
1

1 Deep Learning vs manual techniques for assessing left ventricular ejection fraction in 2D 

2 echocardiography: validation against CMR

3 Short title: Validation of DL LVEF echocardiography vs CMR.

4

5 Eric Salouxa,b*¶, Alexandre Popoffc, Hélène Langetd, Paolo Piroc, Camille Roperta, Romane 

6 Gauriauc, Romain Stettlera, Mihaela Silvia Amzulescue, Guillaume Pizainec, Pascal Allainc, 

7 Olivier Bernardf Amir Hodzica, Alain Manriquea,b, Mathieu De Craenec¶, Bernhard L. Gerbere

8

9 a) Centre Hospitalier Universitaire de Caen Normandie, France

10 b) EA 4650, Caen University, FHU REMOD-VHF, France

11 c) Philips Research, Medical Imaging (Medisys), Suresnes, France

12 d) Philips Clinical Research Board, Suresnes, France

13 e) Cliniques Universitaires Saint-Luc UCL, Brussels, Belgium 

14 f) CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, 

15 Villeurbanne, France

16  

17 Subject Terms: Transthoracic Echocardiography, 

18 Relation with Industry Disclosure: AP, MDC, GP and PA are employed by Philips Medical 

19 Systems. HL, RG and PP were employed by Philips Medical Systems at the time of the study. 

20 Centre Hospitalier Universitaire Caen Normandie and Cliniques Universitaires Saint-Luc have 

21 a master research agreement with Philips Medical Systems.

22 Corresponding author: 

23 Email: saloux-e@chu-caen.fr

24

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.26.22278059doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.26.22278059
http://creativecommons.org/licenses/by/4.0/


2

26 Structured Abstract

27 Objective: To evaluate accuracy and reproducibility of 2D echocardiography (2DE) left 

28 ventricular (LV) volumes and ejection fraction (LVEF) estimates by Deep Learning (DL) vs. 

29 manual contouring and against CMR.

30 Background: 2DE LV manual segmentation for LV volumes and LVEF calculation is time 

31 consuming and operator dependent.

32 Methods: A DL-based convolutional network (DL1) was trained on 2DE data from centre A, 

33 then evaluated on 171 subjects with a wide range of cardiac conditions (49 healthy) – 31 

34 subjects from centre A (18%) and 140 subjects from centre B (82%) – who underwent 2DE and 

35 CMR on the same day. Two senior (A1 and B1) and one junior (A2) cardiologists manually 

36 contoured 2DE end-diastolic (ED) and end-systolic (ES) endocardial borders in the cycle and 

37 frames of their choice. Selected frames were automatically segmented by DL1 and two DL 

38 algorithms from the literature (DL2 and DL3), applied without adaptation to verify their 

39 generalizability to unseen data. Interobserver variability of DL was compared to manual 

40 contouring. All ESV, EDV and EF values were compared to CMR as reference. 

41 Results: 50% of 2DE images were of good quality. Interobserver agreement was better by DL1 

42 and DL2 than by manual contouring for EF (Lin's concordance = 0.9 and 0.91 vs. 0.84), EDV 

43 (0.98 and 0.99 vs. 0.82), and ESV (0.99 and 0.99 vs. 0.89). LVEF bias was similar or reduced 

44 using DL1 (-0.1) vs. manual contouring (3.0), and worse for DL2 and DL3. Agreement between 

45 2DE and CMR LVEF was similar or higher for DL1 vs. manual contouring (Cohen's kappa = 

46 0.65 vs. 0.61) and degraded for DL2 and DL3 (0.48 and 0.29). 
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47 Conclusion: DL contouring yielded accurate EF measurements and generalized well to unseen 

48 data, while reducing interobserver variability. This suggests that DL contouring may improve 

49 accuracy and reproducibility of 2DE LVEF in routine practice.

50 Keywords

51 Transthoracic Echocardiography, magnetic resonance imaging, validation, deep learning
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54 List of Abbreviations and Acronyms
AP4 apical 2-chamber
AP2 apical 4-chamber
CCC Lin’s concordance correlation coefficient
CMP cardiomyopathy
DL deep learning
EF ejection fraction
ED[V] end-diastolic [volume]
ES[V] end-systolic [volume]
LV left ventricle
VOL healthy volunteer

55

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.26.22278059doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.26.22278059
http://creativecommons.org/licenses/by/4.0/


5

56 Introduction
57 Accurate and reproducible echocardiographic assessment of left ventricular (LV) volumes and 

58 ejection fraction (EF) is crucial in clinical decision-making and risk stratification (1–6). Hence 

59 LVEF thresholds are used for decision making in heart failure (7) and coronary artery (8) and 

60 valvular heart (9) diseases. Simpson’s method from two-dimensional (2D) 2- and 4-chamber 

61 views is currently the preferred approach for evaluation of LV volumes and EF by 

62 echocardiography. Yet it is time consuming, subject to wide interobserver variability (10,11), 

63 and the reproducibility is highly affected by various factors such as operator experience and 

64 image quality. Accordingly, 2D echocardiography has shown to be less reproducible than 

65 cardiac magnetic resonance (CMR)(12), which is currently considered the reference standard 

66 for evaluation of LVEF and volumes. This approach however suffers from higher costs and less 

67 frequent availability.

68 Deep learning (DL) allows automated contour detection offering the promise of faster and 

69 potentially more accurate and reproducible evaluation of LV volumes and EF by 

70 echocardiography (3,7,13,14). In this work, we developed a new DL algorithm for manual 

71 contouring based on a U-Net convolutional network architecture, using an anonymised database 

72 of echocardiographic images. The aim of the present study was to evaluate the generalizability 

73 and accuracy of this new algorithm relative to manual contouring and against cardiac MR 

74 volumes and EF as a reference. We evaluated our algorithm using a set of multimodal data from 

75 171 subjects from two centres. We also compared the automated contouring and resulting LV 

76 volumes to their manual counterparts, as obtained by different junior and senior observers 

77 across the two centres and used CMR as an independent 3D modality to evaluate differences in 

78 bias between manual and automated contouring. Finally, we benchmarked our DL algorithm 

79 against two other DL implementations from the literature and made the 2DE database, CMR 
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80 LVEF values and the Simpson bi-plane code publicly available for reproducibility of this paper 

81 and further benchmarks.  

82 Methods
83 Study Design

84 The present study is a retrospective analysis of echocardiography and CMR data from 

85 participants previously enrolled in prospective trials performed either at Centre Hospitalier 

86 Universitaire de Caen Normandie (denoted as clinical centre A) or at Cliniques Universitaires 

87 Saint-Luc (denoted as clinical centre B), following approval by an ethic committee. The studies 

88 were approved by the IRB in charge (either Comité de Protection des Personnes Nord-Ouest 

89 III, Caen, France or Comité Ethique Hospitalo-Facultaire de l’Université Catholique de 

90 Louvain, Brussels, Belgium). The retrospective use of the data satisfies the European Union 

91 (EU) General Data Protection Regulation (GDPR) requirements. Data from participants who 

92 had undergone 2D echocardiography and cardiac CMR within 24 hours and who were found in 

93 sinus rhythm were analysed in the present study, resulting in a database of 171 subjects in total. 

94 Among those, there were 49 healthy volunteers and 122 patients with various cardiac 

95 pathologies: 37 with an ischaemic heart disease and a previous myocardial infarct, 35 with a 

96 non-ischaemic dilated cardiomyopathy, 39 with a valvular heart disease (including 19 aortic 

97 stenoses, 17 mitral regurgitations, 2 mitral repairs and 1 aortic regurgitation), and 11 with a 

98 hypertrophic cardiomyopathy. There was no prior selection based on image quality, thus 

99 reflecting a realistic range of echogenicity and artefacts in the database. For each subject, 

100 demographic and anthropometric data (age, sex, height, weight), diastolic and systolic blood 

101 pressures, and cardiovascular risk factors were also extracted.

102 2D transthoracic echocardiography 

103 Standardized comprehensive transthoracic echocardiographic examinations had been acquired 

104 according to established guidelines (15) using Philips IE 33 and EPIQ 7 ultrasound system 
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105 equipped with a X5-1 transducer in harmonic imaging (Philips Medical Systems, Andover, MA, 

106 United States), and stored on a PACS server (Intellispace Cardiovasular (ISCV), Philips 

107 Medical Systems, Andover, MA, United States). 

108 Echocardiography measurements

109 Manual measurements Echocardiographic images were anonymized, exported in DICOM 

110 format and analysed off-line. Three successive cardiac cycles were available for apical 4- and 

111 2-chamber views. Two senior (A1: ES) and (B1: BLG) and one junior (A2: RS) cardiologists 

112 manually contoured the ED and ES endocardial borders in the cardiac cycle and on the image 

113 frames of their choice, while blinded to quantitative outcomes. Senior cardiologists had more 

114 than 20 years of experience in echocardiography, the junior cardiologist had 3 months of 

115 training. For DL analysis, a deep convolutional neural network (U-Net) model was used to 

116 segment the LV cavity on the frames selected by the three observers. The same biplane 

117 Simpson’s method was used to compute all LV volumes and EF (see Volumes computation 

118 below). The study protocol is summarized in (Fig 1). Data were analysed in two independent 

119 ways (manual EF, and DL-EF for the 3 compared DL algorithms) for all frames selected by the 

120 3 observers. Observers were blinded to other manual and automated quantifications. Manual 

121 analysis was performed with a custom Python script running a Web browser-based interface to 

122 present images in random order and to save the contours. The observers first selected a cycle 

123 among the three consecutive cycles, then determined ED and ES within this cycle. An 

124 interactive graphical interface allowed the contouring of the cavity on both the AP2 and AP4 

125 views. All observers were instructed to respect the following conventions: i) include trabeculae 

126 and papillary muscles in the LV cavity; ii) keep consistency in excluding/including tissue 

127 between ED and ES; iii) terminate the contours in the mitral valve plane on the ventricular side 

128 of the bright ridge, at the points where the valve leaflets are hinging. Automated segmentation 

129 was performed using three deep learning algorithms (see below). The algorithms were run on 
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130 all frames selected by observers. Therefore, DL measurements will be presented systematically 

131 for the 3 observers (junior A1 and senior A2 and B1).

132 Fig 1. Flowchart of the study. The deep convolutional neural network (U-Net) model was 

133 trained on about 700 apical 2- and 4-chamber views from site A. The performance of Deep 

134 learning (DL) analysis using the U-Net model was then evaluated on data from 171 subjects 

135 from sites A and B, who underwent both transthoracic echocardiography and cardiac magnetic 

136 resonance (CMR). CMP = cardiomyopathies. DL = Deep Learning. ED = end-diastole. ES = 

137 end-systole. 

138 Volumes computation A standard Simpson’s rule for biplane EF computation was 

139 implemented according to (16) and applied to manual and DL segmentations. The code for this 

140 Simpson’s implementation is made publicly available on a git repository. The first step is first 

141 to find for both the AP2 and AP4 images a rotated bounding box fully encompassing the input 

142 contour. The second step is to find the apex and mitral points. The apex is defined as the contour 

143 point the closest to the middle of the bounding box top edge. The mitral point is found as the 

144 contour point that intersects the long axis direction of the bounding box. Mitral and apex points 

145 define the long axis segment in both AP2 and AP4 images. These long axis segments are divided 

146 into twenty points at which two radiuses are cast towards both sides of the input contour. By 

147 summing the N ellipsoidal cylinders from the AP2 and AP4 contours, one obtains the EDV and 

148 ESV values.  

149 Image quality assessment To assess the feasibility of DL with respect to image quality, senior 

150 observer B1 ranked the image quality of all frames (i.e., both ES and ED frames for AP2 and 

151 AP4) into three categories: good, meaning the endocardial wall was visible for the whole LV; 

152 fair, meaning the endocardium had to be visually interpolated at some locations; and poor, 

153 meaning that the frame was not of sufficient quality for being quantified. Senior observer A1 

154 also classified all DL segmentations according to whether he would have edited or not the 
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155 automated contouring. Finally, A1 also counted the cases for which DL outperformed Junior 

156 Observer A2, assessing if DL was worse, as good or better than A2’s contouring for 

157 quantification purposes.

158 Deep learning algorithms 

159 A U-Net architecture was trained to segment the LV cavity mask using ED and ES manual 

160 contouring from senior cardiologist A1 on an independent database of about 700 anonymised 

161 apical AP2 and AP4 views from 237 subjects. That database consisted of patients with ischemic 

162 cardiomyopathy (59%), dilated cardiomyopathy (6%), valvular pathologies (9%), hypertrophic 

163 cardiomyopathy (3%). Remaining subjects in the training database underwent 2D echo because 

164 of arterial hypertension or other cardiovascular risk factors. For all included subjects, image 

165 quality had been deemed satisfactory by A1 to be manually contoured in the AP2 and AP4 

166 views. The convolutional neural network architecture followed the standard U-Net pattern, 

167 stacking elementary blocks of convolutional, activation and batch normalization layers (17). 

168 The network took as input the full scan-converted B-Mode image, resized to a 192x256 size. 

169 The activation of the final layer (sigmoid) outputted a continuous mask image that took values 

170 between 0 and 1. After thresholding this result at 0.5, the largest contour was extracted for the 

171 AP2 and AP4 ES and ED frames. This method is referred to as DL1 in the remainder of this 

172 paper.

173 For benchmarking DL1 against other techniques, two other DL implementations from the 

174 literature were evaluated. First, the e-Net architecture from Leclerc et al. (13) was applied on 

175 the same frames as the DL method. This method is referred to as DL2 in the remainder of this 

176 paper. The DL2 network was trained on GE images, on the CAMUS public database (13). The 

177 weights of the network were used as such, without any adaptation. Finally, the method of Zhang 

178 et al. (18) was applied similarly without any retraining. This model is referred to as DL3.
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179 Magnetic resonance imaging

180 All subjects had undergone a standardized CMR myocardial function study on a 3T scanner 

181 (Achieva, Philips Medical Systems, Best, the Netherlands). The CMR exam was performed 

182 within a 24 hours window from the echocardiographic exam. 10-12 consecutive short axis 

183 images covering the entire LV, and respectively one 2- 3- and 4 chambers long-axis cine SSFP 

184 images were acquired for assessment of myocardial function. CMR RV and LV volumes and 

185 EF were computed using Segment version 2.2 (http://segment.heiberg.se) (19) or Medis 

186 software (Medical Imaging Systems, Leiden, the Netherlands) from short-axis cine images by 

187 semi-automatically contouring the endo- and epicardial contours in the end-diastolic (ED) and 

188 end-systolic (ES) phases. These quantifications were performed by an independent EuroCMR 

189 level III certified operator (MSA) blinded to the quantitative findings of echocardiographic 

190 operators. Papillary muscles and trabeculations were included as blood volume in the cavity 

191 contour.

192 Statistical analysis

193 Statistical analyses were performed using the epiR and psych R packages. Continuous variables 

194 are presented as mean values±SD, categorical variables as counts and percentages. Continuous 

195 variables were compared using the independent sample Student t test if normally distributed, or 

196 else using either the Wilcoxon signed rank test (paired data) or the Mann-Whitney (unpaired 

197 data) tests. A p-value p<0.05 was considered statistically significant. Agreements between 2D-

198 echo DL and manual segmentations for each observer was assessed using the DICE similarity 

199 coefficient computed as 𝑠DICE = 2 ∙
𝑛{𝐸D𝐿 ∩ 𝐸manual}

𝑛{𝐸DL} + 𝑛{𝐸manual} where 𝐸DL and 𝐸manual are the sets of pixels 

200 found within the LV cavity by DL and manual contouring, and 𝑛{ ⋅ } is the number of pixels in 

201 a given set. DICE is a standard measure to compare the overlap of two binary segmentation 

202 masks. Both interobserver and echo vs. CMR agreements were measured with Lin’s 

203 concordance correlation coefficient (CCC) for EDV, ESV, and EF.  To better evaluate the 
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204 impact of different EF values using either DL vs. manual contouring or CMR vs. 2D echo,  we 

205 categorized EF into three thresholds: EF<40%, 40%≤EF≤50%, EF>50% matching the 

206 guidelines for the LVEF stratification of HF patients (20). We then measured agreement to 

207 classify subjects into these 3 groups among each observer and DL by 2D echo and CMR using 

208 Cohen’s kappa (κ) coefficient.

209 Results
210 Study Population

211 Table 1 presents baseline characteristics of the study population. The validation cohort of this 

212 study was composed of n=31 (18%) patients from centre A and n=140 (82%) patients from 

213 centre B. The population had a wide range of LV ejection fraction and volumes. There were no 

214 significant differences in hemodynamics between echo and CMR studies. As expected, there 

215 were significant differences in age, EDV, ESV and EF among subjects with different cardiac 

216 conditions. Image quality of echo images was rated by B1 as good (resp. fair and poor) for 50% 

217 (resp. 42% and 8%) of the frames composing the dataset.

218 Table 1. Patient population characteristics. 
HCM

N = 11

ISCH

N = 37

NON-ISCH

N = 35

VALV

N = 39

VOL

N = 49

ALL

N= 171

Age, y 42±13 56±14 * 57±18 * 66±13 * 48±14 55±14

Males, # (%) 9 (82) 36 (97) 25 (71) 30 (77) 35 (71) 135 (79)

BSA, m2 1.9±0.1 1.9±0.2 1.9±0.2 1.8±0.2 1.8±0.2 1.9±0.2

HR bpm 73±12 75±16 * 70±13 * 67±7 64±10 69±10

DBP, mmHg 71±9 69±13 * 76±9 73±10 79±11 74±12

SBP, mmHg 119±15 117±23 119±14 129±19 128±22 123±21

CMR-EDV, mL 177±53 233±93 * 264±69 * 199±66 * 150±33 204±79

CMR-ESV, mL 63±24 163±97 * 188±70 * 77±45 57±15 112±81

CMR-EF, % 65±9 35±15 * 31±13 * 63±12 62±6 50±19
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219 Baseline, echo and CMR characteristics. HCM=hypertrophic cardiomyopathy, NON-
220 ISCH=dilated non-ischaemic cardiomyopathy, ISCH=ischaemic heart disease, 
221 VALV=valvular diseases, VOL=healthy volunteer. Body Surface Area (BSA) was calculated 
222 using the Mosteller formula. * indicates p-values p<0.05 vs. the VOL subgroup.

223 Feasibility of DL-based contouring

224 DL computation using the DL1 network of EDV and ESV and EF was feasible in all subjects 

225 and images and took about 60 ms per image (including biplane Simpson’s computation). 

226 Typical examples of DL1 contouring are shown in (Fig 2). Reviewer A1 considered DL1 

227 segmentations as acceptable, and not requiring further editing, in 70% of the frames (64% for 

228 fair/poor images). A1 also considered 16.4% of the frames to be better segmented by DL1 than 

229 manual segmentation by the junior observer A2. For the latter, A1 was not blinded to which 

230 method was used to produce the segmentation result. In only 6 cases (3%) DL segmentation 

231 was considered to have failed as illustrated in (S1 Fig). In a patient with non-ischemic dilated 

232 CMP and a patient with mitral regurgitation, a hyper-intense valve apparatus in the image 

233 disrupted the DL1 segmentation and yielded a cavity segmentation with a highly irregular 

234 shape. In two patients (with aortic stenosis and mitral regurgitation), a partly non-visible 

235 endocardial wall impeded automatic segmentation. In the two last outliers, one hypertrophic 

236 and aortic stenosis, with poor LV function and low EF, local DL1 segmentation errors had a 

237 higher impact than in subjects with good LV function.

238 Fig 2. Overlay of typical DL1 segmentations (yellow mask) and manual contouring by 

239 senior observer B1 (red dotted contour) for four representative subjects. From top to 

240 bottom: healthy volunteer (VOL), subject with a ischaemic heart disease (ISCH), subject with 

241 a hypertrophic cardiomyopathy (HCM), and subject with an aortic stenosis (VALV). From left 

242 to right: end-diastolic frame in apical 4-chamber view, end-systolic frame in apical 4-chamber 

243 view, end-diastolic frame in apical 2-chamber view, and end-systolic frame in apical 2-chamber 

244 view.
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245 Agreement of DL and manual contouring. 

246 (Fig 3) shows the DICE values spread when comparing DL1 vs. manual contours on the (ES, ED

247 ) ×  (AP2, AP4) frames of every observer. For all echo views and observers, the average DICE 

248 values were over 90%. However, a more elevated spread appeared in the junior (A2) compared 

249 to the two senior (A1, B1) observers. In addition, the AP4 view showed a higher consistency 

250 between manual and DL results. Similarly, within each echo view, lower DICE values were 

251 found in ES than in ED (with the exception of observer B1 in the A2C view).

252 Fig 3. DL1 vs. manual comparison. Left-ventricular cavity overlap as measured by the DICE 

253 similarity coefficient between manual and DL1 contouring in apical 2- and 4-chamber views 

254 for all observers.

255 Comparison of EF, ESV and EDV values from DL-based contours and manual contours 

256 Table 2 lists the computed ranges of EF, EDV and ESV values from echo images for the whole 

257 population and disaggregated by healthy and pathology groups, when quantified either by the 

258 senior and junior observers or DL1. EF values for most pathological groups were found non 

259 significantly different when measured by A1 or DL1. DL1 values of EF were also, but to a lesser 

260 extent, consistent with A2 and B1, who both reported higher overall EF values. For EDV and 

261 ESV, there were significant differences between observers, with junior observer A2 providing 

262 systematically lower EDV and ESV estimates than senior observers A1 and B1.

263 Table 2. : LV volumes and EF by all observers and modalities. 

HCM ISCH NON-ISCH VALV VOL ALL

End-diastolic volumes [mL]

Senior A1 120±39 189±69 * 203±64 * 155±58 * 117±24 159±64 ‡

Senior B1 108±33 196±70 * 204±65 * 162±61 * 122±24 163±65 †

Junior A2 72±24 *†‡ 157±59 *†‡ 154±56 *†‡ 128±61†‡ 100±30 †‡ 128±57 †‡

DL 91±27 † 165±57 *†‡ 165±56 *†‡ 122±43 †‡ 104±23 †‡ 133±53 †‡
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CMR 177±53 †‡ 233±93 *†‡ 264±69 *†‡ 199±66 *†‡ 150±33 †‡ 204±79 †‡

End-systolic volumes [mL]

Senior A1 52±23 ‡ 120±65 *‡ 137±57 *‡ 69±41 *‡ 47±14 ‡ 87±58 ‡

Senior B1 35±17 † 113±67 *† 130±63 *† 59±32 † 41±12 † 78±59 †

Junior A2 25±12 †‡ 92±56 *†‡ 96±46 *†‡ 50±29 †‡ 38±15 † 64±46 †‡

DL 39±19 † 105±63 *†‡ 113±52 *†‡ 53±23 *† 38±12 †‡ 71±52 †‡

CMR 63±24 ‡ 163±97 *†‡ 188±70 *†‡ 77±45 †‡ 57±15 †‡ 112±81 †‡

Ejection fractions [%]

Senior A1 58±12 ‡ 40±14 *‡ 34±12 * 58±13 ‡ 61±6 ‡ 50±16 ‡

Senior B1 69±10 † 46±16 *† 38±14 * 64±11 † 67±6 † 56±17 †

Junior A2 66±9 † 45±16 *† 40±11 * 62±10 62±7 ‡ 54±15 †‡

DL 57±14 41±17 *‡ 33±15 *‡ 56±19 *‡ 64±7 †‡ 50±19 †‡

CMR 65±9 36±16 *†‡ 31±13 *‡ 63±12 †‡ 62±6 50±19 ‡

264 Left ventricle volumes and ejection fraction in the different groups of cardiac conditions as 
265 measured by manual contouring and DL contouring from 2D echocardiography and semi-
266 automated contouring from CMR. See group definitions in Error! Reference source not 
267 found.. * indicates p<0.05 vs. the VOL subgroup. † indicates p-values p<0.05 vs. A1. ‡ 
268 indicates p-values p<0.01 vs. B1.

269 Interobserver variability

270 Interobserver agreement (for EF, ESV and EDV) was significantly better for DL1 than manual 

271 contouring. As illustrated in (Fig 4), this effect was most dominant for LV-EDV where there 

272 was particularly poor senior-junior (compared to senior-senior) agreement of EDV 

273 valuesError! Reference source not found. S1 Table quantifies inter-observer agreement in 

274 manual vs. DL for the 3 DL algorithms. It shows both DL1 and DL2 reached excellent inter-

275 observer agreement (Lin’s CCC >0.9 for EDV, ESV and EF) that compared favourably to 

276 manual inter-observer agreement (Lin’s CCC < 0.9 for EDV, ESV and EF)

277 Fig 4. Lin’s concordance correlation plots between observers (top) and for DL1 (bottom, 

278 on the frames quantified by all observers) for EDV in 2D echo.
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279 Agreement of Manual and DL1 measurements with CMR

280 As shown in Table 2, EF values were consistent between CMR and echo for all observers using 

281 either manual contouring or DL1. Correlation and Bland-Altman plots for EF are shown in (Fig 

282 5). Lin’s CCC between echo-EF and CMR-EF improved for A2 using DL but degraded for 

283 senior observers A1 and B1. The EF bias was reduced with DL1 compared to manual contouring 

284 for junior observer A2 (-0.1±10.0 vs. 3.7±9.6) and senior observer B1 (-0.7±13.1 vs 5.9±8.1) 

285 but remained unchanged for A1 (0.5±11.3 vs -0.5±8.6). Regarding volume measurements, (Fig 

286 6) shows that all echo-based ESV and EDV (using either manual or DL1 for all observers) 

287 values were underestimated w.r.t. CMR. Correlation between EDV by senior observers and 

288 CMR were good (Fig 6) with CCC values over 0.7, higher than the junior cardiologist A2 (0.45). 

289 This value slightly improved for A2 using DL (0.51). In comparison, DL1 ESV values were in 

290 better agreement with CMR (CCC > 0.7). 

291 Fig 5. Lin’s concordance correlation coefficient and Bland-Altman plot for EF 

292 comparing manual and DL1 estimates for each observer in 2D echo to MRI.

293 Fig 6. Lin’s concordance correlation coefficient plots for LV EDV and LV ESV between 

294 CMR and 2D echo for all observers and DL1 applied to the frames of each observer (A1 

295 [senior], A2 [junior] and B1 [senior]).

296 Comparison to other DL methods

297 (Fig 7) compares DL1, DL2 and DL3 agreement measurements on all frames selected by 

298 observers with CMR. DL1 and DL2 exhibited similar Lin’s CCC for volume evaluation, while 

299 DL3 performed less well (0.51 resp. 0.49 vs. 0.22 for EDV, and 0.73 resp. 0.74 vs. 0.53 for 

300 ESV). EF values were not valid in 12.7% of the cases for DL3 vs. 0.78% for DL1 and 1.56% 

301 for DL2. All three DL methods showed acceptable Pearson correlation (0.86 for DL1, 0.72 for 

302 DL2, and 0.57 for DL3), but only DL1 and DL2 showed acceptable agreement with CMR. DL1 

303 achieved higher agreement than DL2 due to a reduced bias and SD, thus contrasting with their 

304 more homogeneous EDV / ESV findings.
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305 Fig 7. Agreement between CMR and 2D echo for all observers and the three DL 

306 techniques applied to the frames of each observer (A1 [senior], A2 [junior] and B1 [senior]). 

307 DL1 is the network proposed in this paper, DL2 is the e-Net architecture from (13), DL3 is the 

308 network proposed in (18).

309 Impact on population stratification

310 When CMR and echo LVEF were classified into three categories (<40, 40-50 and >50% EF), 

311 Cohen’s kappa agreement to CMR EF labels was similar between manual and DL1 contouring 

312 (0.65±0.11 vs 0.61±0.14) compared to 0.48±0.11 for DL2 and 0.29±0.11 for DL3. When 

313 confronting echo vs. CMR EF labels for A1’s frames, manual contouring misclassified 22 

314 patients, and DL contouring misclassified 16 patients. However, for A2 and B1, the opposite 

315 situation was observed: there were 33 misclassified subjects using manual contouring for A2 

316 vs. 27 using DL1 (35 vs. 19 for B1). 

317 Discussion
318 The principal findings of our study can be summarized as follows. 

319 First, our DL algorithm (DL1) trained echo contouring performed well in an unrelated 

320 population of patients despite a balanced dataset in terms of image quality. It generalized well 

321 to data obtained in another centre (B) representing 80% of cases.

322 Second, DL1 reduced interobserver agreement relative to manual contouring for LV-EF, EDV 

323 and ESV, and in particular between junior and senior observers. This was confirmed for the 

324 other two compared DL algorithms, tending to suggest that DL can be instrumental in 

325 increasing the interobserver reproducibility of 2D echo-based EF values, if taken as an initial 

326 contour before potential manual edits, when required in more challenging cases.

327 Third, this study demonstrated that DL1 compared favourably to manual contouring in terms 

328 of EF accuracy when taking CMR as reference (Fig 6). EF bias was brought to almost zero 

329 when segmenting the same image frames as the 3 observers with DL1, which reduced the bias 
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330 of one junior and one senior observer. Yet biases in LV volumes remained present and DL1 did 

331 not correct the underestimation of 2D echo-based volumes, compared to CMR. Such 

332 underestimation is believed to result in part from foreshortening of acquired 2D, this bias is 

333 known to be reduced by 3D echo. It may also result from differences in detection of trabeculated 

334 myocardium. Accordingly, DL algorithms trained with both echo and CMR data might allow 

335 learning some of this systematic bias. Adding more pathological groups to the training database 

336 could potentially improve EF biases for different disease groups. 

337 When comparing our DL results with previously trained network, we found (Fig 7) better 

338 agreement with CMR EF and reduced bias than DL2 and DL3. However, DL2 appeared as a 

339 clear contender and showed excellent inter-observer agreement and a good correlation with 

340 CMR. It can be argued the comparison done in this paper is unfair, as DL1 was trained on data 

341 from clinical centre A, all performed on Philips echocardiographic devices, with manual 

342 contouring from observer A1. DL2 was trained on ground truths segmentations from other 

343 observers and on GE data. Therefore, the comparison presented here should be taken as a direct 

344 test of generatability of an echocardiographic DL segmentation algorithm (DL2) without 

345 applying any transfer learning to another constructor and possibly with other contouring 

346 conventions. Our results illustrate the need to learn models that generalize well across vendors 

347 and clinical centres, possibly through federated learning. DL3 was applied similarly without 

348 any and adaptation and performed poorly on our data. As for DL2, this probably reflects 

349 discrepancies between the training data of DL1 and DL3 and calls for further adaptation of the 

350 DL3 network to DL1 training data that are beyond the scope of this paper. 

351 Finally, using CMR-based EF reference values, we could evaluate the potential impact that an 

352 echo- and DL-based EF computation would have on the stratification of a Heart Failure 

353 population. We found a similar (A1) or improved (A2, B1) agreement between echo 

354 measurements vs. CMR  using the DL algorithm over manual contouring. This preliminary 
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355 finding should be confirmed on a population of HF patients with preserved and reduced EF to 

356 determine whether or not the added value of DL vs. manual contouring is confirmed. 

357 Several previous studies did report agreement and correlation values of automated and manual 

358 EF values. The AutoEF algorithm was evaluated in large studies (>200 subjects (21)) but the 

359 comparison to CMR could only be performed for a subset (~20) of the population. In (22), the 

360 AutoEF results were edited when deemed necessary by both senior and novice observers, which 

361 represents a potential bias when comparing manual and automated contouring solutions. Other 

362 commercial algorithms (23) were also assessed against manual contouring but often without 

363 involving another modality as reference. As DL-based segmentation solutions are emerging in 

364 echocardiography (13,24), they need to be benchmarked not only for accuracy against manual 

365 observers but also against other imaging modalities, and more specifically against CMR at it 

366 stands as a gold standard modality for LV EF assessment like CMR.

367 Most of EF validation studies that took CMR as reference were comparing 2D echo to 3D echo, 

368 and demonstrated a higher accuracy on EDV and ESV measurements (24), as well as lower 

369 intra- and interobservers variability (25) and higher performance for some pathologies such as 

370 HCM (26). Nonetheless, the spatiotemporal resolution of 3D echo, which is inherently lower 

371 than 2D imaging, can be challenging with larger chambers. In addition, 3D echo remains a 

372 premium imaging modality, not as widespread as 2D echo. Improving the echocardiographic 

373 workflow involves automating time-consuming tasks for 2D echo images as well as 3D echo. 

374 However, the processing of 2D echo is still mostly manual, unlike 3D echo, for which advanced 

375 model-based (editable) segmentation algorithms are available (25,26). This situation called for 

376 a thorough evaluation of a modern automated segmentation on 2D echo, validating it with 

377 another 3D reference modality. 
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378 By contributing an open validation dataset, together with the bi-plane Simpson code, this paper 

379 contributes a reproducible evaluation framework, against which other DL methods can be 

380 benchmarked.

381 Clinical implications

382 We argue that the framework described here could help exploit the full potential of deep 

383 learning for echocardiographic applications

384 - simplifying LVEF and volume calculations to allow for multi-cycle or real-time assessment.

385 - Improved longitudinal follow-up of chronic patients due to good overall agreement with CMR 

386 and reduced inter-observer variability.

387 - Improved management strategies due to the accuracy of the LVEF category classification.

388 Study Limitations

389 In this paper, the observers, not to interfere with clinical practice, were free to choose the cycles 

390 and frames on which they quantified EDV and ESV volumes. Therefore, we could not compute 

391 local contour differences between observers. Such a local analysis could have revealed regions 

392 of higher variability or systematic interobserver differences. Similarly, we could not study if 

393 the DL segmentation represents a good consensus by comparing its contour to the observers’ 

394 contours. A further automatization could include a separate pre-processing DL network 

395 automatically selecting the ES and ED frames. This was left as future work and likely requires 

396 a separate evaluation. 

397 We limited our comparisons to EDV, ESV and EF values, as they appeared as a priority, being 

398 clinical indices used routinely. Yet this approach probably better reflected clinical practice, 

399 where there is also intersubject variability in selection of frames. The clinical centres compared 

400 in this study have similar protocols in terms of echocardiography and used the same equipment. 

401 The algorithm might behave less accurately on other echocardiographic systems or image 

402 acquisition protocols. Extending the analysis of this paper to other clinical centres could further 
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403 span differences across countries in terms of conventions for defining the endocardial contour, 

404 in terms of expertise (e.g. junior sonographer vs senior cardiologist), or in terms of time 

405 constraints for the echocardiographic exam. Also, we did not cover in this study reproducibility 

406 issues stemming from the acquisition (e.g. probe orientation) that can induce foreshortening.

407 Finally, although CMR is widely accepted as reference modality for the validation of echo-

408 based measurements, measurements performed on short axis slices only could underestimate 

409 the long axis contribution of LV motion (27).  

410 Conclusions
411 In this paper, we compared manual and DL automated contouring from 2D echocardiographic 

412 images with respect to CMR, taking the latter as reference for the computation of EF, ESV and 

413 EDV values. We demonstrated the value of a DL-based automated contouring of AP2 and AP4 

414 images to reduce and homogenize the biases in EF with respect to CMR. This study also 

415 confirmed important biases in EDV and ESV 2D echo-based values, for automated and manual 

416 contouring, that nonetheless get compensated when computing EF, reaching a practically null 

417 bias between CMR and echo-based EF values.
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507 A2 (middle row) and B1 (bottom row). Outliers involved subjects with dilated non-ischaemic 

508 cardiomyopathy (NON-ISCH), mitral regurgitation or aortic stenosis (VALV) and 

509 hypertrophic cardiomyopathy (HCM).
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511 S2 Fig. Lin’s concordance correlation plots between CMR and 2D echo for the DL2 and 

512 DL3 algorithms applied to the frames of each observer (A1 [senior], A2 [junior] and B1 

513 [senior]) for LV EDV and LV ESV.
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515 S1 Table. Agreement between observers in echo for ESV, EDV and EF with manual and 

516 DL contouring using Lin’s concordance correlation coefficient
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