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Abstract 24 

Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor 25 

SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains 26 

understudied and limits its application. In this study, we have established a quantitative 27 

framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through 28 

integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral 29 

shedding course into exposed, infectious, and recovery phases as an analogy to the compartments 30 

in population-level SEIR model. We demonstrated that the temperature effect on viral losses in 31 

the sewer can be straightforwardly incorporated in our framework. Using WBS data from the 32 

second wave of the pandemic (Oct 02, 2020 – Jan 25, 2021) in the Great Boston area, we showed 33 

that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in 34 

wastewater and predicts the true number of cases peaked earlier and higher than the number of 35 

reported cases by 16 days and 8.6 folds (� � 0.93), respectively. This work showcases a simple, 36 

yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the 37 

prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the 38 

application of wastewater surveillance of infectious diseases for epidemiological inference and 39 

inform public health actions.  40 

 41 

1. Introduction 42 

Wastewater-based surveillance (WBS) has been used as a public health tool to monitor SARS-43 

CoV-2 infection in the population since the beginning of the COVID-19 pandemic. So far, WBS 44 

has been widely implemented in over 67 countries (Naughton et al., 2021). The Centers for 45 

Disease Control and Prevention (CDC) also launched the National Wastewater Surveillance 46 

System in late 2020 to monitor the spread of COVID-19 in the United States (CDC, 2020). 47 

Wastewater collates SARS-CoV-2 particles excreted by infected individuals irrespective of 48 

clinical symptoms or presentation, which provides an opportunity to capture the viral shedding 49 

prior to symptoms and estimate the true magnitude of viral infections in communities (Bivins et 50 

al., 2020b; Hart and Halden, 2020; Peccia et al., 2020; Randazzo et al., 2020; Saguti et al., 2021; 51 

Wu et al., 2022b). Previous work has shown that SARS-CoV-2 concentrations in wastewater 52 

were much higher than expected from clinically reported cases and predicted clinical reported 53 
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data for 4-10 days (Wu et al., 2020, 2022b, Peccia et al., 2020), and up to 14 days (Krivoňáková 54 

et al., 2021; Karthikeyan et al. 2020). Furthermore, the fast turnaround time of wastewater and 55 

flexible sampling strategy enable WBS to provide a near real-time monitoring of the viral 56 

transmission in the sewershed. Finally, WBS is less resource intensive than the large-scale, 57 

individual-based clinical testing and thus can be used as a cost-efficient tool for monitor the 58 

trend of viral infection in the population and new variants when combined with next-generation 59 

sequencing (Bivins et al., 2020b; Safford et al., 2022; Wu et al., 2022a). These properties make 60 

WBS a feasible public health tool to monitor SARS-CoV-2 in an endemic, which can also be 61 

customized for future pandemics.  62 

WBS has enabled researchers to estimate the total viral load in a sewershed; however, there are 63 

still limitations regarding quantifying and predicting viral transmission in a community. Few 64 

recent studies have tried to build classical susceptible-infected-removed (SIR)-type models to 65 

bridge the measured viral concentration and reported case number. For example, Proverbio et al. 66 

(2022) added a variable that keeps track of actively shedding individuals in a stochastic 67 

susceptible-exposed-infectious-recovered (SEIR) model and used a constant viral shedding rate 68 

to connect the number of infected cases to viral concentration in wastewater (Proverbio et al., 69 

2022). Conversely, Brouwer et al. (2022) accounted for time dependent viral shedding rates by 70 

incorporating multiple subclasses with different shedding rates within each infected stage of the 71 

model to better predict viral concentrations and reported cases (Brouwer et al., 2022). A similar 72 

approach is conducted by Nourbakhsh et al. (2022), but with more sub-classification of the 73 

infected class (Nourbakhsh et al., 2022). These modeling approaches allow the modelers to 74 

connect viral concentrations in wastewater with the reported cases and predict the course of the 75 

pandemic. 76 

Dynamical models in epidemiology thus far often overlook the opportunity to utilize biologically 77 

interpretable and experimentally measurable parameters in the link between infected people and 78 

the shed viral RNA in wastewater. The model structure is usually complicated with many 79 

parameters, so it is difficult to fully parametrize the models without running into issues such as 80 

model identifiability. Hence, our primary objective in this work is to leverage our understanding 81 

of the biology of SARS-CoV-2 shedding to construct a simple, mechanistic, dynamic model that 82 

connects viral load in wastewater with the total number of infected cases in the sewershed. Our 83 
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secondary objective is to introduce the effect of wastewater temperature into the modeling 84 

framework due to its significant impact on the viral loss (or decay) rate in the sewer (Hart and 85 

Halden, 2020).  86 

 87 

2. Materials and methods 88 

2.1. Samples and wastewater data 89 

Raw, 24-hour composite wastewater samples were collected from the Deer Island wastewater 90 

treatment plant in Massachusetts from October 02, 2020 to January 25, 2021. The Massachusetts 91 

wastewater treatment plant where we obtained samples has two major influent streams, which 92 

are referred to as the “northern” and “southern” influents. The daily flow rates during the 93 

sampling period for the northern and southern influents are 4.54e5 – 2.3e6 ��/
��, and 2.16e5 94 

– 1.19e6��/
��, respectively. Together the two catchments represent approximately 2.3 million 95 

wastewater customers in Middlesex, Norfolk, and Suffolk counties, primarily in urban and 96 

suburban neighborhoods. There are 5,100 miles of local sewers transporting wastewater into 227 97 

miles of interceptor pipes to the wastewater treatment plant (www.mwra.com), and the typical 98 

turnaround time for the plant to treat wastewater is 24 hours. Samples were processed as they 99 

were received. Experimental method and data were reported in our previous work (Wu et al., 100 

2022b; Xiao et al., 2022). Briefly, the samples were pasteurized at 60°C for 1 hour for 101 

disinfection, and then filtered with 0.2 µm hydrophilic polyethersulfone membrane (Millipore 102 

Sigma) to remove bacterial cells and debris. Then, 15-ml filtrate was concentrated to ~200 ul 103 

with Amicon Ultra Centrifugal Filter (30-kDa cutoff, Millipore Sigma), and lysed with Qiagen 104 

AVL buffer followed by RNA extraction with Qiagen RNeasy kit. SARS-CoV-2 concentrations 105 

were quantified by one-step reverse transcription-polymerase chain reaction (RT-PCR) with the 106 

Taqman Fast Virus 1-Step Master Mix (Thermofisher) and CDC N1 and N2 primers/probes. Ct 107 

values were transformed to copies per ml of wastewater using standard curves for N1 and N2 108 

targets established with synthetic SARS-CoV-2 RNA (Twist Bioscience) as the template. We 109 

averaged the viral concentration data on the same day in the northern and southern influents and 110 

then multiplied by the daily average flow rate to compute the total viral load in the sewershed.  111 

2.2. Clinical data source 112 
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The clinical COVID-19 case data for Norfolk, Suffolk, and Middlesex Counties served by the 113 

Massachusetts wastewater treatment plant were downloaded from Massachusetts government 114 

website (www.mass.gov). We summed the number of clinical cases from each county to 115 

represent the total cases in the catchment of the wastewater treatment plant, which is used to 116 

compare with the modeling results. Temporal fecal viral shedding data from COVID-19 patients 117 

were kindly provided by (Wölfel et al., 2020). 118 

2.3. Relationship between wastewater viral concentrations and infectious cases. 119 

Assuming we can obtain the fecal viral shedding distribution function over time, we can 120 

approximate a constant rate of fecal viral shedding over the duration of infectiousness. In this 121 

way, the viral RNA production is proportional to the number of people in the infectious 122 

compartment I of the SEIR model. That is: 123 

total viral load in wastewater � � � � � �1 �  ! � ", 
(1) 124 

where the proportional constant is defined based on biological parameters similar to 125 

(Saththasivam et al. 2021): � is the fecal load with unit g/day/person, � is the viral shedding rate 126 

in stool with unit viral copies/g, and   is the fraction of viral loss in the sewer.  127 

2.4. Approximation of fecal viral shedding profile 128 

A key component of this approach is the generation of fecal viral shedding profile. Let $�%! be 129 

the function that describes the temporal fecal viral shedding profile. Upon infection, the shedding 130 

of virus in stool should be very small, then reaches a peak before decreasing to 0. 131 

Mathematically, this means $�0! � 0, lim��� $�%! � 0 and $�%! has a unique maximum for 132 

some % ' 0. While beta and gamma functions are often used to represent $�%! (Wu et al., 2022a; 133 

Ferretti et al., 2020; He et al., 2020), we introduce a phenomenological function $�%! that is 134 

more tractable than the standard beta and gamma functions: 135 

$�%! � (�%(�
� ) %�. 

(2) 136 
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In this form, (� is a magnitude modifier parameter �log�� +,-�. �/0 123� 34- 5 34- 
��! and 137 (� �
��! represents the timing for peak viral shedding and influences the timing and the 138 

magnitude of the peak of the viral shedding profile. Specifically, $�%! peaks at 
��

���

 when % � (�. 139 

Thus, if the peak timing and magnitude of the viral shedding profile are known, then $�%! can be 140 

uniquely defined. It is necessary to mention that $�%! is the overall viral shedding into the 141 

wastewater from infected individuals; however, it mostly means fecal shedding in this work. We 142 

did not include the viral shedding from urine or other sources (sputum or saliva) because 143 

previous studies showed that no or low level of virus was detected in urine samples of typical 144 

patients despite high viral load (Wölfel et al., 2020; Jones et al., 2020), and the total amount of 145 

virus in sputum or saliva are likely to be insignificant compared to stool due to the huge 146 

difference in volume. 147 

2.5. Simple wastewater epidemiological model 148 

6	 � �7"6 8	 � 7"6 � 98 "	 � 98 � :"     ;	 � ���1 �  !" 

(3) 149 

In this model, 6 denotes the susceptible population, 8 is the infected but yet to be infectious 150 

population, or the exposed class, " is the infectious class, and ; is the cumulative viral load in 151 

wastewater. The � compartment (recovered individuals) does not contribute to the transmission 152 

dynamics in the SEIR model, hence omitted here. Susceptible people are infected by the 153 

infectious class at a rate 7". Exposed individuals become infectious at a rate 9. Infectious 154 

individuals recover at a rate : and shed virus at a rate � � �, where � is the fecal load and � is 155 

the average viral shedding rate in Eq (1).   is the viral degradation and loss rate in the sewer 156 

pipes, so only a fraction (1 �  ) of virus is detected in the wastewater sample. The expression for 157 ; follows directly from Eq (1). 158 

Several studies note that infectious virus is detectable in nose and throat swabs only when the 159 

total viral load is above 10
�� copies/mL (Killingley et al., 2022, Ke et al., 2021, Wölfel et al., 160 

2020, Kampen et al., 2021). Since certain level of infectious viruses is required for disease 161 
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transmission, this implies that the infectious period does not start until the viral load (within host) 162 

reaches above 10
�� virus copies/mL. This agrees with previous observation that viral load 163 

above 10� copies/mL is associated with a high probability of transmission (Ke et al., 2021). 164 

Together, these observations suggest that in this SEIR epidemic model, we can separate the 165 

exposed class (8) based on the duration before viral load reaches 10
�� copies/mL, and the 166 

infectious class (") based on the duration that viral load stays above 10
�� copies/mL. This 167 

results in an incubation period of about 3 days and an infectious period of 8 days based on the 168 

viral dynamics profile in the SARS-CoV-2 Human Challenge experiment in healthy young adults 169 

(Killingley et al., 2022). These estimates are within previous estimated ranges of 2-7 days for 170 

incubation periods (Li et al., 2020, Lauer et al., 2020, Guan et al., 2020) and consistent with the 171 

updated guideline from CDC where the average infectious duration is about 2 days before and 8 172 

days after symptom onset (CDC, 2022a). Thus, we fix the exposed duration to 3 days, which is 173 

equivalent to fixing 9 � �

�
 per day (Figure 1A). Similarly, we fix the infectious duration to 8 174 

days, which is equivalent to fixing : � �



 per day. Thus, in our model, parameters 7, �, �, �<
   175 

need to be estimated.  176 

By fitting the model to wastewater data covering the second wave of the pandemic, specifically, 177 

from Oct 2 to Dec 16, 2020, we can approximate the susceptible (to an emerging variant) to be 178 

the entire population served by the wastewater treatment plant. For simplification, we assume 179 

that there is no infectious individuals initially ("�0! � 0!, only infected individuals (8�0! ' 0!. 180 

The initial value for the virus concentration in wastewater can be taken from the first data point. 181 

Thus, 8�0! is the only unknown initial condition. 182 

The parameters and initial remain to be estimated are: 7, �, �,   �<
 8�0!. Since the viral 183 

production rate is ���1 �  !, and we only have viral concentration (or total viral load) data, it is 184 

impossible to estimate a unique set of values, or specific values, for �, �, �<
  . For example, 185 

the product of � � 1, � � 2,  � 0.5 is the same as when � � 10, � � 1,  � 0.9. This reflects 186 

the pertinent issue of model identifiability in mathematical models in biology and epidemiology 187 

(Tuncer et al., 2022; Eisenberg et al., 2013; Wu et al., 2019; Ciupe and Tuncer, 2022). Thus, an 188 

important step in our approach is the direct estimations of � and  , which would allow us to 189 

identify � uniquely. All of the parameters are listed in Table 1.  190 
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 191 

 192 

Table 1. Parameters in the model. 193 

 Definition Unit Value References 

6 
Susceptible 

population 
People 6�0! � 2.3 � 10� - fixed (Wu et al., 2022b) 

8 Exposed population People 8�0! � fitting  

" 
Infectious 

population 
People "�0! � 0 - fixed  

7 Transmission rate 
Per day per 

person 
fitting  

1/9 Exposed duration Day 3 days 

Wölfel et al., 2020; 

Killingley et al., 2022; 

Wu et al., 2022a; Van 

Kampen et al. 2021; 

1/: Infectious duration Day 8 days 

Wölfel et al., 2020, 

Killingley et al.; 2022, 

Wu et al., 2022a; Van 

Kampen et al. 2021 � Fecal load Gram  51-796 g - fitting Rose et al., 2015 

� 
Viral shedding in 

stool 

Viral RNA 

copies per gram 
?itting   

  
Fraction of viral 

loss in sewer 
Per day Fitting and estimated  

(� Magnitude modifier 
log�� viral RNA 

per g day 
?itting    

(� 
Peak timing for 

viral shedding 
Day 4 day - fixed 

Killingley et al., 2022; 

Wu et al., 2022a. 

Note that � and (� are obtained from fitting to viral shedding data in stool (Wölfel et al., 2020).  194 

2.6. Data fitting 195 

Our goal is to fit the SEIR-V model to viral concentration in wastewater data to infer the true 196 

number of cases. Then, we compare the predicted number of cases with the daily reported case 197 
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data. In our model, the variable V is the cumulative viral load in wastewater. Thus, the difference 198 

of V in every 24-hour period reflects the daily measurement data of total virus concentration in 199 

wastewater. To reflect this observation, we aim to minimize the sum of square error �668�! 200 

between these two quantities in our fitting. Hence, our minimization objective is: 201 

668� � @  AB ;C�D!��

����


D � ;E�%�!F
��

�

. 
(4) 202 

Here,  ;E�%�! is the total virus concentration experimentally measured on day %�, which equals to 203 

viral RNA concentration in wastewater (G���! multiplied by the total flow (H! data. 204 

I ;C�D!��

����

D is the corresponding quantity in our model. Once we obtain a reasonable fit to the 205 

data, the inferred number of true case is given by: 206 

G�D4 <J�K4- � ;�%!� � � � �1 �  ! . 
(5) 207 

For the minimization algorithm, we use MATLAB function fmincon and multistart. Similarly, 208 

the fecal viral shedding rate function is fitted by minimizing the objective function 668�: 209 

668� � @  L$�%�! � $M�%�!N
��

�, 
(6) 210 

Where $M�%�! is the fecal shedding data on day %�. 211 

 212 

3. Result 213 

3.1. Determining the average fecal viral shedding rate in infectious period 214 

We observed that there is a striking similarity in the viral load profiles in nose, throat, and stool 215 

for infected individuals from the time of infection to recovery qualitatively (Wölfel et al., 2020, 216 
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Killingley et al., 2022, Van Kampen et al. 2021). In all three cases, high viral load/shedding is 217 

associated with the infectious duration of the infection. This observation suggests that in the 218 

classical SEIR epidemic model, we can make the simplifying assumption that the infectious 219 

individuals contribute substantially to the viral pools in wastewater. As illustrated in Figure 1A, 220 

the viral shedding profile is divided into three periods shaded: Exposed (E), Infectious (I), and 221 

Recovered (R). With this framework, we can approximate the viral load in wastewater using the 222 

viral shedding from the infectious population. Furthermore, we can estimate the average viral 223 

shedding rate based on the viral shedding function $�%! and the fixed duration of infectiousness 224 

(see Materials and Methods).  225 

 226 

       227 

Figure 1. Illustration and fitting fecal viral shedding dynamics. (A) Illustration of the fecal 228 

viral shedding dynamics based on the infection progression. The viral shedding profile is divided 229 

into three periods shaded: Exposed (E), Infectious (I), and Recovered (R). The red-shaded region 230 

is the period of infectiousness I, which is corresponding to the compartment I in the SEIR model. 231 

(B) Fitting of the proposed viral shedding function to viral shedding in hospitalized patients’ 232 

stool data from (Wolfel et al. 2020). The average viral shedding rate in stool during the 233 

infectious period (from day 3 to day 11) is 4.48 � 10�
 viral RNA per g. The horizontal dash line 234 

is the average fecal viral shedding rate for infectious individuals inferred from the model. The 235 

viral shedding peak is at the 4th day post infection.  236 
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We fitted the fecal viral shedding function to viral shedding data. Using the best fit parameters, 237 

we constructed a fecal viral shedding profile that was used to approximate the fecal viral 238 

shedding rate for the infectious individuals. Figure 1B shows the best fit of the model to the fecal 239 

viral shedding rate data in Wolfel et al. (Wolfel et al., 2020). Based on the viral dynamics profile 240 

in the SARS-CoV-2 Human Challenge experiment in young adults (Killingley et al., 2022), the 241 

incubation period (E) is about 3 days and the infectious period is about 8 days. We also assumed 242 

a five day from infection to symptom onset in the fecal viral shedding data, which is in range of  243 

2-14 days estimated for the general population (CDC, 2022b; Lauer et al., 2020). Furthermore, 244 

we fixed the viral peak at day four ((� � 4 
��). There is no well-established timing of the peak 245 

fecal viral shedding rate; however, the peak time for viral load in nose and throat is around 5 246 

days (Killingley et al., 2022) and maybe even earlier in stool (Wu et al., 2022a). The best fit 247 

parameter is (� � 71.97 log�� +,-�. �/0 123� 34- 5 
��. Using the best fit, we estimate the 248 

average fecal viral shedding rate for an infectious individual to be: 249 

� � 111 � 3 B $�%!
% � 18 B 71.97%16 ) %� 
%��

�

� 7.65 log�� +,-�. �/0 34- 5��

�

 

(7) 250 

A conversion gives: 251 

� � 4.48 � 10� viral RNA per g. 
(8) 252 

This number is close to the measured median viral RNA load 107.68 (ranging from 104.1–1010.27) 253 

copies/ml in infected individuals in South Korea (Han et al., 2020), and the extrapolated fecal 254 

shedding rate of 10�.�� (ranging from 10
.�� � 10
.�
) copies/g of 711 infected individuals in the 255 

dormitories at University of Arizona (Schmitz et al., 2021). Thus, we fixed fecal viral production 256 

rate in our SEIR-V model to this value. 257 

 258 

3.2. SEIR-V model captures the temporal dynamics of clinical COVID-19 cases 259 

We developed an SEIR-V model to understand SARS-CoV-2 transmission using WBS data in 260 

the second wave of the pandemic and the computed average fecal viral shedding rate during the 261 
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period of infectiousness. We temporarily ignored the identifiability issue with the conversion 262 

equation in an attempt to fit the SEIR-V model to the data. Figure 2 shows the best fit and its 263 

inference. We fitted the model to total viral RNA copies in wastewater data up to the grey dashed 264 

line (December 16, 2020), then simulated the model out to January 25, 2021, see Figure 2A. The 265 

fitting region was chosen before the peak in the viral RNA data, so that we could test the model’s 266 

prediction of the peak against the data. Additionally, the fitting region from October 02, 2020 to 267 

December 16, 2020 potentially limits the influence from vaccination and the emergence of the 268 

alpha variant, which began near the end of 2020. 269 

  270 

Figure 2. Model fit and prediction to wastewater data covering the second wave of 271 

pandemic. (A) Best fit to virus concentration data in wastewater from October 2 to December 272 

16, 2020 (dashed grey line), and model prediction to January 25, 2021. Red dots are the 273 

measured viral load in wastewater and blue curve is the modeling result. (B) Model estimation of 274 

the true number of COVID-19 cases (blue curve) and clinically reported cases (red curve). The 275 

blue and red dashed lines are dates when the two curves peak, and ΔTlead is the time difference 276 

between the two peaks. (C) Correlation between simulation cases and reported cases. Best fit 277 

parameters: 7 � 9.66 � 10�
 day�� person��, � � 249 5,  � 0.08). 278 

 279 
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Using the best fit parameters, we computed the number of new cases and compared it to the 280 

reported cases. As shown in Figure 2B, the model simulation recapitulates the trend of clinically 281 

reported daily new cases and predicts an earlier and higher peak than reported case data by 16 282 

days and 10.2 folds, respectively. We made a correlation plot between the model simulated cases 283 

and the reported case data (Figure 2C). The higher predicted number of cases and the high 284 

correlation coefficient (� � 0.93, �� � 0.87! imply that the model accurately captures the trend 285 

of the reported case data, while accounting for the underreported rate. This indicates that the 286 

method preserves both key properties of WBS data, which is that the trend of viral concentration 287 

in wastewater leads the trend of reported cases and can be used to estimate the true prevalence 288 

without being impacted by the underreporting rate. 289 

In the next step, we demonstrate how the effect of temperature on viral loss rate can be 290 

incorporated in our framework. 291 

 292 

3.3. Incorporation of wastewater temperature improves model prediction 293 

SARS-CoV-2 RNA in wastewater is subject to degradation which is affected by many factors 294 

such as temperature and travel time (Bivins et al., 2020a; McCall et al., 2022). We accounted for 295 

these factors to determine an approximate value of  , the fraction of viral decay in the 296 

sewershed. The daily viral degradation rate in wastewater is described with the Arrhenius 297 

equation: 298 

X�;, Y! �  X�Z��

������/��
��;, 

(9) 299 

where X� is the viral genome degradation rate at ambient temperature Y� and Z�� is the 300 

temperature dependent rate of change (McMahan et al., 2021; Hart and Halden, 2020). Bivins 301 

and colleagues determined that, for wastewater inoculated with high titer at Y� � 20 °C, the 302 

mean first-order decay rate of SARS-CoV-2 RNA is X� � 0.67 per day (Bivins et al., 2020). 303 

Furthermore, Z�� is typically between 2 and 3 for biological systems, and assumed here to be 2.5 304 

(Běhrádek, 1930; Reyes et al., 2008). Given the relatively constant temperature from October 2 305 
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to December 16, 2020 (Figure S1), we used the average temperature of wastewater for the north 306 

and south systems for demonstrative purpose, and thus fix Y � 18 °C. 307 

We used the simple exponential decay equation ;	 �  �X�;, Y! to estimate  . Let X̂ �308 

X�Z��

������/��
��, then solving ;	�%! � �X�;, Y! � X̂; gives: 309 

;�%! � ;�4���, 
(10) 310 

where ;� is the amount of viral RNA in the sewers at time % � 0. Thus, the amount of virus that 311 

arrives to the wastewater treatment plant is 312 

;�%�  !"#! � ;�4�������	
� , 
(11) 313 

where %�  !"#  is the time it takes the viral RNA to travel to the wastewater treatment plant after 314 

excretion. The time %�  !"#  includes two parts: the travel time to local sewer pipes and the travel 315 

time in the interceptor pipes. Precise estimation of %�  !"#  is challenging given the varied flow 316 

rates and geographical distances to the wastewater treatment plant. Here, we assumed the 317 

average travel time is 18 hours. The amount of virus lost is given by ;� � ;�%�  !"#!. Thus, the 318 

proportion of viral RNA lost in the sewer is given by 319 

 � ;� � ;�%�  !"#!;� � 1 � ;�%�  !"#!;� � 1 � 4�������	
� .  
(12) 320 

Where the last equality follows from Eq (11). In this case, our calculation yielded  � 0.35, 321 

which is in the ranges of previous estimations (Bivins et al., 2020; McCall et al., 2022; Hart and 322 

Halden, 2020). 323 
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  324 

 325 

Figure 3. Incorporating temperature effect in the SEIR-V model. (A) Best fit to viral 326 

concentration data in wastewater from October 2 to December 16, 2020 (dashed grey line), and 327 

model prediction to January 25, 2021. Red dots are the measured viral load in wastewater and 328 

blue curve is the modeling result. (B) Comparison of the SEIR-V models with and without 329 

incorporating temperature effect. Top left: corrected Akaike information criterion (AICc) values, 330 

the statistically significant AICc difference is 4.3; Top right: initial populations exposed to 331 

SARS-CoV-2; Bottom left: wastewater lead time difference at peak, both of the ΔTlead are 16 332 

days; Bottom right: fold of difference between the number of predicted cases and clinically 333 

reported cases. Light blue represents the model without including temperate effect, while blue 334 

represents the model with temperature effect. Best fit parameters when incorporating 335 

temperature: 7 � 9.13 � 10�
 day�� person��, � � 324 5, and 8�0! � 2092 people. 336 

By incorporating temperature effect, the model captures the trend of clinical data with a smaller 337 

SSE, which is statistically significant based on the corrected Akaike information criterion (Figure 338 

3A, B and S2) (Burnham and Anderson, 2004). We observe that the model simulation predicts an 339 

earlier peak than reported case data by 16 days, which is the same as the model without 340 

temperature effect (Figure 3B and S2A). Additionally, the model predicts the true number of 341 
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cases to be about 8.6 times higher than the reported number of cases as compared to a predicted 342 

factor of 10.2 without temperature effect (Figure 3B and S2A). The predicted initial exposed 343 

population is 2092 people, which is a more reasonable estimate compared to the 11 exposed 344 

individuals predicted without temperature (Figure 3B). Those results have shown that 345 

incorporating the travel time and temperature reduces the possibility of model unidentifiability 346 

and significantly improve the model performance as well as its robustness.  347 

 348 

4. Discussion 349 

Wastewater collates viral signals excreted by infected individuals across the whole spectrum of 350 

disease symptoms from asymptomatic and subclinical-symptomatic to symptomatic (Lee et al., 351 

2020). This inclusiveness of all virus-shedding individuals offers an opportunity to better 352 

estimate the magnitude of viral infections in communities (Hart and Halden, 2020; Sanjuán and 353 

Domingo-Calap, 2021; Wu et al., 2020). However, it is challenging to convert viral 354 

concentrations in wastewater to the number of infected cases. Our group and peers previously 355 

reported methods to estimate the infection prevalence by wastewater vial load (McMahan et al., 356 

2021; Nourbakhsh et al., 2021; Wu et al., 2020). These efforts, however, are limited because of 357 

inconsideration of dynamic viral shedding rates during the disease course and viral degradation 358 

in wastewater.  359 

In this study, we established a quantitative framework to estimate the number of infectious 360 

COVID-19 cases and predict SARS-CoV-2 transmission through integrating wastewater 361 

surveillance data and development of an SEIR-V model. As an analogy to the four compartments 362 

of the SEIR model to simulate infectious disease dynamics at the population level, the 363 

individual-level fecal viral shedding course was divided into three periods including exposed 364 

(incubation), infectious, and recovery (Figure 1A). The division is based on the observation that 365 

the temporal viral profiles in nose, mouth, and stool are strikingly similar qualitatively with high 366 

viral load associated with infectiousness (Killingley et al., 2022; Wolfel et al., 2020). In addition, 367 

the infectiousness of SARS-CoV-2 is associated with high viral load as reported by multiple 368 

studies (Killingley et al., 2022, Ke et al., 2021, Wolfel et al., 2020, Kampen et al., 2021). With 369 

this concept, we estimated the population-level average viral shedding rate during the infectious 370 

phase using clinical reported SARS-CoV-2 concentrations in hospitalized patients’ stool samples 371 
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(Figure 1B). This estimated viral shedding rate is an average of infected individuals in the 372 

population and does not consider the heterogenous viral shedding dynamics among infected 373 

individuals (Wölfel et al., 2020; Killingley et al., 2022; Stanca and Tuncer, 2022). Thus, our 374 

model can be improved by feeding viral shedding data during the early phase of the infection and 375 

large-scale individual-level shedding dynamics data. 376 

It is noteworthy to mention that the "I” in the SEIR model is the “infectious” class, not the 377 

“infected” class. Hence, using the viral shedding rate in the infectious period, instead of in the 378 

whole shedding period, improves the accuracy of the SEIR model. This contrasts with the 379 

conventional approaches that use mean or median viral shedding rate in a group of tested 380 

samples regardless of the phase of the infection (Saththasivam et al., 2021; Petala et al., 2022; 381 

Schimitz et al., 2021). By focusing on the infectious population, which is also the main 382 

contributor of viral shedding in wastewater, we greatly simplify the typical complex structure of 383 

the SEIR-type models that implement WBS (Figure S3) and reduces the likelihood of model 384 

unidentifiability. 385 

By fitting an SEIR-V model to wastewater data within our framework, we show that the method 386 

retains key advantages of using wastewater. Specifically, the inferred case data from the best fit 387 

parameters leads the reported case data by 16 days and implies a large ratio (8.6) of true 388 

prevalence to clinically reported cases, which are consistent with previous results (Wu et al., 389 

2020; Wu et al., 2022a; Eikenberry et al., 2020; Angulo et al., 2021). We also incorporate the 390 

important effect of temperature on the viral degradation rate in a simple manner that is applicable 391 

to a larger time scale. We note that extension to incorporate time-dependent variations of the 392 

fecal viral shedding rate within this framework is straightforward, but will require careful 393 

consideration of the convergence of the numerical method. Together, our work shows the 394 

potential and flexibility of the framework to incorporate WBS in epidemic models.  395 

The foundation of our framework is independent of the epidemic model formulation, yet its 396 

application depends greatly on the epidemic models for specific situations. For example, if we 397 

want to apply the framework to capture a period with significant changes to social behavior, 398 

perhaps due to the effect of a social intervention, then an appropriate change to the structure of 399 

the SEIR model to reflect these structures is necessary (Johnston and Pell, 2020; Fenichel et al., 400 

2011; Pell et al., 2018). However, if multiple variants are of interest, then the SEIR model itself 401 
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needs to be extended to a multi-variant version and incorporate known biological properties of 402 

different variants (Dyson et al., 2021; Gonzalez-Parra et al., 2021). Similarly, interventions (such 403 

as vaccination) and the impact of social gatherings must first be included in the epidemic model 404 

prior to its integration within our framework (Saad-Roy et al., 2021; Giordano et al., 2021; 405 

Buckner et al., 2021; Makhoul et al., 2020).  406 

Dynamical epidemic models are useful tools to track the pandemic progression and to assess the 407 

potential impact of hypothetical situations such as the stay-at-home order or the emergence of a 408 

resistant viral strain. However, sparsely reported case data with high uncertainty, due partially to 409 

the high underreporting rate, can compromise the ability of epidemic models to provide an 410 

accurate forecast of the pandemic and limit their application to retrospective studies. Hence, 411 

WBS, which bypasses both the tremendous difficulty in data collection faced by the standard 412 

clinical reporting practice and the high underreporting rate, represents a potential solution to 413 

address this challenge faced by the modeling community. WBS data also provides a leading 414 

indicator of the pandemic progression and is not limited to SARS-CoV-2, thus it can further 415 

enhance the prediction and applicability of epidemic models. Together, this aspect of our 416 

framework highlights the importance of interdisciplinary collaboration to better address public 417 

health concerns 418 

  419 

 5. Conclusions 420 

In this study, we have established a quantitative framework to estimate COVID-19 prevalence 421 

and predict SARS-CoV-2 transmission by incorporating WBS data in a simple epidemic SEIR-V 422 

model. The main conclusions are: 423 

• We constructed a simple and effective framework to incorporate WBS data to epidemic 424 

models. The developed SEIR-V model captures the temporal dynamics of clinical 425 

COVID-19 cases and preserves key advantages of WBS data over reported case data. 426 

• We illustrated how the effect of travel time and temperature on viral decay can be 427 

incorporated within our framework to improve model performance and robustness, which 428 

is an important component to model disease transmission in real world application. 429 
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• The modeling framework is a valuable platform to integrate WBS with epidemic models 430 

to provide accurate and robust estimates of the pandemic progression and examine the 431 

potential impact of interventions to inform public health decision making.  432 
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Supplementary Figures 591 

 592 

 593 

Figure S1. Wastewater temperature data during the model fitting period. Over the fitting 594 

duration (from Oct 02 to Dec 16, 2020), the average temperature is relatively constant at around 595 

18 degrees Celsius.  596 
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 599 

Figure S2. Predicted cases and correlation plot for the SEIR-V model with temperature 600 

effect. The wastewater data covers the second wave of pandemic (October 2, 2020 to January 25, 601 

2021). (A) Model simulation of the true number of COVID-19 cases and clinically reported 602 

cases. (B) Correlation between the number of model-predicted cases and reported cases (daily).  603 
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Figure S3. Comparison of underlying frameworks for modeling of wastewater surveillance data. Two general 605 

methods have been reported to connect viral concentration in wastewater to epidemic model. (A) is representative of 606 

Brouwer et al. and Nourbakhsh et al. (Brouwer et al., 2022; Nourbakhsh et al., 2022), (B) is representative of 607 

Proverbio et al. (Proverbio et al., 2022), and (C) is the proposed model framework. 608 
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