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 2 

Abstract:  19 

COVID-19 vaccines are playing a vital role in controlling the COVID-19 pandemic. As 20 

SARS-CoV-2 variants encoding mutations in the surface glycoprotein, Spike, continue to 21 

emerge, there is increased need to identify immunogens and vaccination regimens that 22 

provide the broadest and most durable immune responses. We compared the magnitude and 23 

breadth of the neutralizing antibody response, as well as levels of Spike-reactive memory B 24 

cells, in individuals receiving a second dose of BNT126b2 at a short (3-4 week) or extended 25 

interval (8-12 weeks) and following a third vaccination approximately 6-8 months later. We 26 

show that whilst an extended interval between the first two vaccinations can greatly increase 27 

the breadth of the immune response and generate a higher proportion of Spike reactive 28 

memory B cells, a third vaccination leads to similar levels between the two groups. 29 

Furthermore, we show that the third vaccine dose enhances neutralization activity against 30 

omicron lineage members BA.1, BA.2 and BA.4/BA.5 and this is further increased following 31 

breakthrough infection during the UK omicron wave. These findings are relevant for 32 

vaccination strategies in populations where COVID-19 vaccine coverage remains low.  33 
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Introduction: 34 

Development of vaccines against SARS-CoV-2 has been a vital step in controlling the 35 

global COVID-19 pandemic. Most approved vaccines use the SARS-CoV-2 Spike antigen to 36 

elicit a neutralizing antibody response as well as generating cell-mediated immunity. The 37 

Spike glycoprotein interacts with the angiotensin-converting enzyme 2 (ACE2) on host cells 38 

and facilitates viral entry. One of the greatest challenges faced by current vaccines has been 39 

the emergence of SARS-CoV-2 viral variants of concern (VOCs) that encode mutations in the 40 

Spike protein, including alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) and omicron (sub-41 

lineage members BA.1, BA.2, BA.4 and BA.5). Numerous studies have shown that these 42 

Spike mutations can lead to partial escape in convalescent and vaccinee sera, with the 43 

greatest reduction in neutralization being observed for omicron sub-lineages [1-5]. Therefore, 44 

immunogens and immunization regimes that elicit durable neutralizing antibody (nAb) 45 

responses with broad activity against both known and newly emerging variants is highly 46 

desirable.  47 

In December 2020, the Pfizer/BioNTech BNT162b2 mRNA COVID-19 vaccine was 48 

given approval for use in the UK. The approved regimen was two doses administered at a 3–49 

4-week interval, but in January 2021 a change to UK policy meant that the BNT162b2 booster 50 

vaccination was administered with an extended interval of 8–12 weeks. The rationale behind 51 

this change was to provide as much of the UK population with some level of immunity in the 52 

face of a large wave of SARS-CoV-2 alpha variant infections [6]. Initially, most COVID-19 53 

vaccines required two vaccinations to provide efficacy against the Wuhan (wild-type, WT) 54 

alpha and delta VOCs. However, due to waning of vaccine-elicited nAb levels [7] and with the 55 

emergence of omicron/BA.1, which encodes >30 mutations in Spike, a third vaccination (either 56 

BNT162b2 or mRNA-1273) became recommended. A third vaccine has been shown to 57 

increase neutralization titres against omicron/BA.1 [3-5, 8] and to restore vaccine efficacy 58 

against omicron/BA.1 [9-11] however, breakthrough infections (BTI) in vaccinated individuals 59 

have been observed at increased frequencies compared to previous dominant variants [9-11].  60 
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We sought to determine how the interval between the 1st and 2nd BNT162b2 61 

vaccinations impacted on neutralization breadth and potency against current and newly 62 

emerging VOCs in the short-term (post 2-doses) and in the long-term (post 3-doses), and how 63 

subsequent BTI during the UK omicron wave (January to February 2022) affected 64 

neutralization of newer omicron sub-lineage members. We show that broader plasma 65 

neutralizing activity is observed when the 2nd dose is given with extended 8–12 week interval 66 

(extended group) compared to those receiving the 2nd dose with a 3-4 week interval (short 67 

group). However, the advantage of the extended booster to neutralization is not displayed 68 

following a 3rd vaccination where robust neutralization of omicron lineages members (BA.1, 69 

BA.2, BA.4 and BA.5) is observed in both groups. Finally, we show that omicron BTI further 70 

boosts the neutralization activity against omicron sub-lineages. Overall, this research provides 71 

insights into optimizing vaccine regimens to provide the greatest neutralization breadth. 72 

 73 

Results 74 

Vaccine cohort description. 75 

 Plasma and PBMCs were collected from individuals receiving the BNT162b2 vaccine 76 

either with a short booster interval (3-4 weeks, n = 19, short-group) or an extended booster 77 

interval (8-12 weeks, n = 28, extended-group) (Figure 1A). For the extended-group blood was 78 

collected prior to vaccination (visit 1), 3 weeks post 1st dose (visit 2) and post 2nd dose (visit 79 

3). For the short-group, blood was only collected post 2nd dose (visit 3). Blood was also 80 

collected from both groups 6 months post 2nd vaccine dose (visit 4) and further samples was 81 

taken 3-4 weeks and 6-months post 3rd vaccine (visit 5 and visit 6, respectively). For individuals 82 

experiencing a BTI, blood was also collected post infection (visit 7). 83 

The short-group was 84.2% female, with an average age of 44.1 years (interquartile 84 

range, 15.0 years) whereas the extended-group was 53.6% female, with a slightly lower 85 

average age of 38.0 years (interquartile range, 14.7 years) (Figure 1B&C). Information on 86 

previous SARS-CoV-2 infection was recorded at each blood draw and the presence of IgG to 87 

Nucleoprotein (N) was measured to determine previous asymptomatic SARS-CoV-2 88 
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infections or infections occurring prior to community PCR testing. Previous infection was 89 

detected in 3/19 from the short-group and in 10/28from the extended-group (Figure 1D). The 90 

average interval between vaccine doses was 25.2 days (interquartile range, 3.5 days) for the 91 

short group and 71.0 days (interquartile range, 11.3 days) in the extended group (Figure 1E).  92 

 93 

Anti-Spike IgG levels are similar in short and extended booster groups. 94 

 IgG binding to recombinant Wuhan-1 Spike was measured by ELISA and the half-95 

maximal binding (ED50) calculated (Figure 2). As reported previously [12-16], individuals who 96 

had experienced a SARS-CoV-2 infection prior to vaccination had higher Spike IgG levels 97 

compared to naïve individuals after the 1st vaccine dose (visit 2) (Figure 2B). However, similar 98 

levels of anti-Spike IgG were observed in the SARS-CoV-2 naïve and convalescent donors 99 

following the 2nd vaccination (visit 3) (Figures 2A and 2B).  100 

For SARS-CoV-2 naïve individuals, comparison of ED50 between the short and 101 

extended groups showed no statistical differences at visit 3, although there was a trend 102 

towards higher levels in the extended group (Figure 2C). Both groups showed waning of the 103 

anti-Spike IgG levels 6 months post 2nd vaccine (visit 4) which were subsequently boosted 104 

after participants received a 3rd vaccine dose (visit 5) (Figures 2A and 2B).  105 

   106 

Previous SARS-CoV-2 infection leads to higher nAb titres following the first vaccine 107 

dose. 108 

Next, plasma neutralization breadth and potency were determined using HIV-1 109 

lentiviral particles pseudotyped with either the SARS-CoV-2 Spike of Wuhan-1 (vaccine 110 

strain), alpha, delta, beta or omicron/BA.1 VOCs and a HeLa cell line stably expressing ACE2 111 

as the target cell [17]. Analysis of neutralizing responses after a single vaccine dose (visit 2) 112 

was only conducted on the extended-group due to sample availability (Figure 1A). Consistent 113 

with previous studies [12-16], following 1-dose of BNT162b2, geometric mean titres (GMTs) 114 

against the matched vaccine strain (Wuhan-1, wildtype, WT) were higher is those who had a 115 
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SARS-CoV-2 infection prior to vaccination (Figures 3A-3C). Furthermore, previously infected 116 

individuals showed greater neutralization breadth against VOCs (Figure 3A-3C). 117 

 118 

An extended interval between the 2nd vaccine dose enhances the breadth of the 119 

neutralizing antibody response. 120 

 Following two doses of BNT162b2 in SARS-CoV-2 naïve individuals, GMTs against 121 

the matched vaccine strain (Wuhan-1, WT) were similar between the short and extended 122 

booster groups (Figure 3D-3F). In both the short and extended-groups, higher GMTs were 123 

observed for individuals that had a SARS-CoV-2 infection prior to vaccination (Figure 3G-3I) 124 

[12-16]. In SARS-CoV-2 naïve individuals (Figures 3D and 3E), the broadest neutralization 125 

activity against VOCs was observed in the extended booster group where a modest 1.1–1.4-126 

fold reduction in neutralization was observed against alpha, delta, mu and beta and a 3.6-fold 127 

reduction against omicron/BA.1 (Figure 3E). For those in the short-group, a larger reduction 128 

in neutralization potency against VOCs was observed, with greater reductions against beta 129 

(6.1-fold) and omicron (14.2-fold) (Figure 3D). Comparison between GMTs of the short and 130 

extended booster groups showed a significantly reduced potency against mu, beta and 131 

omicron/BA.1 VOCs in the short booster group (Figure 3F). Although overall GMTs against 132 

VOCs were higher in previously infected vaccinees (Figure 3G-3I), the extended booster 133 

group also showed higher GMTs against beta and omicron/BA.1 than the short booster group. 134 

However, this difference did not reach significance due to the small sample size (Figure 3I).  135 

 To determine whether the extended booster generated neutralization breadth beyond 136 

SARS-CoV-2 VOCs, neutralization was also measured against SARS-CoV-1 which shares 137 

73% sequence [18] similarity with Spike of SARS-CoV-2. Although neutralization titres were 138 

generally low, individuals receiving the extended booster showed low levels of SARS-CoV-1 139 

neutralization (Figure 3J) with a GMT that was higher than in the short-group.  140 

 141 

An extended vaccine interval enhances the magnitude of the memory B cell response 142 
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 To further examine how vaccine interval impacts on the B cell response, we next 143 

measured the frequencies of Spike-reactive memory B cells in the short and extended booster 144 

groups using flow cytometry (Figure 4A-B and Figure S1A) [12, 19]. The frequency of Wuhan-145 

1 Spike-reactive memory B cells was measured in pre-vaccination samples (visit 1) for the 146 

extended booster group only (due to sample availability) and in both groups following the 2nd 147 

vaccination (visit 3). Overall, where paired samples were available, the overall frequency of 148 

memory B cells did not change over the course of the analysis (Figure S1B). Participants who 149 

had a SARS-CoV-2 infection prior to vaccination had a distinct population of Spike reactive 150 

memory B cells in the pre-vaccine sample (mean 0.20 %, range 0.10 – 0.34%) compared to 151 

naïve individuals (mean 0.02 %, range 0.01 – 0.06%) (Figure 4C). Following two vaccine 152 

doses, the percentage of Spike-reactive memory B cells increased independent of prior 153 

SARS-CoV-2 exposure (Figure 4C). 154 

In SARS-CoV-2 naïve participants, a higher frequency of Spike reactive memory B 155 

cells was observed in the extended booster group (mean 0.52 %, range 0.20 – 2.36%) 156 

compared to the short booster group (mean 0.19 %, range 0.07 – 0.38%) after the 2nd vaccine 157 

dose (Figure 4C). When considering the frequency of Spike-reactive B cells in previously 158 

infected vaccinated donors, the percentage (mean 0.67 %, range 0.24 – 1.71 %) was similar 159 

to SARS-CoV-2 naïve individuals in the extended group.  160 

The isotype of the Spike-reactive memory B cells was considered further (Figure 4D). 161 

In samples collected from previously infected individuals prior to vaccination, an average 162 

64.5% of the Spike-reactive memory B cells were IgG positive (Figure 4D) and the average 163 

percentage increased upon vaccination to 81.8% (Figure 4D) suggesting an improvement in 164 

the quality of the response. In COVID-19 naïve individuals, a higher percentage of IgG+ Spike-165 

reactive memory B cells was seen in the extended-booster group (86.5%) compared to the 166 

short-booster group (74.5%). A positive correlation between the percentage of Spike-reactive 167 

memory B cells and the ED50 and ID50 (Figures 4E and 4F) was observed after two vaccine 168 

doses independent of booster interval or previous SARS-CoV-2 exposure.  169 
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Overall, an extended period between the first and second vaccine dose increases the 170 

magnitude of the Spike-specific B cell response. 171 

 172 

Neutralizing antibody levels decline at 6 months but are boosted and neutralization 173 

broadened by a third vaccine dose. 174 

 To understand the durability of the nAb response following two vaccine doses, 175 

neutralization titres were measured 6 months post second vaccine dose (visit 4). Plasma 176 

neutralization activity against all VOCs (WT, alpha, delta, beta and omicron (BA.1)) had 177 

declined in both groups (Figure 5A-D) as reported in other recent studies [4, 8, 20]. Although 178 

the neutralization of the most antigenically distant VOCs (beta and omicron/BA.1) had 179 

declined, titres remained higher in the extended booster group compared to the short booster 180 

group (Figure 5A and 5B). 181 

 In September 2021, a vaccine booster programme was initiated in the UK and blood 182 

was collected from individuals 3-weeks after receiving a 3rd vaccine dose (visit 5). The impact 183 

on IgG levels to Spike and neutralization breadth and potency was measured. The third 184 

vaccine dose (visit 5) increased Spike IgG binding (Figure 2) and the plasma neutralizing 185 

activity (Figure 5A-D) compared to visit 4 in both groups. Whereas after the second dose 186 

there had been a clear distinction in neutralization breadth between the short and extended 187 

booster groups, following administration of a third vaccine dose the neutralizing titres against 188 

WT, alpha, delta, beta and omicron/BA.1 were very similar (Figure 5A-D). Importantly, a 3rd 189 

vaccination with ancestral SARS-CoV-2 spike increased neutralization breadth against the 190 

most highly diverse beta and omicron/BA.1 variants (Figure 5C). Overall, the reduced 191 

neutralization breadth observed in the short booster group after two vaccine doses is rescued 192 

following a third vaccine dose. 193 

 194 

Broader neutralization is associated with have higher avidity against Spike. 195 

 Antibody binding avidity has been associated with antibody maturation [21-25]. To 196 

determine whether enhanced neutralization breadth was related to higher avidity of antibody 197 
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 9 

binding in the extended booster group we next measured an avidity index for samples 198 

collected 3-weeks and 6 months after the second vaccine dose (visit 3 and 4) and 3-weeks 199 

after the third vaccine dose (visit 5). The avidity was measured by comparing the area under 200 

the curve in ELISA, with and without an 8M Urea washing step. For SARS-CoV-2 naïve 201 

individuals at visit 3, the extended booster group had a significantly higher avidity index than 202 

the short booster group (Figure 5E). However, this difference was reduced in when comparing 203 

previously infected individuals. The avidity index 6 months post 2nd vaccine (visit 4) was largely 204 

unchanged (Figure 5F). Following the 3rd vaccination (visit 5) where neutralization breadth 205 

was similar across the two groups, the avidity index increased in both groups and the 206 

difference in avidity index between the short and extended groups was no longer significant 207 

(Figure 5G). The avidity index 3-weeks after 2nd vaccine dose (visit 3) was correlated with the 208 

ID50 against each VOC (Figure 5I). No significant correlation was observed for WT. However, 209 

the correlation coefficient was greatest for beta and omicron/BA.1 which are most antigenically 210 

distant to the vaccine strain and suggests that avidity may be a good indicator VOC cross-211 

reactivity. The avidity index also correlated with the % of Spike-reactive memory B cells 212 

(Figure 5H).  213 

 214 

Neutralization of BA.2 and BA.4/5 sub-lineages. 215 

 Since omicron/BA.1 became the dominant global variant worldwide, several related 216 

SARS-CoV-2 omicron sub-lineages have been reported that encode unique amino acid 217 

changes in Spike. BA.2 has driven a recent wave in the UK and encodes 21 identical mutations 218 

to BA.1 (including K417N, N440K and E484A) and 8 additional mutations across NTD and 219 

RBD. BA.4 and BA.5, which encode identical Spikes proteins, are thought to be driving a 5 th 220 

wave in South Africa [26]. The BA.4/BA.5 Spike is similar to BA.2 but has additional mutations 221 

delta69-70, L452R and F486V and lacks the Q493R mutation. Emergence of these highly 222 

transmissible sub-lineages has led to an increased rate of breakthrough infections (BTIs) and, 223 

within the cohort described here, fourteen participants experienced BTI between mid-224 

December 2021-March 2022. In mid-December BA.1 made up >80% of UK infections and the 225 
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BA.1 and BA.2 sub-lineages made up 95% of infections from mid-January [27]. Therefore, 226 

BTIs in participants were presumed to be caused by BA.1 or BA.2 VOCs (visit 7). Blood was 227 

also collected from six participants 6 months post 3rd dose (visit 6). 228 

To assess susceptibility to the recently reported BA.4/BA.5 variants and to determine 229 

the impact of BA.1/BA.2 BTI on the antibody response, we measured neutralization against 230 

D614G, BA.1, BA.2 and BA.4/BA.5 following three BNT162b2 doses (at 3-weeks (visit 5) and 231 

6-months (visit 6) post boost) and in those who subsequently experienced a BTI (3-weeks 232 

post infection (visit 7)) (Figure 6). Due to the smaller number of samples available, all plasma 233 

were considered together for analysis. For plasma collected 3-weeks post 3rd vaccine dose 234 

(visit 5), good neutralization against BA.1, BA.2 and BA.4/5 was detected but GMTs were 235 

slightly decreased compared to D614G, with the greatest reduction being 2.2-fold against 236 

BA.4/5 (Figure 6A). Six months post 3rd vaccine dose (visit 6), neutralization titres had 237 

decreased against all variants (Figure 6B and 6D) as seen six months post 2nd vaccine dose 238 

(Figure 5). However, in those who experienced a BA.1/BA.2 BTI (visit 7) neutralization titres 239 

increased against all variants compared to visit 5 and robust cross-neutralization of all omicron 240 

sub-lineages was detected (Figure 6C and 6E). The largest fold increase in GMT following 241 

BTI was observed against BA.1 and BA.2 (Figure 6E).  242 

Overall, a third vaccine dose generates neutralization against omicron sub-lineages 243 

BA.1, BA.2 and BA.4/5 which is further enhanced by BA.1/BA.2 BTI.  244 

 245 

Discussion 246 

 Elicitation of nAbs with broad activity against both known and newly emerging variants 247 

is highly desirable and vital in controlling the current COVID-19 pandemic. Here we studied 248 

the impact of vaccine interval on the breadth and potency of the SARS-CoV-2 neutralizing 249 

antibody response. We showed that an extended interval between the 1st and 2nd dose of the 250 

BNT162b2 vaccine enhances neutralization breadth initially. However, a third vaccine dose 251 

generated a robust and broad neutralizing response against VOCs independent of the interval 252 

between 1st and 2nd vaccine doses. It has been extensively reported that ‘hybrid’ immunity, 253 
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immunity derived from SARS-CoV-2 infection followed by vaccination, leads to superior 254 

neutralization following 1-dose of COVID-19 vaccine [12-16]. Our results showing higher 255 

antibody binding and neutralization in previously infected individuals receiving one BNT162b2 256 

dose are consistent with these reports.  257 

Here, we show than an extended interval between the 1st and 2nd vaccine dose 258 

enhances the immune response in four ways. Firstly, and similar to previous reports, there is 259 

an increase in IgG binding (ED50) to Spike in the extended booster group following the 2nd 260 

immunization [23, 28, 29] and secondly, the Spike-reactive IgG bind with higher avidity [23]. 261 

Thirdly, broader neutralizing activity against VOCs (including BA.1) is generated [30, 31]. 262 

Finally, a higher percentage of Spike-reactive IgG+ memory B cells is detected in SARS-CoV-263 

2 naïve individuals receiving an extended booster. Binding avidity correlated most strongly 264 

with the ID50 against the most antigenically distinct VOCs. The higher binding avidity in the 265 

extended group suggests that antibodies have undergone higher levels of antibody maturation 266 

[21-24]. Indeed, wider SARS-CoV-2 neutralization breadth has been associated with 267 

increased somatic hypermutation [12, 32-34]. We have recently reported that mAbs isolated 268 

from an individual receiving 2-doses of the ChadOx1 AZD1222 vaccine at a 12-week interval 269 

were more highly mutated than those isolated from SARS-CoV-2 convalescent donors and 270 

displayed greater neutralization breadth [32]. Several studies have shown that mRNA 271 

vaccination leads to a robust memory B cell response and induces persistent germinal centre 272 

reactions that continue for months after primary vaccination [12, 19, 35, 36]. Therefore, a 273 

longer interval between the 1st and 2nd vaccine dose would allow extended germinal centre 274 

reactions to take place, leading to increased levels of somatic hypermutation and higher 275 

affinity to vaccine antigen.  276 

Neutralization titres decreased 6 months post 2nd vaccine dose [20]. However, 277 

consistent with previous research, we show that titres are boosted following the 3 rd BNT162b2 278 

vaccination. Importantly, neutralization breadth increased against beta and omicron sub-279 

lineages independent of the interval between the 1st and 2nd vaccine doses leading to overall 280 

similar levels of cross-neutralizing activity in both the short and extended booster groups. This 281 
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increase in neutralization breadth was accompanied by an increase in the Spike-reactive IgG 282 

binding avidity in the short booster group, indicative of continued affinity maturation. 283 

Nussenzweig and co-workers identified antibody lineages that had undergone further somatic 284 

hypermutation following a 3rd dose of COVID-19 mRNA vaccine and these mAbs had superior 285 

neutralization breadth and potency [37]. Relevant to the COVID-19 pandemic at the time of 286 

writing (June 2022), neutralization against the antigenically distant VOCs BA.1 [3-5, 8], BA.2 287 

[2, 38, 39] and BA.4/BA.5 [40-42] also increased following a 3rd vaccine dose in both groups.  288 

Following BTI during the UK BA.1 or BA.2 wave, neutralization titres against D614G, 289 

BA.1, BA.2 and BA.4/BA.5 increased in this cohort independent of previous SARS-CoV-2 290 

infection. The fold increases in GMT were larger against Omicron sub-lineages compared to 291 

against D614G. Increases in omicron sub-lineage neutralization following omicron BTI has 292 

been observed in other cohorts [43-45]. Furthermore, boosting mRNA vaccinated mice with 293 

an omicron/BA.1 based mRNA vaccine increased serum neutralization activity and protection 294 

against omicron/BA.1 [46]. Recent studies indicate that the increase in cross-neutralizing 295 

activity is mostly driven by re-activation of B cell clones initially generated through vaccination 296 

with Wuhan-1 Spike that cross-react with the VOC, with little evidence of the generation of a 297 

de novo VOC-specific antibody response [44, 47, 48]. These observations are contradictory 298 

to recent reports suggesting that antibody responses to omicron/BA.1 were limited following 299 

an omicron BTI in triple vaccinated donors who had been infected prior to vaccination [49]. 300 

The findings of this study are applicable in populations where COVID-19 vaccine 301 

coverage remains low and where there is limited vaccine supply. In vaccine naïve populations, 302 

an extended interval will likely be beneficial through generation of broader antibody-based 303 

immunity against VOCs in the first six months following the 2nd vaccine dose. Indeed, vaccine 304 

effectiveness was shown to be significantly higher in those receiving a longer interval between 305 

mRNA doses [50, 51]. However, whilst there is broader activity following the 2nd vaccine dose 306 

in the extended group, there would be a longer period following the 1st vaccine in which 307 

antibody titres will remain low and narrow which in turn may lead to a higher risk of infection 308 

during this period. Importantly, despite the interval between the 1st and 2nd vaccine doses, a 309 
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third vaccine dose increases neutralization against the current VOCs including omicron sub-310 

lineages BA.1, BA.2, BA.4 and BA.5. 311 

In summary, in a SARS-CoV-2 naïve population, an extended interval between the 1st 312 

and 2nd doses of BNT162b2 leads to an increased neutralization breadth, Spike binding avidity 313 

and frequency of Spike-reactive memory B cells. However, this advantage is lost when a 3 rd 314 

vaccine dose is administered 6-8 months later where broad neutralization against current 315 

omicron sub-lineages is observed in both groups. These findings provide insights into 316 

optimizing vaccine regimens to provide the greatest neutralization breadth. 317 

 318 

Limitations of the study 319 

A limitation of this study is the relatively small sample size in each group which limits 320 

the power of the statistical analysis. The impact on cell-mediated immune responses has not 321 

been investigated. However, Hall et al have previously show that no significant differences in 322 

Spike-specific polyfunctional CD4+ T cell responses between the short and extended groups 323 

[52] whereas Payne et al reported higher levels of these cells in the extended group [28]. This 324 

study does not assess whether the broader neutralization response in the extended-group 325 

reduced breakthrough infections. 326 

 327 

Materials and Methods: 328 

 329 

Ethics. This study used human samples collected with written consent as part of a study 330 

entitled “Antibody responses following COVID-19 vaccination”. Ethical approval was obtained 331 

from the King’s College London Infectious Diseases Biobank (IBD) (KDJF-110121) under the 332 

terms of the IDB’s ethics permission (REC reference: 19/SC/0232) granted by the South 333 

Central – Hampshire B Research Ethics Committee in 2019.  334 

 335 

Protein expression and purification.  336 
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Recombinant Spike and nucleoprotein for ELISA were expressed and purified as 337 

previously described [17, 53].  338 

 339 

ELISA (Spike and nucleoprotein).  340 

96-well plates (Corning, 3690) were coated with antigen at 3 μg/mL overnight at 4°C. 341 

The plates were washed (5 times with PBS/0.05% Tween-20, PBS-T), blocked with blocking 342 

buffer (5% skimmed milk in PBS-T) for 1 h at room temperature. Serial dilutions of plasma in 343 

blocking buffer were added and incubated for 2 hr at room temperature. Plates were washed 344 

(5 times with PBS-T) and secondary antibody was added and incubated for 1 hr at room 345 

temperature. IgG was detected using Goat-anti-human-Fc-AP (alkaline phosphatase) 346 

(1:1,000) (Jackson: 109-055-098). Plates were washed (5 times with PBS-T) and developed 347 

with AP substrate (Sigma) and read at 405 nm. 348 

 349 

Avidity ELISA 350 

The ELISA was carried out as described above. A 4-point titration (starting at 1:25, 1:4 dilution 351 

series) was used. After incubation of plasma, one half of the plate was incubated with 8M Urea 352 

and the other half incubated with PBS for 10mins before washing 5-time with PBS-T. The area 353 

under the curve was determined in Prism (Log dilution). The avidity index was calculated using 354 

the following formula:  355 

𝐴𝑣𝑖𝑑𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = 100 ∗ (
 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 𝑤𝑖𝑡ℎ 8𝑀 𝑈𝑟𝑒𝑎

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑈𝑟𝑒𝑎
) 356 

 357 

Neutralisation assay with SARS-CoV-2 pseudotyped virus 358 

Pseudotyped HIV-1 virus incorporating the SARS-CoV-2 Spike protein (either wuhan-1, 359 

D614G, alpha (B.1.1.7), beta (B.1.351), delta (B.1.671.2), mu (B.1.621), omicron (BA.1, BA.2 360 

or BA.4/5) were prepared as previously described [17, 54]. Viral particles were produced in a 361 

10 cm dish seeded the day prior with 5x106 HEK293T/17 cells in 10 ml of complete Dulbecco’s 362 

Modified Eagle’s Medium (DMEM-C, 10% FBS and 1% Pen/Strep) containing 10% (vol/vol) 363 
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foetal bovine serum (FBS), 100 IU/ml penicillin and 100 g/ml streptomycin. Cells were 364 

transfected using 90 g of PEI-Max (1 mg/mL, Polysciences) with: 15g of HIV-luciferase 365 

plasmid, 10 g of HIV 8.91 gag/pol plasmid and 5 g of SARS-CoV-2 spike protein plasmid 366 

[55, 56]. The supernatant was harvested 72 hours post-transfection. Pseudotyped virus 367 

particles was filtered through a 0.45m filter, and stored at -80C until required. 368 

Serial dilutions of plasma samples (heat inactivated at 56°C for 30mins) were prepared with 369 

DMEM media (25µL) (10% FBS and 1% Pen/Strep) and incubated with pseudotyped virus 370 

(25µL) for 1-hour at 37°C in half-area 96-well plates. Next, Hela cells stably expressing the 371 

ACE2 receptor were added (10,000 cells/25µL per well) and the plates were left for 72 hours. 372 

Infection levels were assessed in lysed cells with the Bright-Glo luciferase kit (Promega), using 373 

a Victor™ X3 multilabel reader (Perkin Elmer). Each serum sample was run in duplicate and 374 

was measured against the five SARS-CoV-2 variants within the same experiment using the 375 

same dilution series. 376 

FACS analysis of Spike-specific memory B cells.  377 

Flow cytometry of cryopreserved PBMCs was performed on a BD FACS Melody as previously 378 

described. SARS-CoV-2 Wuhan-1 Spike was pre-complexed with the streptavidin fluorophore 379 

(Alexa-488) at a 4:1 molar ratio prior to addition to cells. PBMCs were incubated with Fc block 380 

for 15 minutes at 4°C. PBMCs were stained with anti-CD3-BV510 (Biolegend), anti-CD19-381 

PerCP-Cy5.5 (Biolegend), anti-IgD-Pacific Blue (Biolegend), anti-CD27-BV785 (Biolegend), 382 

anti-CD38-APC-Cy7 (Biolegend), anti-CD20-APC (Biolegend), anti-IgG-PE-Cy7 (BD 383 

Biosciences), anti-IgM-PE (Biolegend) and Spike-Alexa Fluor 488 for 1 hour at 4°C. PBMCs 384 

were washed with PBS and stained with live/dead for 1 hour at 4°C.    385 

 386 

  387 
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Figures and legends: 388 

 389 

Figure 1: A) Vaccination and blood sampling schedule in short and extended vaccine groups. 390 

Horizontal line shows the mean age for each group. B) Difference in age between short- and 391 

extended-groups. C) Gender of participants in each group. D) Frequency of previous SARS-392 

CoV-2 infection. E) Length of time between the 1st and 2nd dose of BNT162b2 vaccine. 393 

Horizontal line shows the mean days between vaccine doses. Short- and extended-groups 394 

shown in circle and triangles, respectively.  395 
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   397 

Figure 2: IgG binding titres to SARS-CoV-2 Spike over time. A) Comparison of geometric 398 

mean ED50 values between SARS-CoV-2 naïve individuals (open black circle) and those 399 

previously infected before vaccination (grey/red circles) in short-booster group. B) 400 

Comparison of geometric mean ED50 values between SARS-CoV-2 naïve individuals (open 401 

black triangle) and those previously infected before vaccination (grey/red triangle) in 402 

extended-booster group. C) Comparison of geometric mean ED50 values between short- and 403 

extended-booster groups at visit 3, 4 and 5. Dotted line represents the lowest limit of detection 404 

for the assay. D’Agostino and Pearson tests were performed to determine normality. Based 405 

on this result, multiple Mann-Whitney tests or unpaired t tests using a two-stage linear step-406 

up procedure of Benjamini, Krieger and Yekutieli were employed to determine significance 407 

between groups. ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 408 
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Figure 3: Neutralization breadth and potency following two-doses of BNT162b2. 412 

Neutralization was measured against wuhan-1 (WT), alpha, delta, mu, beta and omicron/BA.1. 413 

A) Neutralization following a single BNT162b2 vaccine dose (visit 2) in naïve individuals (n = 414 

18). B) Neutralization following a single BNT162b2 vaccine dose in individuals infected with 415 

SARS-CoV-2 prior to vaccination (n = 10). Data from individual donors are linked and fold 416 

changes compared to WT shown above. C) GMT comparison between SARS-CoV-2 naïve 417 

individuals (open triangle) and convalescent donors (grey triangle) following one vaccine dose. 418 

The horizontal line shows the GMT. Neutralization data following 2-vaccine doses (visit 3) in 419 

SARS-CoV-2 naïve individuals in D) the short booster group (n = 16), and E) the extended 420 

booster group (n = 18). Data from individual donors are linked and fold changes compared to 421 

WT shown above. F) GMT comparison in SARS-CoV-2 naïve individuals receiving the short 422 

booster interval (open circle) and extended booster (open triangle). The horizontal line shows 423 

the GMT. Neutralization data following 2-vaccine doses (visit 3) in SARS-CoV-2 convalescent 424 

individuals in G) the short booster group (n = 3) and H) the extended booster group (n = 9). 425 

Data from individual donors are linked and fold changes compared to WT shown above. I) 426 

GMT comparison in SARS-CoV-2 convalescent individuals receiving the short booster interval 427 

(grey circle) and extended booster (grey triangle). The horizontal line shows the GMT. J) 428 

Neutralization of SARS-CoV-1. The horizontal dotted line is the lowest limit of detection. 429 

D’Agostino and Pearson tests were performed to determine normality. Based on this result, 430 

multiple Mann-Whitney tests using a two-stage linear step-up procedure of Benjamini, Krieger 431 

and Yekutieli were employed to determine significance between groups. ns P > 0.05, * P ≤ 432 

0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 433 

434 
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Figure 4. Higher percentage of SARS-CoV-2 Spike-reactive memory B cells are detected 438 

in the extended booster group. Percentage of Spike-reactive memory B cells were 439 

determined by flow cytometry. A) Example pre-bleed (visit 1) PBMC staining for SARS-CoV-440 

2 naïve individual. B) Example visit 3 PBMC staining for SARS-CoV-2 naïve individual. 441 

Example of full flow analysis shown if Figure S1A. C) Percentage Spike-reactive memory B 442 

cells at visit 1 and visit 3 were determined by flow cytometry. Previously infected individuals 443 

shown in red/grey. Extended and short interval groups shown with triangle and circle symbols, 444 

respectively. D’Agostino and Pearson tests were performed to determine normality. Based on 445 

this result, differences between groups were assessed using a Brown-Forsythe ANOVA test 446 

with Dunnett's T3 multiple comparisons post hoc.  ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 447 

0.001 and **** P ≤ 0.0001. D) Percentage of IgG, IgM or other Spike-reactive memory B cells 448 

for each vaccine group. E) Correlation between Spike IgG ED50 and percentage of Spike-449 

reactive memory B cells. F) Correlation between ID50 against Wuhan-1 pseudotyped virus and 450 

percentage of Spike-reactive memory B cells. (Spearman’s correlation, r; a linear regression 451 

was used to calculate the goodness of fit, r2).  452 
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Figure 5. Neutralization potency decreases 6-months post 2nd vaccine but breadth and 457 

potency increase after a 3rd vaccine dose. Neutralization ID50 against WT, alpha, delta, beta 458 

and omicron/BA.1 at visits 3, 4 and 5 in the A) short (circle) and B) extended (triangle) booster 459 

groups for SARS-CoV-2 naïve individuals and C) short (grey circle) and D) extended (grey 460 

triangle) booster groups previously infected individuals. Difference between GMT at visits 3, 461 

4 and 5 were determined using Mann-Whitney unpaired t-test. D’Agostino and Pearson tests 462 

were performed to determine normality. Based on this result, differences between groups were 463 

assessed using either one-way ANOVA (Tukey’s multiple comparisons post hoc), Kruskal-464 

Wallis test (Dunn's multiple comparisons post hoc) or Friedman test (Dunn's multiple 465 

comparisons post hoc). ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 466 

Avidity index for IgG binding to Spike was measured at E) visit 3, F) visit 4 and G) visit 5 and 467 

compared across groups. Avidity index was calculated by comparing the area under the curve 468 

(AUC) with/without an 8M Urea washing step. D’Agostino and Pearson tests were performed 469 

to determine normality. Based on this result, differences between groups were assessed using 470 

a Kruskal-Wallis test with Dunn’s multiple comparisons post hoc. H) Correlations between 471 

avidity index and ID50 against VOCs following 2-doses of BNT162b2 vaccine. I) Correlation 472 

between avidity index and % Spike-reactive memory B cells. (Spearman’s correlation, r; a 473 

linear regression was used to calculate the goodness of fit, r2). 474 
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 Figure 6: Neutralization against omicron sub-lineages following 3 vaccine doses 476 

and/or BA.1/BA.2 breakthrough infection. Neutralization breadth and potency was 477 

measured against D614G, BA.1, BA.2 and BA.4/BA.5. Analysis of sera collected A) 3-weeks 478 

post 3rd BNT162b2 vaccine dose (visit 5), B) 6-months post 3rd vaccine (visit 6) and C) 479 

following breakthrough infection (visit 7) (presumed to be BA.1 or BA.2). D) Comparison of 480 

titres 3-weeks (visit 5) and 6-months post 3rd boost (visit 6). E) Comparison of titres 3-weeks 481 

post 3rd boost (visit 5) and following BTI (visit 7). Samples from a single individual are joined. 482 

Short and long booster groups shown with circle and triangle symbols, respectively. 483 

Individuals infected with SARS-CoV-2 prior to vaccination are shaded grey. Based on this 484 

result, multiple Mann-Whitney tests or unpaired t tests using a two-stage linear step-up 485 

procedure of Benjamini, Krieger and Yekutieli were employed to determine significance 486 

between groups. ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001.  487 
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