β are obtained from equation 12. With

the hierarchical prior structures on the coefficients β from section 2.3, The pos-

terior distribution for both alpha and β are modelled similarly as 2.3 citebhat-

tacharyya2021applications, Neelon:2019.

3 Simulation
Here each of the simulation structure along with their parameters are defined.

3.1 BNB

The data is generated utilizing the Poisson-gamma mixture representation of NB

as expressed in (4). In the data generation process, the true values of β, are defined.

The data is generated as follows:

1 Calculate µi = exp(β0 + xTi β)

2 Get λi = µi
h νi, where νi ∼ Gamma(h, 1)

3 Generate yi ∼ Poi(λi)
The covariates are generated from multivariate normal distribution with mean vec-

tor 0 and covariance matrix Σ. 80% of the data set is reserved for the training set,

and 20% for the test data set.

• S1: n = 200, p = 10 with a correlation of about ρ = 0.5 among the covariates.

The coefficient vector is given by

β = (0.5, 0.5,−0.5, 0.5,−0.6, 0, . . . , 0︸ ︷︷ ︸
5

)T with 5 non-zero coefficients.

• S2: n = 120, p = 10, ρ = 0.2 Five non-zero coefficients.

β = (0.5, 0.5,−0.5, 0.5,−0.6, 0, . . . , 0︸ ︷︷ ︸
5

)T .

• S3: n = 50, p = 10, coefficients similar to S2.

• S4: n = 100, p = 20 ρ = 0.1, β = (0, . . . , 0︸ ︷︷ ︸
5

, 0.1, . . . , 0.1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0.3, . . . , 0.3︸ ︷︷ ︸
5

).

• S5: n = 50, p = 500, β = (log(1.75), log(1.75),−log(1.75),−log(1.75),−log(1.75),

0, . . . , 0︸ ︷︷ ︸
495

)T

Here we have considered two broad settings of design matrices comprising p = 200

and p = 500 covariates. The sampling of β for p > n with p = 500 is conducted

from a Gaussian distribution and follows the fast sampling algorithm of [28]. For

prediction accuracy, the mean squared error (MSE) is used as a prediction accuracy

criteria, which is defined as
∑n
i=1

(yi−ŷi)2
n . In terms of variable selection perfor-

mance, the number of the truly nonzero coefficients which are incorrectly set to

zero (FP), and the number of the true zero coefficients which are correctly set to

zero (FN). The higher the values of FP, and the lower the values of FN, the better

the variable selection performance is. The variable selection is determined by pos-

terior credible intervals. For each simulation setting, 100 datasets were generated,

and MSE, results were calculated by averaging over these 100 datasets. MCMC is

used for sampling which relies on block-updating the sets of parameters. The no. of

simulation runs is 10000 with 6000 as burn-in. Trace plots, auto-correlation plots,

Geweke z-statistics [29] were some of the diagonistic criterion. R pacakge coda [30]

was used to conduct the posterior sample diagnosis and pgdraw [31] [32] was used
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to generate the Polya-Gamma random variates. All the computations have been

carried out in RStudio. The R package coda [30] was used to conduct the poste-

rior sample diagnosis and pgdraw [31] [32] was used to generate the Polya-Gamma

random variates.

3.2 BZINB

The following simulation scenarios were set up to understand the behaviour of the

model. We followed similar data generation process as of [27].

• Sim1: n = 1000, p = 4, α = (0.5, 0.5,−0.25, 0.25), β = (0.5,−1.00, 0.75,−0.25), r =

1

• Sim2: n = 500, p = 10, α = (0.5, 0.5,−0.25, 0.25, 0.5, 0.5,−0.25, 0.5, 0.5,−0.25), β =

(0.5, 0.5, 0.75,−0.25, 0.5, 0.75, 0.25, 0.75,−0.25), r = 1

• Sim3: n = 400, p = 500,α = β = (0.25, . . . , 0.25︸ ︷︷ ︸
100

,−0.25, . . . ,−0.25︸ ︷︷ ︸
400

), r = 4

4 Simulation Results
Table 1 shows the variable selection performance and MSE along with their standard

deviations for these simulation scenarios for BNB model. Comparing S1, S2, and

S3 accuracy and sensitivity were similar with the decrease in sample size for all the

three priors. The MSE for β and their standard errors increases for all the three

priors as the sample size decreases. From S1 and S2 and S3 are three scenarios

having similar settings with the N/P ratio changing, there is a clear trend that

with the decrease in sample size increases the MSE, S1 and S2 has 100% sensitivity

implying all the non-zero β can be identified. There is not much of an impact of

correlation on the results. S5 has 1% non-zero β with low effect sizes but almost

67% of the time they are identified by the 2 priors DL and Horseshoe. DP fails to

identify the non-zeros, though keeping the MSEs low.

In summary, it is obvious that the simulation results has demonstrated the use

of these three priors unanimously with the low standard errors across datasets.

Trace plots, Geweke diagnostics and Monte Carlo standard errors were indicative

of convergence and showed reasonable mixing fora range of model parameters. We

tested the sampler for various settings of n, p and coefficients. Comparing S2, and

S3 the MSE for β and their standard errors increases for all the three priors and

drastically reduces the MSE of the fitted values as well. The increase in correlation

in S4 than S3 doesn’t seem have much effect. As nandp increases from S1 to S2 there

is a substantial decrease in MSE of β but not for the fitted values. S5, S7 and S12

compare different sample size under similar coefficient and simulation settings. MSE

and their standard error decreases as their sample size increases. S9, S10 and S11

again compare sample sizes n = 200, 100, 8 for a different set of coefficient settings.

Here all the βs were non-zero. Again the decrease in MSE with the increase of

sample size is noticeable and also in the MSE of fitted values. In the all the above

n > p scenarios we see that Horseshoe, and Double Pareto perform comparatively

better than Dirichlet Laplace. For p > n scenarios S13 and S6, with the increase in

the n/p ratio increases MSE increases. In summary, it is obvious that the simulation

results has demonstrated the use of these three priors unanimously. We build on the

R codes from this package and extend it with the three different prior structures.
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In BZINB model, Horseshoe prior clearly outperforms the other two priors across

simulation scenarios. The Sim3 p > n case has similar performance across priors.

The variable selection performances are also measured with the MSEs and all the

three priors performed reasonably Table 2.

5 Real Data Application
Here three real data applications are considered. In all the applications the count

data and the excess amounts of zeros in the outcome made BNB and BZINB regres-

sion a best fit for the data. The variables selected by the three priors for BNB and

BZINB , Poisson regression and NB models for each of the datasets is in the table

3. For the three priors, the starting values are chosen as the maximum likelihood

estimates from NB Regression. The MSE for the coefficients for the tree priors are

obtained by
∑p
i=1

(βi−β̂i)
2

p , p is the number of coefficients, βi: estimates obtained

from NB regression and (̂βi) are the posterior mean estimates. This MSE measure

can also be interpreted as a departure from the frequentist estimates.

5.1 No. of PhD publications

The first one deals with the number of publications produced by Ph.D. biochemists

of [33]. It is available in the R package ”pscl”[34].The response variable is the

number of articles in the last three years of Ph.D. Five explanatory variables were

used. They are: the gender (x1), the marital status (x2), the number of children

under age six (x3), prestige of Ph.D. program (x4), and the number of articles by

the mentor in last three years (x5). In this application, the response variable is

following NB distribution. (x3) and (x5) were selected by the Bayesian methods.

The NB, poisson followed by BNB methods were suitable for the data set, as per

the MSE of fitted values.

5.2 Nuts data

In the second real data application, we considered the nuts dataset [18]. Here, n = 52

and p = 7. The nuts dataset defines the squirrel behavior and several features of

the forest across different plots in Scotland’s Abernathy Forest. It is available in

the R package ”COUNT”[35].The response variable is the number of cones stripped

follows negative binomial distribution. The explanatory variables are: the number

of trees per plot (x1), the number of DBH per plot (x2), mean tree height per plot

(x3), canopy closure (as a percentage) (x4), standardized number of trees per plot

(x5), standardized mean tree height per plot (x6), standardized canopy closure (as

a percentage) (x7). Here we use x5, x6, x7.

The variables chosen by all the methods except NB were x5, x6, x7. So all the models

seem reasonable except NB. The variables selected in the first two datasets (Bio-

chemists, and NUTS) are included withing the set of the variables selected either

by the traditional Poisson or NB regression.

5.3 US National Medical Expenditure Survey

The third data set originated from the US National Medical Expenditure Survey

(NMES) conducted in 1987 and 1988. The NMES is based upon a sample of the

civilian non-institutionalized population and individuals admitted to long-term care
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facilities during 1987. The data are a sub-sample of individuals ages 66 and over all

of whom are covered by Medicare (a public insurance program providing substantial

protection against health-care costs). It is available in the R package ”AER”[36].

It is a data frame containing 4,406 observations on 19 variables. The response vari-

able considered is the number of physician office visits among other type of count

variables present (emergency visits, no. of non-physician hospital outpatient visits

etc.). We have considered 14 dependent variables hospital: number of hospital stays

x1; health:self-perceived health status x2, levels are ”poor”, ”average”, ”excellent”;

chronic:number of chronic conditions x3; adl: indicator of whether individual having

limits in activities of daily living x4 levels: ”limited”,”normal”; region: indication

region of the individual x5 levels northeast, midwest, west, other; age x6; afam

(race): If African-American x7; gender:male/female x8; married: marital status x9;

school:number of years of education x10; income (USD) x11; employment x12; insur-

ance: whether the individual is covered by private insurance yes/No x13; medicaid

x14. The MSE for the fitted values are also given. Figure 1 the posterior distribution

of the 14 variables and their respective confidence intervals. For the NMES data,

the three priors selects 10 important out of 14 variables, Poisson selects 13 and

NB 8 of them. It seems that the three priors perform better than NB where they

do include the relevant variables such as limited activity level x4 and race x7 but

doesn’t do over-fitting such as Poisson.

5.4 PBMC RNA-Seq data

The data set that is analyzed here is taken from https://satijalab.org/seurat/articles/

pbmc3ktutorial.html. The RNASeq data is analyzed as a per gene model where each

gene is the outcome and the cell type as the covariate. The top 10 genes selected

by BNB and BZINB are in Table 3. The genes common between H and DL are

2742, 6369, 9338, 3665,7203,11458, 2217, 4360,4368.The genes common between

DL and DP are 2742,13706,6369,9338,11458,7203, 2217, and 4368. The genes com-

mon between DP and H are 2742,6369,9338,3665,11458,7203,2217,3665,4368,4368.

The genes common between three priors are 2742, 6369, 9338,7203,11458,3665, 2217,

4368. The common genes between H and DL are 74, 267, 1804,3417,6049,8146. The

genes that belong to the intersection of DL and DP are 74, 267,1804, 3417, and

6049. The genes common between DP and H are 74, 267, 1804, 3417, and 6049.

The genes common between the three priors are 74, 267, 1804, 3417, and 6049. The

genes selected by both the models are selected by ranking them by the least MSE.

5.5 Covid-19 Vaccine Data

This data set consisted of the Covid-19 vaccine administered over the year 2021

and the symptoms (adverse events) gathered from the administration of vaccines.

This data is a part of the Vaccine Adverse Event Reporting System (VAERS) which

was created by the Food and Drug Administration (FDA) and Centers for Disease

Control and Prevention (CDC) to receive reports about adverse events that may be

associated with vaccines.The variables that are considered are age (x1), sex (x2), if

there is life threat or not (x3), if there was emergency room visit (x4), if hospitalized

(x5), number of hospital days (x6), no. of extended stay (x7), disability status (x8),

recovery status (x9), medical history (x10), other medications (x11), laboratory data
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(x12), disease during vaccination (x13), prior vaccination status (x14), allergy status

(x15), doctor’s office visit (x16), emergency visit (x17), vaccination route (x18),

vaccination dose (x19), vaccine manufacturer (x20).The dimension of the cleaned

data set post-processing was having 100 samples and 20 variables. The number of

days between vaccination and onset of adverse symptoms is treated as the response

variable (y) that had a median of 1 day, mean of 7 days, maximum minimum of

0, and 2.43 years respectively. The results from the BNB model, BZINB model,

and both these models with respective priors are given in Table 3. We applied

the region of practical equivalence (ROPE) method [37] was utilized to select the

variables after obtaining the posterior samples. The variables that were significant

by the ROPE method with 5% cut-off for ROPE by mainly the Horseshoe and

the DP priors for both the BNB and BZINB models belonged to the super set of

the set of the variables. The variables age (x1), sex (x2), if there is life threat or

not (x3), if there was emergency room visit (x4), no. of extended stay (x7), other

medications (x11), laboratory data (x12), disease during vaccination (x13), prior

vaccination status (x14), allergy status (x15) belonged to the intersection of the

two sets of variables identified by the BNB and BZINB models with Horseshoe

prior, which was a significant overlap along with matching the variables identified

by the traditional methods without shrinkage priors. In general, the BZINB with

DP and Horseshoe priors were able to select more variables than the BNB model.

Specifically, variables such as medical history (x10), prior vaccination status (x14),

vaccination route (x18), vaccine manufacturer (x20) were some of the interesting

features that seem to influence the results. All the shrinkage prior models surpassed

the traditional models in their MSE of fitted values.

5.6 Covid-19 RNASeq Data

The data is taken from the article [38]. We selected the GSE152075 dataset from

Gene Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/gds), which con-

tained RNA-seq data from 430 SARS-CoV-2 positive and 54 negative patients [?].

The data is analyzed similarly with the help of per gene model where each RNA-seq

(count variable) is modelled against the covid-19 positivity status which is a binary

variable. Upon pre-processing the following top 10 genes were selected by ranking

the genes with the lowest MSE with the BZINB and BNB methods are in Table 3.

The BZINB method was able to select about 30 genes that were not selected by the

top BNB method. With the BNB method,there were 4 genes commonly selected by

DL and H which are 4903, 7767, 11222, and 12202.The common genes between DL

and DP are 8523,12202,13109 and between DP and H are 8998, 9016, 9856, 12202.

Gene no. 12202 was selected by all three priors with BNB model.

6 Discussion
Our simulations showed that the approach performs well across a range of sce-

narios. The numerical results provide additional numerical and theoretical insights

into the properties of global-local shrinkage priors including high-dimension case.

Variable selection is a very helpful procedure for improving computational speed

and prediction accuracy by identifying the most important variables that related to

the response variable. The number of counts for each observation if large can make

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277610doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.13.22277610
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bhattacharyya et al. Page 14 of 18

the sampler perform poorly as the Polya-Gamma augmentation will not be efficient

as it require generation of Polya-Gamma random variates equal to the number of

observations[16]. The generation of such random variates is also time consuming.The

Polya-Gamma procedure is in general fast, easy to implement and flexible. The rate

at which one can generate Polya-Gamma random variates is a key factor in the ef-

ficiency of the Polya-Gamma scheme; hence, building fast samplers is essential. R

packages such as ”bayesreg”[31] deals with high-dimensional Bayesian regularised

regression. Alternative models such as the BNB model, BZINB models [27], trun-

cated models, or quantile count models provide potential future research guidelines.

The use of shrinkage priors with next generation sequencing data such as RNA-Seq

data with Zero-Inflated or Negative Binomial models are also areas that needs fur-

ther exploration [2]. All the three priors have their own advantage and caveats. A

computationally efficient Bayesian approach for variable selection is proposed here

that performs quite well in simulation scenarios and provide consistent results in

these different case studies. One disadvantage of data augmentation schemes is that

the number of latent variables is of the order of sample size. Hence for large n, the

computation can slow down, as we have seen in settings with sample sizes greater

than 1000. However, this disadvantage is offset by the gains we have over the tra-

ditionally used Metropolis-Hastings, which requires choosing proposal distributions

and would probably generate a considerable number of rejection steps. Additionally,

the model can be extended with other shrinkage priors, and other models such as

hurdle models. More generally, the proposed method can be applied in scenarios

where interest lies in modeling count data within a Bayesian inferential framework

and exhaustive comparison of existing shrinkage priors in the literature. We believe

that the rigorous, yet simple and systematic nature of Bayesian inference coupled

with the latest advances in technology in high dimensional and next generation se-

quencing with RNA Seq data might strongly help in contributing to expanding the

research field.
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Figure 1: Posterior distribution with 95% credible intervals: NMES Data
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Simulation Scenarios
Priors s1 s2 s3 s4 s5
N,P 200,10 120,10 50,10 100,20 50,500

Accuracy
Horseshoe 0.993(0.026) 0.996(0.020) 0.958(0.068) 0.702(0.048) 0.827(0.066)

Dirichlet Laplace 0.991(0.029) 0.989(0.035) 0.962(0.065) 0.722(0.053) 0.829(0.064)
Double Pareto 0.992(0.027) 0.997(0.017) 0.956(0.073) 0.702(0.046) 0.832(0.071)

Sensitivity
Horseshoe 1.000(0.000) 1.000(0.000) 0.936(0.110) 0.514(0.088) 0.662(0.123)

Dirichlet Laplace 1.000(0.000) 1.000(0.000) 0.950(0.096) 0.563(0.094) 0.668(0.114)
Double Pareto 1.000(0.000) 1.000(0.000) 0.932(0.114) 0.516(0.084) 0.012(0.003)

Specificity
Horseshoe 0.986(0.051) 0.992(0.039) 0.980(0.072) 0.889(0.031) 0.994(0.005)

Dirichlet Laplace 0.982(0.058) 0.978(0.069) 0.989(0.031) 0.880(0.045) 0.977(0.003)
Double Pareto 0.984(0.055) 0.994(0.034) 0.988(0.033) 0.887(0.034) 0.999(0.005)

MSE
Horseshoe 0.194(0.006) 0.201(0.022) 0.229(0.040) 0.101(0.010) 0.003(0.000)

Dirichlet Laplace 0.195(0.014) 0.201(0.022) 0.228(0.039) 0.103(0.010) 0.005(0.000)
Double Pareto 0.194(0.014) 0.201(0.022) 0.229(0.039) 0.102(0.011) 0.003(0.000)

Table 1: Variable Selection Performance among BNB Simulation Scenarios

Simulation N,P Horseshoe Dirichlet Laplace Double Pareto
MSE of β

Sim1 1000,4 0.097(0.168) 0.134(0.392) 0.285(0.971)
Sim2 500,10 0.092(0.023) 0.156(0.132) 0.359(0.34)
Sim3 400,500 0.196(0.01) 0.196(0.01) 0.196(0.01)

MSE of α
Sim1 1000,4 0.056(0.027) 0.053(0.032) 0.21(0.117)
Sim2 500,10 0.021(0.015) 0.176(0.208) 0.152(0.05)
Sim3 400,500 0.201(0.022) 0.201(0.022) 0.201(0.022)

Table 2: Comparison of MSE among BZINB Simulation Scenarios
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Datasets
Methods Selected Variables MSE.β MSE.Y

Biochemists
NB with Horseshoe x3, x5 0.017 4.19

NB with Dirichlet Laplace x3, x5 0.016 4.19
NB with Double Pareto x1, x3, x5 0.015 4.18
ZINB with Horseshoe x3, x5 0.011 8.07

ZINB with Dirichlet Laplace x3, x5 0.01 7.84
ZINB with Double Pareto x3, x5 0.01 8.72

Poisson x1, x2, x3, x5 0 3.75
Negative Binomial x1, x3, x5 0 3.79

Zero-Inflated Poisson x1, x2, x3, x5 0 9.17
Zero-Inflated Negative Binomial x1, x2, x5 0 8.26

Nuts
NB with Horseshoe x5, x6, x7 0.309 607.5

NB with Dirichlet Laplace x5, x6, x7 0.312 608.4
NB with Double Pareto x5, x6, x7 0.312 605.9

Poisson x5, x6, x7 0 184.05
Negative Binomial x7 0 176.23

NMES
NB with Horseshoe x1, . . . , x6 0.004 64.40

NB with Dirichlet Laplace x1, . . . , x6 0.004 64.38
NB with Double Pareto x1, . . . , x6 0.004 64.39

Poisson x1, . . . , x12, x14 . . . , x16 0 47.31
Negative Binomial x1, . . . , x6, x8, . . . 0 59.26

Covid-19 vaccine
NB with Horseshoe x1, x2, x3, x4, x6, x7, x10, . . . , x19 6.21 390.36

NB with Dirichlet Laplace x2, x4, x6, . . . , x12, x15, x16, x19 6.46 390.24
NB with Double Pareto x7, x9, x10, x13, x14, x16 5.14 390.27
ZINB with Horseshoe x1, . . . , x5, x7, x8, x9, x11, . . . , x15, x17, x18, x20 6.06 427.11

ZINB with Dirichlet Laplace x7, x9, x10, x13, x14, x16 73.5 386.72
ZINB with Double Pareto x1, . . . , x20 5.88 407.19

Poisson x1, x2, x4, x5, x7 . . . , x14, x16, x17, x18, x20 2.24 1566.97
Negative Binomial x1, . . . , x5, x7, . . . , x10, x11, x13 . . . , x15, x17, . . . , x20 2.42 1566.97

Zero-Inflated x1, x2, x5, x8, x9, x10, x11, x13, x14, x16, x17, x18, x20 3.5 1546.08
PBMC RNA-Seq

NB with Horseshoe 2742, 6369, 9338, 3665, 7203, 11458, 2217, 4360, 4368 0.00 20.35
NB with Dirichlet Laplace 2742, 13706, 6369, 9338, 11458, 3665, 7203, 2217, 4360, 4368 0.00 19.92

NB with Double Pareto 2742, 13706, 6369, 9338, 11458, 7203, 2217, 3665, 4368, 11191 0.00 20.40
ZINB with Horseshoe 74, 267, 1521, 1804, 2612, 3417, 3695, 6049, 8146, 8285 0.00 20.43

ZINB with Dirichlet Laplace 74, 153, 267, 904, 1804, 3417, 6049, 6680, 7526, 8146 0.00 7.48
ZINB with Double Pareto 74, 267, 1804, 1983, 2323, 3124, 3317, 3417, 5528, 6049 0.00 6.06

Covid-19 RNA-Seq
NB with Horseshoe 4876, 4903, 7767, 8998, 9016, 9856, 10183, 11222, 11598, 12202; 0.0 1016.338

NB with Dirichlet Laplace 4903, 4995, 7767, 7798, 8523, 10416, 11222, 12202, 13109, 16202; 0.0 3276.73
NB with Double Pareto 8523, 8998, 9016, 9301, 9856, 12202, 13109, 14012, 14476, 15265; 0.0 4971.96
ZINB with Horseshoe 22, 58, 202, 231, 272, 280, 297, 314, 404, 523; 0.0 7.11

ZINB with Dirichlet Laplace 193, 219, 293, 391, 487, 514, 589, 625, 697, 724; 0.0 1.99
ZINB with Double Pareto 76, 113, 163, 179, 202, 279, 356, 366, 428, 446; 0.0 3.97

Table 3: Variable Selection in Real World Data
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