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ABSTRACT  1 

Genome-wide association studies (GWAS) have been performed to identify host genetic factors 2 

for a range of phenotypes, including for infectious diseases. The use of population-based 3 

common controls from biobanks and extensive consortiums is a valuable resource to increase 4 

sample sizes in the identification of associated loci with minimal additional expense. Non-5 

differential misclassification of the outcome has been reported when the controls are not well-6 

characterized, which often attenuates the true effect size. However, for infectious diseases the 7 

comparison of cases to population-based common controls regardless of pathogen exposure 8 

can also result in selection bias. Through simulated comparisons of pathogen exposed cases 9 

and population-based common controls, we demonstrate that not accounting for pathogen 10 

exposure can result in biased effect estimates and spurious genome-wide significant signals. 11 

Further, the observed association can be distorted depending upon strength of the association 12 

between a locus and pathogen exposure and the prevalence of pathogen exposure. We also 13 

used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV 14 

spontaneous clearance to persistent infection with both well characterized controls, and 15 

population-based common controls from the UK Biobank. We find biased effect estimates for 16 

known HCV clearance-associated loci and potentially spurious HCV clearance-associations. 17 

These findings suggest that the choice of controls is especially important for infectious diseases 18 

or outcomes that are conditional upon environmental exposures.19 
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INTRODUCTION 20 

Genome-wide association studies (GWAS) are focused on identifying genetic associations with 21 

health outcomes. This has been successfully accomplished using well-characterized cases and 22 

controls often from epidemiologic cohort or case-control studies.1 More recently, GWAS have 23 

utilized biobanks and consortiums to expand sample populations. This can include comparing 24 

well-characterized cases to phenotypically uncharacterized or population-based common 25 

controls which has led to the identification of novel associations with low to modest effect size 26 

s.2–9 Concerns related to the use of common controls include not adequately accounting for 27 

population substructure and the likelihood of non-differential misclassification across the 28 

outcome (i.e. some proportion of the controls have developed the outcome of interest) which 29 

can often attenuate true associations.2,6,8–10   30 

When studying infectious disease, it is key that an individual is exposed to a pathogen (i.e. 31 

virus, bacteria, protozoa) before they can develop disease. Host genetics and immunity along 32 

with pathogen genetics, co-infections, co-morbidities, age, and sex are known to explain some 33 

of the heterogeneity in disease outcomes. Thus, it is critical to account for pathogen exposure 34 

because unexposed individuals are never at risk of developing the outcome. This can be 35 

achieved through antibody or antigen testing or obtaining documented history of exposure (i.e. 36 

vaccine, contact tracing). While it is assumed that the internal validity of case-control studies, 37 

including GWAS, is maintained by the characterization of both the genetic exposure and the 38 

phenotypic outcome for every study participant, it is also assumed that cases and controls are 39 

at risk of developing the outcome. For infectious disease studies involving population-based 40 

common controls, this presumption is not always true and can result in differential 41 

misclassification of pathogen exposure between cases and controls.11,12 Whether 42 

epidemiological factors that influence pathogen exposure (i.e. increased transmission in certain 43 
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populations or occupations, routes of transmission, or comorbidities) can subsequently result in 44 

spurious genetic association signals due to this misclassification is not fully explored.  45 

In this study, we performed simulations comparing cases to well-characterized controls with 46 

known exposures and to population-based common controls with unknown exposures to identify 47 

if external variables associated with pathogen exposure can induce spurious associations. We 48 

also used empirical data to compare the genetic association results from a GWAS performed to 49 

identify host loci associated with recovery from hepatitis C virus (HCV) infection using either 50 

known HCV-exposed and persistently infected controls or population-based common controls 51 

from the UK Biobank (UKB).  52 

 SUBJECTS AND METHODS 53 

Simulations to characterize pathogen exposure-associated selection bias 54 

The directed acyclic graph (DAG) depicted in Figure 1 provides a graphical representation of 55 

how comparing exposed cases to population-based common controls differs from comparisons 56 

made to well-characterized (pathogen-exposed) controls. For loci associated with pathogen 57 

exposure (e.g., a causal locus for a risk factor of pathogen exposure) unrelated to the outcome 58 

of interest, if unequivocally pathogen exposed cases are compared to population-based 59 

common controls regardless of exposure status, differential misclassification of pathogen 60 

exposure can induce selection bias, resulting in spurious associations between the outcome 61 

and the loci associated with pathogen exposure.  62 

How strongly pathogen exposure is associated with case status determines the strength of this 63 

bias (i.e., the dashed red line reflecting the degree of differential misclassification in pathogen 64 

exposure in Figure 1). Simulations were performed to assess whether the association between 65 

a non-outcome associated SNP can become spuriously associated with the outcome due to a 66 

relationship with pathogen exposure. Whether the prevalence of a pathogen contributes to this 67 

bias was also determined by assessing the degree to which inflated effect estimates for the 68 
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outcome~SNP relationship were observed across the various simulation scenarios. Simulations 69 

were performed using the lavaan package (v0.6-8) in R as it allows for the control of statistical 70 

associations between simulated variables.13,14 The phenotypic data and SNP genotypes were 71 

simulated for a large cohort (N=1,000,000).  72 

Case and control definitions: Cases were defined as individuals with a known pathogen 73 

exposure who developed the clinical outcome. ‘Well-characterized controls’ were defined as 74 

individuals with a known pathogen exposure event but did not develop the clinical outcome. To 75 

investigate the effects of differential misclassification of pathogen exposure in the absence of 76 

non-differential misclassification of the outcome, ‘population-based common controls’ were 77 

defined as any individual who did not develop the clinical outcome, regardless of pathogen 78 

exposure. In each simulated cohort, a fixed number of cases, well-characterized controls, and 79 

population-based common controls were randomly sampled from individuals meeting the 80 

inclusion criteria. In each simulated cohort, unless otherwise stated, the prevalence of pathogen 81 

exposure was set at 25%. Cases were selected from the exposed population, of which 50% had 82 

the observed clinical outcome and the remainder defined as well-characterized controls. As 83 

population-based common controls were selected from the entire population, excluding cases, a 84 

proportion of the population-based controls would be expected to have a simulated pathogen 85 

exposure.  86 

Simulated variables: Additional simulated variables included a single nucleotide polymorphism 87 

(SNP, coded as 0,1, 2 minor alleles) and a variable associated with pathogen exposure (U1 88 

which could represent routes of transmission, occupation, comorbidities, etc.). To explore the 89 

effect of confounding within a locus completely unrelated the outcome of interest, neither the 90 

SNP nor the U1 variable were simulated to be associated with the outcome. For all simulated 91 

cohorts, the SNP had a fixed minor allele frequency (MAF) of 15% and a fixed SNP~U1 92 

association (β) of 0.1, whereby each additional SNP allele was associated with an increase of 93 
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10% of U1. Similar effect sizes have been observed for markers associated with other complex 94 

diseases.15–19 The SNP was simulated with a MAF of 15% and in Hardy Weinberg Equilibrium 95 

(HWE). The effect estimates for associations between simulated variables were confirmed via 96 

logistic and linear model-based regressions using the speedglm package in R.13,14 97 

Simulation scenario 1 – Effects of a pathogen exposure-specific variable: We simulated 500,000 98 

replicates of N=1,000,000 individuals for each of the following relationships between U1 and 99 

pathogen exposure: no association (β=0, OR=1), a moderate association (β=log(1.2), OR=1.2), 100 

or a strong association (β=log(2), OR=2). Simulations were performed assuming the prevalence 101 

of pathogen exposure was 25% and 50% of exposed individuals had the outcome (Table 1).  102 

Simulation scenario 2 – Effects of the prevalence of pathogen exposure:  We simulated 500,000 103 

replicates of N=1,000,000 individuals for each of the following pathogen exposure prevalences: 104 

5%, 25%, 50%, 75%, or 100%. Simulations were performed assuming either a moderate 105 

(β=log(1.2), OR=1.2) or a strong association (β=log(2), OR=2) between U1 and pathogen 106 

exposure and 50% of exposed individuals had the outcome (Table 1).  107 

Simulated genetic associations: 108 

In each simulated replicate, 20,000 cases, 20,000 well-characterized controls, and 20,000 109 

population-based controls were randomly selected and included in logistic regressions to 110 

quantify the ‘outcome of interest’~SNP association. Regressions compared cases to population-111 

based controls (scenarios 1a and 2a) or well-characterized controls (scenarios 1b and 2b). To 112 

simulate a realistic use-case of GWAS involving many common controls, we re-performed the 113 

above simulations and regressions for both scenarios comparing 20,000 cases to 200,000 114 

population-based controls. Regressions were performed in R using the Rfast package.20 115 

To test whether the effect sizes of the SNP~outcome associations (βSNP) were significantly 116 

different when cases were compared to population-based or well-characterized controls, we 117 

derived a modified Z statistic, appropriate for the comparison of regression coefficients,21 118 
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reflecting the change in average scenario-specific beta estimates for each parameter between 119 

comparisons involving population-based controls and well-characterized controls. The standard 120 

error term used to estimate each Z score was defined as the mean standard error across each 121 

scenario’s parameter-specific set of simulations. This conservative test was chosen due to the 122 

extreme number of comparisons (e.g., with two logistic regressions for each of the parameter-123 

specific 500,000 replicates, 13 million regressions were performed when comparing 20,000 124 

cases to 20,000 population-based controls).  125 

As a null association for the ‘outcome of interest’~SNP relationship was simulated for each 126 

cohort, any non-null observed ‘outcome of interest’~SNP association reflect spurious signals 127 

induced via the scenario-specific selection of case and controls. We calculated the proportion of 128 

cohorts with ‘outcome of interest’~SNP associations that reached the conservative but widely 129 

accepted genome-wide significance threshold of P<5x10-8.22  To determine whether the 130 

prevalence of pathogen exposure was associated with the magnitude of these spurious signals, 131 

we performed linear regressions to obtain the magnitude and direction of the average beta 132 

estimates obtained from each set of pathogen exposure prevalence parameter-specific 133 

simulations. Measures of heterogeneity were estimated using the meta R package for each set 134 

of parameter-specific simulations to confirm independent yet equivalent cohorts were simulated 135 

(Table S1).23 Additional simulations were considered and are included in the supplementary 136 

methods.  137 

HCV GWAS using cases and well characterized controls or population-based controls  138 

Well characterized cases and controls from the HCV Extended Genetics Consortium 139 

We leveraged data from The HCV Extended Genetic Consortium (HCV Consortium) which 140 

includes 1,869 individuals of African ancestry, 1,739 individuals of European ancestry, and 486 141 

individuals of Hispanic ancestry who passed GWAS-related quality control metrics,24 as 142 

previously described.25–27 We only used individuals of European ancestry in this study (tightly 143 
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clustered with the 1000 Genomes Project (1000G) Northern European  population from Utah 144 

(CEU) and had an admixture estimate of at least 90% European ancestry, determined via 145 

fastSTRUCTURE).28 Of the 1,739 European ancestry HCV consortium individuals, 702 were 146 

individuals with serological evidence of spontaneous clearance from HCV infection (cases) and 147 

1,037 were defined as individuals with persistent HCV infection (“well-characterized controls”).25 148 

Of these individuals, 16% were living with HIV and 31% were female.25–27  149 

The UK Biobank (UKB) is a large population-level cohort including 500,000 volunteers recruited 150 

from across the UK.29 ‘Population-based controls’ were unrelated individuals from the UKB who 151 

were identified to be of similar genetic ancestry to HCV Consortium individuals of European 152 

ancestry. For these individuals, we had no information on HCV infection status or previous 153 

exposure to HCV.  154 

Selection of samples for analysis 155 

Ancestry analysis of the combined HCV Consortium-UKB cohort: Linkage disequilibrium (LD)-156 

based pruning was used to iteratively remove variants in LD (r2 >0.2) via a sliding 500k base-157 

pair-wide window prior to performing principal components analysis (PCA) in the combined HCV 158 

Consortium-UKB cohort. This LD-based pruning was performed on all genetic markers with 159 

missingness <1.5% and MAF >2.5%, after excluding regions of long-range linkage 160 

disequilibrium.30 Given the extreme sample size of the combined HCV-UKB cohorts, FastPCA 161 

was used.31,32 LD-based pruning and PCA was carried out using the R package SNPRelate.33  162 

Selection of ancestry-matched UKB population-based controls: Out of 487,409 UKB individuals 163 

with genetic data available, 407,192 UKB participants who passed previously described QC 164 

metrics were included within our analyses.29,34,35  We limited UKB population-based controls to 165 

370,702 ancestry-matched individuals genetically similar to the European individuals from the 166 

HCV Consortium (Figures S1-S2).36 Briefly, genetic ancestry-based matching of cases and 167 

controls was accomplished through multiple iterations of PCA. Initially, the UKB participants 168 
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whose top three PCs were within six standard deviations of the mean PC values estimated from 169 

HCV Consortium individuals were retained for analysis (N=383,724). A second PCA filtering 170 

step, using the top twenty PCs, excluded any UKB individual with estimated eigenvalues 5% 171 

higher or lower than the range of PC-specific values from HCV Consortium individuals. A total of 172 

370,702 ancestry-matched UKB controls were identified.  173 

Selection of markers for analysis  174 

HCV Consortium: Out of an initial 661,397 directly genotyped markers mapped to the 175 

GRCh37/hg19 reference sequence, a total of 656,340 markers had MAF >1%, variant-level call 176 

rates >97%, were in Hardy-Weinberg Equilibrium (HWE) based on HWE exact tests (P>1x10-5), 177 

and passed the ‘McCarthy Group Tools’ Haplotype Reference Consortium (HRC) imputation 178 

preparation pipeline (https://www.well.ox.ac.uk/~wrayner/tools/).37 No allele frequency difference 179 

threshold between this database and the HCV Consortium cohort individuals was used to 180 

remove genotyped markers. Imputation was performed using the HRC (version r1.1, 2016) 181 

European reference panel via the Michigan Imputation Server and phased using Eagle 182 

(v2.4).38,39 Markers with imputation quality R2 values > 0.3 were retained and markers which 183 

were not bi-allelic or had a genotyping rate < 97% or MAF < 1% were removed. Additionally, 184 

imputed markers with variant-level INFO scores <90% or HWE P<5x10-7 were removed. A total 185 

of 6,468,618 imputed markers passed these QC metrics. 186 

UK Biobank: A total of 670,739 directly genotyped autosomal QC-passed markers were used for 187 

imputation, as previously described.29 Phasing was performed with SHAPEIT3 and imputation 188 

carried out using IMPUTE4.29,40,41 UKB imputation involved a combination of the Haplotype 189 

Reference Consortium (HRC), the UK10K haplotype reference, and the 1000 Genomes phase 3 190 

reference panels.29 To be considered a potential match for any QC-passed HCV Consortium-191 

derived marker, the imputed UKB variant was required to have INFO score >90%, MAF>1%, 192 
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and HWE P>1x10-7. A total of to 93,095,623 imputed UKB variants met this quality control 193 

threshold and were considered for analysis.  194 

Combination of the HCV Consortium and UKB datasets: Imputed markers in the HCV 195 

consortium were matched to UKB QC-passed imputed markers using position and allele 196 

information. A total of 6,025,969 markers were shared across the ancestry-matched UKB and 197 

HCV Consortium databases. A total of 6,009,835 markers were shared across the combined 198 

HCV Consortium and a set of 364,308 UKB controls who passed a more stringent set of 199 

sample-level genetic heterozygosity-focused QC metrics than those performed by the UKB 200 

consortium, as described below and in the Supplementary Methods. 201 

Selection of different subsets of UKB population-based controls for exploratory GWAS:  202 

Additional exploratory GWAS using different subsets of UKB controls were performed to 203 

determine whether the observed association between certain genetic loci and HCV clearance 204 

was driven by mismatched fine-scale ancestry, excess sample-level genetic heterozygosity, or 205 

unaccounted for population structure due to the extreme number of population-based UKB 206 

controls (Figures S3-S8). Other exploratory GWAS assessed differential enrichment for certain 207 

epidemiological factors relative to the population based common controls. This included a 208 

GWAS comparing the set of HCV clearance cases from non-hemophilia-focused cohorts 209 

(N=513) to a more precisely matched case-control cohort of UKB controls (N=4,908) (Figure 210 

S9). A GWAS comparing all the individuals from the HCV Consortium (N=1,739) to the 211 

European ancestry-matched population-based controls from the UKB (N=370,702) was also 212 

performed (Figure S10). Each exploratory GWAS occurred after performing all sample-level 213 

and imputed marker-level QC described above.  214 

Statistical analysis 215 

HCV GWAS using cases and well characterized controls or population-based controls  216 

Association of cases and well characterized controls 217 
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Genetic associations between the 702 cases and 1,037 well-characterized controls of the HCV 218 

Consortium were performed via logistic regression under an additive genetic model using 219 

PLINK,32,42 as the lack of any significant sample size imbalance between cases and controls or 220 

intensive computational resources needed to perform these genetic associations did not warrant 221 

a more complex association approach. Covariates for this GWAS included sex and the first 222 

twenty principal components, estimated from the HCV Consortium dataset after linkage 223 

disequilibrium-based pruning. 224 

Association of cases and population-based controls  225 

To account for the severe sample size imbalance between cases and controls, and to optimize 226 

computational performance at extreme differences in sample sizes, associations between the 227 

702 cases and 370,702 ancestry-matched population-based controls were performed under an 228 

additive genetic model using REGENIE with the saddle point approximation (SPA) test 3,43,44 229 

While REGENIE partially accounts for population stratification, the top twenty PCs estimated 230 

from the combined HCV-UKB cohort were included as fixed effect covariates to ensure 231 

differences due to genetic ancestry or population structure among UKB individuals of European 232 

ancestry were accounted for (Figure S2).45,46 Sex was included as a covariate.   233 

We utilized a genome-wide significance threshold of P<5x10-8.22 After performing the 234 

association testing, to minimize the risk of bias due to differences across genotyping arrays or 235 

imputation panels between our cases and controls among putative HCV clearance-associated 236 

loci, a MAF-based filter was used to exclude markers suggestively associated with HCV 237 

clearance (P<5x10-5) using genome-wide allele frequency data for the gnomAD non-Finnish 238 

European population downloaded in September 2021, using the gnomAD v2.1.1 release.10  Any 239 

suggestively associated marker with a MAF>10% among gnomAD non-Finnish Europeans was 240 

excluded if the MAF among UKB controls and gnomAD non-Finnish Europeans differed in 241 

absolute terms by at least 5%. Similarly, any suggestively associated marker with a MAF<10% 242 
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in gnomAD non-Finnish Europeans was excluded if the relative difference between the 243 

gnomAD-derived MAF and UKB MAF was greater than 25%.  244 

Manhattan and quantile-quantile plots for each GWAS were generated using the ggfastman or 245 

qqman packages in R (Figure S14).47 A table of all suggestively associated markers (P<5x10-5) 246 

for the ancestry-matched UKB controls GWAS can be found within the supplemental material 247 

(Supplementary Table 2). 248 

We performed Cochran’s Q test of heterogeneity using METAL to determine whether the results 249 

obtained from the GWAS of cases vs. population-based controls from the UKB differed 250 

significantly from the GWAS of cases vs. well-characterized controls from the HCV consortium 251 

(Figure S11).48,49 252 

RESULTS 253 

Simulations to characterize pathogen exposure-associated selection bias 254 

Simulations were performed using a simplified version of the framework presented in Figure 1. 255 

Briefly, the association between a SNP not associated with outcome but associated with 256 

pathogen exposure via the variable ‘U1’, was compared between pathogen exposed cases and 257 

pathogen exposed (well-characterized) or population-based common controls.  258 

First, we simulated whether the presence and magnitude of the U1~’pathogen exposure’ 259 

relationship affects the association between a SNP linked to U1 and the outcome of interest 260 

(Table 1). To provide a baseline for further explorations, the first model was simulated to have 261 

no association between U1 and pathogen exposure (OR=1).  As expected, we found no 262 

association between the SNP and outcome, regardless of the choice of well-characterized or 263 

population-based controls or whether cases were compared to 20,000 population-based 264 

common controls or 200,000 population-based common controls (P=1) (Figure 2). For all 265 

simulation scenarios, no replicates comparing cases and well-characterized pathogen exposed 266 

controls resulted in spurious ‘outcome of interest’~SNP associations (Table 2).  267 
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For cohorts with a moderate association between U1~’pathogen exposure’ (OR=1.2) there was 268 

an observed but non-significant inflation for comparisons involving 20,000 population based 269 

common controls compared to 20,000 well-characterized controls (P=0.15), based on the Z 270 

score estimate derived using the average effect estimates obtained when cases were compared 271 

to population-based or well-characterized controls. Additionally, a small number of replicates 272 

(N=159/500,000) had spurious genome-wide significant associations when cases were 273 

compared to population-based common controls. When the association between 274 

U1~’population exposure’ was simulated to be stronger (OR=2), significantly inflated odds ratios 275 

were observed for comparisons involving 20,000 population-based common controls (P=5.3x10-
276 

6) (Figure 2). For these simulations, 82.1% of replicates (N=410,503/500,000) had spurious 277 

associations (P<5x10-8) when cases were compared to 20,000 population-based common 278 

controls (Table 2).  279 

To investigate a scenario closer to current practice, we simulated unbalanced datasets with 280 

20,000 cases and 200,000 population-based controls. In these simulations the reduced variance 281 

due to increased statistical power across SNP ~’outcome of interest’ estimates resulted in 282 

similarly inflated but higher proportions of spurious genome-wide significant replicates 283 

compared to replicates involving 20,000 population-based common controls for both moderate 284 

(N=1,792/500,000, P=0.11) and strong (N=499,666/500,000, P= 1.9 x 10-7) ‘U1~pathogen 285 

exposure’ association scenarios (Figure 2, Table 2).  286 

In the second set of simulations we varied the pathogen exposure prevalence from 5% to 100% 287 

to consider different infectious disease prevalence scenarios. All prevalence values except for 288 

universal exposure (100%) resulted in inflated effect estimates for comparisons involving 289 

population-based common controls when assuming either moderate (OR=1.2) or strong (OR=2) 290 

U1~pathogen exposure relationships, although only the strong exposure was significant (Figure 291 

3, Figure S12). Using 20,000 cases vs. 200,000 population-based controls we observed 292 
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increased spurious associations for rare pathogen exposure prevalence (5%, 293 

N=36,815/500,000) which decreased to 0 replicates with spurious associations as the pathogen 294 

exposure approached 100% (or all exposed). This was present for both moderate and strong 295 

U1~pathogen exposure associations (Table 2), suggesting any observed bias was related to 296 

the differential misclassification of pathogen exposure when cases were compared to 297 

population-based controls. For comparisons involving 20,000 cases and 20,000 population-298 

based controls, a single spurious replicate was observed for the scenario involving 100% 299 

pathogen exposure prevalence (Table 2).  300 

We also evaluated if the number of cases altered the magnitude of any inflated effect estimates 301 

since infectious disease studies are often much smaller than other complex disease studies due 302 

to availability and collection of samples. When assuming a strong U1~pathogen exposure 303 

relationship and fixing other parameters to those utilized in the first scenario simulations, no 304 

observable difference in the mean inflation of the outcome~SNP association (OR~1.13) was 305 

observed for comparisons between varying numbers of cases: 500, 1,000, 5,000, 10,000 and 306 

20,000 and 200,000 population-based controls (Figure S13), suggesting that the bias exists 307 

regardless of case sample size. 308 

HCV GWAS using cases and well-characterized controls or population-based controls  309 

To assess the real-world consequences of differential pathogen exposure misclassification in 310 

GWAS of infectious disease, we explored the effects of control definitions using a previously-311 

published GWAS of HCV spontaneous clearance versus persistence.25 All cases and controls 312 

included within this previous GWAS were unequivocally exposed to HCV and the outcome of 313 

interest focused on a specific clinical sequela of infection, HCV clearance. We compared the 314 

results of this HCV clearance GWAS with the well-characterized (persistently HCV infected) 315 

controls to the same cases compared to population-based common controls from the UKB. The 316 
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GWAS comparing HCV clearance cases to persistently infected individuals replicated previously 317 

published loci.27,50–52 318 

Replication of known HCV clearance-associated loci: In the GWAS using population-based UKB 319 

controls (702 cases vs. 370,702 population-based controls), the two primary HCV clearance-320 

associated loci within the human leukocyte antigen (HLA) region (HLA-DQB1) and IFNL3 locus 321 

were replicated (P<5x10-8; Figure 4). However, the effect sizes of these markers were biased 322 

towards the null compared to the GWAS using well-characterized controls (Table S3). The 323 

genome-wide significant IFNL3 locus markers had odds ratios in the range of 0.37-0.45 when 324 

cases were compared to well-characterized controls, while there were odds ratios of 0.56-0.63 325 

for the population-based UKB controls comparison. The difference in effect size for each of 326 

these markers was significant (Cochran’s Q test, P<0.05, Figure S11), including the 327 

chromosome 19 marker in Table 3, and consistent with bias towards the null due to non-328 

differential outcome misclassification from using population-based controls.  329 

Use of population-based controls identifies previously unknown HCV clearance-associated loci: 330 

In addition to the replication of known HCV clearance-associated loci, we identified two novel 331 

loci using population-based common controls. The first locus was on chromosome 4 within an 332 

intron of syntaxin 18 (STX18) (rs58612183, MAFUKB=6.3%, OR=1.93, P=3.01x10-9, Figure 4) 333 

but had a reduced OR and was not significant in the GWAS involving well-characterized 334 

controls (MAFPersistence=9.5%, OR=1.22, P=0.084). Interestingly, the minor allele frequency in the 335 

control groups differed but was within the European range of 6-10% as reported in ensemble 336 

showing a north-south gradient.53 In the GWAS comparing all HCV European ancestry 337 

individuals from the HCV Consortium (persistence and clearance, N=1,739) to population-based 338 

UKB controls a genome-wide significant association was identified for this locus (P=3.9x10-10) 339 

suggesting that this locus is not HCV clearance-specific but reflects any HCV infection (or 340 

membership in the HCV Consortium) compared to population controls with unknown viral 341 
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exposure. The signal in STX18 remained associated with HCV clearance in additional 342 

exploratory GWAS except for the associations excluding cases known to have hemophilia and 343 

their ancestry-matched UKB controls (P=8.55x10-4, OR=1.47) (Table 4).  344 

The second locus was on chromosome 2 within the long noncoding RNA (lncRNA) MIR3681HG 345 

(top marker rs10803744, MAFUKB=12.5%, OR=1.57, P=7.99x10-8). Interestingly, the allele 346 

frequency differs between HCV clearance (MAF=17%) and HCV persistent (MAF=13%) 347 

individuals (OR=1.42, P=4.06x10-4) with European general populations matching the HCV 348 

persistent (ensemble MAF 11-15%).53 While some of the exploratory GWAS efforts resulted in 349 

less extreme effects for the top MIR3681HG marker, no set of exploratory GWAS consistently 350 

eliminated this signal (Supplementary Materials, Table S4).  351 

To determine if associations were driven by the imbalance in case:controls, we performed 1:1 352 

and 1:10 matching for each case with population-based common controls via two different 353 

commonly used matching methods (Mahalanobis distance and propensity score-based 354 

matching). While the Mahalanobis matched cohorts resulted in deflated estimates for the 355 

chromosome 2 MIR3681HG signal (OR~1.44, 1.46, respectively) closer to the HCV clearance 356 

vs. HCV persistence GWAS than all ancestry-matched UKB controls, 1:10 matching resulted in 357 

the locus remaining suggestively associated (P=6.76x10-7).  The use of propensity score-based 358 

matching resulted in a further inflation in the effect estimate for the locus (OR~1.76, 1.63, 359 

respectively; Table S4). It is possible that local ancestry/population structure is driving this 360 

signal. 361 

DISCUSSION 362 

Understanding the epidemiological contexts where common controls risk the internal validity of 363 

a GWAS is necessary, especially with the availability of resources like biobanks and national 364 

cohorts.54 While previous work using population-based controls has suggested non-differential 365 

misclassification of outcome can be partially compensated by increased sample sizes and 366 
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statistical power,2,6–8,10 this current work demonstrates that for studies of infectious diseases, the 367 

comparison of cases to controls of unknown pathogen exposure can result in spurious 368 

associations.  369 

The simulations show that ignoring pathogen exposure among controls can result in a more 370 

inflated effect estimate for loci associated with exposure when the prevalence of the 371 

pathogen is rare compared to when it is common. Thus, GWAS involving common controls 372 

investigating sequelae associated with endemic viruses like cytomegalovirus or Epstein-Barr 373 

virus may be less susceptible to exposure-linked selection bias since it is likely all adults have 374 

been exposed.55,56 However, infectious outcomes specific to HIV, tuberculosis, or malaria need 375 

to consider whether the exposure profiles of the selected controls approximate the cases. 376 

Ideally, all controls would be evaluated and tested, but if that is not feasible on a large scale 377 

then sampling from high endemic areas or from subpopulations with increased burdens of 378 

disease could reduce the risk of spurious associations. Similarly, simulations indicate that 379 

epidemiological factors even moderately associated with pathogen exposure in a population 380 

where the pathogen of interest is rare can result in spurious genetic associations. This bias may 381 

be especially problematic for emerging pathogens like SARS-CoV-2 where certain comorbidities 382 

and demographic characteristics may be associated with SARS-CoV-2 exposure (i.e. 383 

occupation, living conditions) and the prevalence of the viral exposure depends upon changing 384 

political, social, economic, immune and viral factors.11,57  385 

For example, in studies of disease severity/death due to COVID-19 involving population based 386 

common controls several associations have been observed within loci associated with risk 387 

factors for SARS-CoV-2 infection like blood type (e.g., ABO),6,58,59 obesity,60 alcohol use,61 and 388 

non-European genetic ancestry.59,60 Most notable is the ABO signal in chromosome 9, which is 389 

the most significantly associated locus for SARS-CoV-2 infection and significantly associated 390 

with both hospitalization and critical illness due to COVID-19 when using population-based 391 
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controls, according to the COVID-19 Host Genetics Initiative’s meta-analysis results (r6 392 

release).6 However, these markers fail to reach nominal statistical significance when controls 393 

are limited to non-hospitalized individuals with COVID-19 infection,6 suggesting the ABO locus 394 

may not be a valid association. Loci associated with risk factors for SARS-CoV-2 could also 395 

result in spurious associations for other infectious disease-related outcomes when using 396 

common controls, as blood type is similarly associated with susceptibility to various bacterial 397 

infections and SARS,62,63 obesity with influenza and pneumonia,64,65 and alcohol use with 398 

contracting tuberculosis,66 HIV,67 and pneumonia.68 However, multiple COVID-19 severity 399 

associated loci identified using population-based common controls may reflect real associations, 400 

as they were also successfully identified in GWAS limited to SARS-CoV-2 exposed controls 401 

(e.g, LZTFL1, IFNAR2). 402 

Using empirical GWAS data we show that population-based common controls replicated HCV 403 

clearance-associated loci, however markers within the known gene association locus of IFNL3 404 

were significantly deflated (OR~0.6) as compared to the associations with pathogen exposed 405 

controls (OR~0.4), likely due to non-differential misclassification. In contrast, the novel HCV 406 

clearance association within STX18 is likely spurious as it is attenuated after the removal of 407 

hemophiliac cases and their matched controls. Relatively rare in the general population, 408 

hemophilia is a major risk factor for HCV exposure,69,70 and this association may have been 409 

driven by enrichment of hemophiliacs, or some other risk factor potentially related to the use of 410 

blood products, among cases compared to UKB controls (‘U1~pathogen exposure’). STX18 is a 411 

member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) 412 

protein family and involved in vesicular transport. STX18 is not known to be associated with 413 

HCV clearance or infection and no association was observed for this locus in GWAS involving 414 

pathogen exposed controls.  415 
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The HCV association with lncRNA MIR3681HG remains unclear. The majority of previously 416 

published GWAS associations for this locus involve UKB controls,71–74 with significantly 417 

associated phenotypes including height,75 BMI,76 and educational attainment.77 Systemic 418 

differences between the UKB and the UK population have been described, with UKB 419 

participants being healthier than the general population (i.e. a ‘healthy volunteer’ bias) and 420 

genetic loci identified which are linked participation within the UKB.74,78–81 These participation-421 

associated loci have also been linked to educational attainment,81 which altogether may explain 422 

particularly the biased associations in the MIR3681HG locus in our GWAS involving UKB 423 

participants given its association with BMI and educational attainment. A reported association 424 

with COVID-19 susceptibility is also noted.82 Identified in a series of GWAS using cross-425 

sectional snapshots of UKB participant data,82 MIR3681HG reached genome-wide significance 426 

once but failed to remain significant despite increasing cases of COVID-19.82  427 

Genetic studies aim to limit spurious findings by setting clear quality control measures, stringent 428 

significance thresholds, and requiring replication of findings to reduce the costly consequences 429 

of implementing translational analysis of spurious signals. These findings do not detract from 430 

the utility of GWAS involving population-based common controls, which remains an important 431 

and valuable approach to interrogate the genetic risk factors of human health and disease. 432 

Rather, we recommend that findings from infectious disease-focused association studies 433 

involving common controls be interpreted with context and caution.   434 

In sum, the use of population-based common controls may be more problematic for infectious 435 

disease-focused GWAS than previously described depending on the probability of exposure to 436 

the infectious pathogen.7,8 While true disease-associated loci can be identified, concerns related 437 

to selection bias, confounding, and misclassification are exacerbated by the inability to account 438 

for pathogen exposure among common controls.11 Efforts to increase the selection of controls 439 

from areas with high prevalence or endemicity of disease or selection of older age participants if 440 
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there is known childhood exposure may ameliorate the risk of false findings. Otherwise, controls 441 

should be carefully selected and screened for pathogen exposure.  442 
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Pathogen exposure misclassification can bias association signals in GWAS of infectious 
diseases when using population-based common controls 

 

Figures and Tables 

Figures 

 

 

 

 

 

 

Figure 1: Conceptual framework of pathogen exposure-linked selection bias due to the differential 
misclassification of pathogen exposure and the use of population-based common controls. GWAS 
comparing unequivocally exposed cases to controls regardless of pathogen exposure can result in 
spurious (false positive) associations between loci not associated with the outcome if the loci are 
associated with pathogen exposure. The comparison of universally exposed cases to semi-exposed 
controls (host genetics, red line comparison) results in differential misclassification of pathogen 
exposure, introducing associations between pathogen exposure (and risk factors for pathogen 
exposure) and the outcome. No spurious association is expected when pathogen exposed cases are 
compared to pathogen exposed well-characterized controls (host genetics, black line comparison). 
Arrows dictate the direction of hypothesized causal effects. Hollow arrows reflect conditional 
relationships between exposure and outcome/case selection. The dashed arrow reflects an 
association induced via the differential misclassification of pathogen exposure. Red arrows highlight 
paths involved with pathogen exposure-linked selection bias, which results in observed associations 
between risk factors of pathogen exposure (and their linked loci) and an outcome of interest when 
cases are compared to population-based common controls of unknown pathogen exposure status. 
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Figure 2: Distribution of observed odds ratios for a non-outcome associated locus across varying U1~Pathogen exposure associations. 
Comparisons involved 20,000 cases and equal numbers of well-characterized or population-based controls (left) or 20,000 cases and 
equal numbers of well-characterized and 200,000 population-based controls (right). Boxplots reflect distribution of odds ratios obtained 
comparing cases to population-based (red) or well-characterized controls (yellow). Reported P-values derived from a Z score based on 
the difference between averaged beta estimates when using population-based controls vs. well-characterized controls. 
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Figure 3: Distribution of observed odds ratios for a non-outcome strongly associated locus across 
varying pathogen exposure prevalence. Comparisons involved 20,000 cases and equal numbers of 
well-characterized or population-based controls (left) or 20,000 cases and equal numbers of well-
characterized and 200,000 population-based controls (right) assuming a strong U1~’Pathogen 
exposure’ relationship. Boxplots reflect distribution of odds ratios comparing cases to population-
based (red) or well-characterized controls (yellow). Reported P-values derived from a Z score based 
on the difference between averaged beta estimates when using population-based controls vs. well-
characterized controls. 
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Figure 4: Manhattan plot of the GWAS comparing HCV clearance cases to persistently infected well-
characterized controls (top) and ancestry-matched population-based UKB controls (bottom). The top 
panel reflects results from a GWAS performed comparing HCV clearance individuals (N=702) to 
individuals persistently infected with HCV from the HCV Consortium (N=1,037). The bottom panel 
reflects the results of a GWAS performed comparing the same HCV clearance cases to ancestry-
matched population-based common controls from the UKB (N=370,702). The same set of genome-
wide markers were used in each GWAS (6,025,969 markers). Points reflects the P values for each 
marker across the genome, ordered along the X axis by chromosomal position. The Y axis reflects the 
-log (P value), with the most significantly associated markers farthest away from 0 and outside the 
genome-wide significance threshold (P<5x10-8), indicated by the red lines. Loci of interest are 
highlighted and annotated with their nearest/overlapping gene, with novel HCV clearance-associated 
loci highlighted in the bottom panel. 
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Simulation 
Scenario-
specific 

parameter 
Fixed Values 

 

  

Outcome: 
Post-

exposure 

Pathogen 
Exposure 

Prevalence 

�:  
U1~Pathogen 

Exposure 

Sample size: 
Cases (N):Controls (N) 

Scenario 1a: 
Cases vs. Population-Based Controls �:  

U1~Pathogen 
Exposure 

50% 25% 
log(1),  

log(1.2),  
log(2) 

20,000 : 20,000 
20,000 : 200,000 

Scenario 1b: 
Cases vs. Well-Characterized Controls 20:000 : 20:000 

Scenario 2a: 
Cases vs. Population-Based Controls Pathogen 

Exposure 
Prevalence 

50% 

5%,  
25%,  
50%,  
75%,  
100% 

log(1.2) 
log(2.0) 

20,000 : 20,000 
20,000 : 200,000 

Scenario 2b: 
Cases vs. Well-Characterized Controls 

20:000 : 20:000 

Table 1: Simulation scenario parameters. For each scenario, the parameter of interest, the fixed values, and the sample sizes of each 
simulation is listed.  . 
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20,000 Cases vs. 20,000 

Common Controls 

20,000 Cases vs. 
200,000 Common 

Controls 

Scenario Controls 
Parameter 

Value 
U1~Pathogen 

Exposure 
OR 

(Mean) 

Spurious 
Associations     

N (%) 
OR 

(Mean) 

Spurious 
Associations N 

(%) 

1 

Pathogen exposed U1~Pathogen 
Exposure 

OR=1 1 0 1 0 

OR=1.2 1 0 1 0 

OR=2 1 0 1 0 

Population-based U1~Pathogen 
Exposure 

OR=1 1 0 1 0 

OR=1.2 1.04 159 (0.03) 1.04 1,792 (0.36) 

OR=2 1.13 410,503 (82.1) 1.13 
499,666 
(99.93) 

2 

Pathogen exposed 
Pathogen 
Exposure 

Prevalence: 
5% 

OR=1.2 
1 0 (0) 1 0 (0) 

Population-based 1.06 2,830 (0.57) 1.06 36,815 (7.36) 

Pathogen exposed 
OR=2 

1 0 (0) 1 0 (0) 

Population-based 1.2 
499,962 
(99.99) 1.197 500,000 (100) 

Pathogen exposed 
Pathogen 
Exposure 

Prevalence: 
25% 

OR=1.2 
1 0 (0) 1 0 (0) 

Population-based 1.04 153 (0.03) 1.04 1,749 (0.35) 
Pathogen exposed 

OR=2 
1 0 (0) 1 0 (0) 

Population-based 1.13 
407,864 
(81.57) 1.132 

499,647 
(99.93) 

Pathogen exposed 
Pathogen 
Exposure 

Prevalence: 
50% 

OR=1.2 
1 0 (0) 1 0 (0) 

Population-based 1.03 13 (<0.01) 1.03 136 (0.03) 
Pathogen exposed 

OR=2 
1 0 (0) 1 0 (0) 

Population-based 1.095 
101,203 
(20.24) 1.095 

399,122 
(79.82) 

Pathogen exposed 
Pathogen 
Exposure 

Prevalence: 
75% 

OR=1.2 
1 0 (0) 1 0 (0) 

Population-based 1.019 3 (<0.01) 1.019 10 (<0.01) 
Pathogen exposed 

OR=2 
1 0 (0) 1 0 (0) 

Population-based 1.06 2,725 (0.55) 1.059 35,680 (7.14) 

Pathogen exposed 
Pathogen 
Exposure 

Prevalence: 
100% 

OR=1.2 
1 0 (0) 1 0 (0) 

Population-based 1 1 (<0.01) 1 0 (0) 

Pathogen exposed 
OR=2 

1 0 (0) 1 0 (0) 
Population-based 1 1 (<0.01) 1 0 (0) 

 

Table 2: Proportion of spurious associations and odds ratios across scenario-specific simulated 
cohorts. For each scenario, the parameter of interest, the fixed values, and the sample sizes of each 
simulation is listed. OR: odds ratio.  
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Table 3: Known HCV clearance associated loci. Results of the association for the top HCV clearance-associated markers within the 
HLA-DQB1 and IFNL3 loci from the GWAS comparing cases with well-characterized controls from the HCV Consortium or ancestry 
matched population-based common UKB controls. Measures of association and frequency of the effect allele for each locus are 
provided for each analysis. OR: Odds Ratio. 95% CI: 95% confidence interval of the OR. EAF: Effect allele frequency.  

Analyzed groups 

Chromosome 6  
HLA-DQB1, rs9275241 

Chromosome 19  
IFNL3, rs11881222 

OR 95% CI P value 
Cases 

(EAF, G) 
Controls 
(EAF, G) OR 95% CI P value 

Cases 
(EAF, G) 

Controls 
(EAF, G) 

Cases vs. well-
characterized controls 

(HCV Persistence) 
0.614 0.532-0.708 1.90x10-11 39.46% 51.49% 0.424 0.358-0.503 4.06x10-23 20.09% 36.31% 

Cases vs. Ancestry- 
matched population-
based controls (UKB) 

0.691 0.620-0.772 4.35x10-11 39.46% 52.12% 0.609 0.541-0.686 4.04x10-16 20.09% 28.15% 
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Analyzed Groups  

Chromosome 4:  
STX18, rs58612183 

OR 95% CI   P value Clearance 
(EAF, C) 

Controls 
(EAF, C) 

Cases vs. well-characterized controls  
(HCV Persistence) 1.22 0.97-1.54  8.40x10-2 10.97% 9.50% 

Cases vs. Ancestry-matched population-based 
controls (UKB) 1.93 1.56-2.41  3.01x10-9 10.97% 6.33% 

No Hemophiliacs: Cases vs. Ancestry-matched 
population-based controls (UKB, Matched 1:10) 1.47 1.17-1.84  8.55x10-4 9.55% 6.65% 

Table 4: Novel HCV clearance associated chromosome 4 locus. Results of the association for the top HCV clearance-associated 
marker within the STX18 locus from the GWAS with cases vs. ancestry-matched population-based UKB controls. Measures of 
association and frequency of the effect allele (C) are also reported for the analysis of all cases vs all well-characterized controls GWAS 
and a matched case-control cohort GWAS excluding HCV clearance cases with hemophilia and their matched population-based 
controls. OR: Odds Ratio. 95% CI: 95% confidence interval of the OR. EAF: Effect allele frequency. 
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