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Abstract 
Although over 90 independent risk variants have been identified for Parkinson’s disease using 
genome-wide association studies, all studies have been performed in just one population at the 
time. Here we performed the first large-scale multi-ancestry meta-analysis of Parkinson’s 
disease with 49,049 cases, 18,785 proxy cases, and 2,458,063 controls including individuals of 
European, East Asian, Latin American, and African ancestry.  In a single joint meta-analysis, we 
identified 78 independent genome-wide significant loci including 12 potentially novel loci (MTF2, 
RP11-360P21.2, ADD1, SYBU, IRS2, USP8:RP11-562A8.5, PIGL, FASN, MYLK2, AJ006998.2, 
Y_RNA, PPP6R2) and finemapped 6 putative causal variants at 6 known PD loci. By combining 
our results with publicly available eQTL data, we identified 23 genes near these novel loci 
whose expression is associated with PD risk. This work lays the groundwork for future efforts 
aimed at identifying PD loci in non-European populations. 

Introduction 
Parkinson’s disease (PD) is a neurodegenerative disease pathologically defined by Lewy body 
inclusions in the brain and the death of dopaminergic neurons in the midbrain. The identification 
of genetic risk factors is imperative to mitigating the global burden of PD, one of the fastest 
growing age-related neurodegenerative diseases. The largest PD Genome-Wide Association 
Study (GWAS) meta-analysis to date uncovered 90 independent genetic risk variants in 
individuals of European ancestry 1. Similarly, large-scale PD GWAS meta-analyses of East 
Asian2 and a single GWAS of Latin American3 individuals have each identified 2 risk loci that 
were not previously identified in Europeans. For PD, there are now large-scale efforts to 
sequence and analyze genomic data in under-represented populations with the goal of both 
identifying novel associated loci, fine mapping known loci, and addressing the inequality that 
exists in current precision medicine efforts4,5. Here we performed a large-scale multi-ancestry 
GWAS meta-analysis of PD by including individuals from four ancestral populations. This effort 
can serve as a guide for future genetic analyses to increase ancestral representation.  

Methods 
In brief, we used a single joint meta-analysis study design (Figure 1) due its efficiency over a 
two-stage GWAS design6. All datasets underwent quality control filters and were harmonized to 
hg19. We used datasets representing four different ancestry groups: European, East Asian, 
Latin American, and African. In addition to previously described results from European1, East 
Asian2, and Latin American3 cohorts, we also used FinnGen and additional datasets for East 
Asian, Latin American and African cohorts from 23andMe, Inc. All multi-ancestry meta-analyses 
were conducted using a union of a random-effects model and a multi-ancestry meta-regression 
model using PLINK 1.97 and MR-MEGA8. MR-MEGA has the greatest power to detect 
heterogeneous effects across the different cohorts, while the random-effects model has greater 
power to detect homogenous allelic effects8. In total, we included 49,049 PD cases, 18,618 
proxy cases (first-degree relative with PD), and 2,458,063 neurologically-healthy controls. 
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Bonferroni-adjusted alpha for genome-wide significant variants was set to a more stringent 5 × 
10-9 for all multi-ancestry meta-analyses to account for the larger number of haplotypes resulting 
from the ancestrally diverse datasets9. Fine-mapping was also performed using MR-MEGA, 
which uses ancestry heterogeneity to increase fine-mapping resolution. 

We ran our meta-analysis results through the Proportion of Population-specific and 
Shared Causal Variants (PESCA)10 software to estimate the population specific and shared 
burden on the variants found in the meta-analysis. Only East Asian and European populations 
were compared due to the smaller sample size of the other populations. We used the Functional 
Mapping and Annotation (FUMA) software11,12 to functionally annotate the random effect results 
and run Multi-marker Analysis of GenoMic Annotation (MAGMA)13 for gene-ontology, tissue-
level, and single-cell expression data. We also searched our novel loci through GTEx v8 brain 
tissue eQTLs and multi-ancestry eQTL meta-analysis of the brain14 to correlate novel loci with 
gene expression data, then searched the significant-eQTL genes and genes near the loci with 
previously completed summary-based mendelian randomization (SMR)15 results to correlate 
said genes with PD risk. Detailed methods are available in the Online Methods and the Data 
and Code Availability sections.  

Results 

Multi-ancestry meta-analyses confirm 62 known loci and nominate 
12 novel loci 
All together we found 12 novel PD risk loci and 66 hits in known risk loci from single ancestry 
GWAS (Supplementary Table S2). 9 of the novel loci found in the random-effect method 
showed homogeneous effects across the different ancestries. The 3 loci identified exclusively in 
MR-MEGA showed ancestrally heterogeneous effects. All three loci showed evidence for 
ancestral heterogeneity (PANC-HET < 0.05) but no significant residual heterogeneity (PRES-HET > 
0.148), supporting the idea that the signals are due to population structural differences rather 
than other confounding factors. The IRS2 locus (PANC-HET = 5.3 x 10-3) shows the biggest 
departure in allelic effects in the Finnish cohort (Supplementary Figure 4). The MYLK2 locus 
has the main European cohort at odds with the Latin American and Finnish cohorts (PANC-HET = 
0.035). While this is a novel single-trait GWAS locus, its lead SNP was previously discovered as 
a potential pleiotropic locus in a multi-trait conditional/conjunctional false discovery rate (FDR) 
study between schizophrenia and PD16. Lastly, the AJ006998.2 locus had the most significant 
ancestral heterogeneity (PANC-HET = 4.74 x 10-5) and its effects were specific to European and 
African cohorts. 
 
We found 17 suggestive loci that failed to meet the significance threshold at random-effect but 
met the more common threshold of P < 5 x 10-8 in fixed-effect and P < 1 x 10-6 in random-effect 
(Supplementary Table S2). 14 of these regions qualified as novel loci. Two loci near RP11-
182I10.3 and HS1BP3 were exclusively found in the 23andMe Latin American and African 
cohorts. The lead SNPs (rs578139575, rs73919910) for these loci are very rare in European 
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populations but more common in Africans and Latin Americans (gnomAD v3.1.2 EUR: 
0.0001616, 0.002307; AFR: 0.01637, 0.08837; AMR:0.004063, 0.01905). If confirmed, these 
loci would confer a large amount of PD protective effect (beta: -1.3, -0.54). These loci merit 
further studies in the African and Latino populations. 

Fine mapping finds 6 putative SNPs in 6 loci 
6 putative causal variants were found in 6 loci in TMEM163, TMEM175, SNCA, HIP1R, MAPT, 
and LSM7 (Table 4). All putative causal variants had posterior probabilities (PP) of causality > 
0.99 and overlapped with known PD loci. Our results confirmed the previous results of the 
TMEM175 M393T coding variant as the likely causal variant17. We reported only single-variant 
99% credible sets as MR-MEGA assumes a single causal variant in a GWAS signal. 99% 
credible sets in 57 additional loci can be found in Supplementary Table S3. 

MAGMA Gene Ontology analysis finds enrichment in brain and 
pituitary tissues 
Out of 15,479 gene ontology sets in MsigDB c5, 111 gene sets were significantly enriched 
among the random effect hits, a significant increase from previous 11 gene sets in Nalls et al. 
2019. Out of the 11, only 3 gene ontology terms were replicated in the multi-ancestry: vacuole 
(PFDR = 6.9 x 10-4), vacuolar part (PFDR = 0.009), and vacuolar membrane (PFDR = 0.01). At the 
tissue level the genes of interest were enriched in all brain cells as well as pituitary tissue 
(Supplementary Figure 9), consistent with the results from Nalls et al. 20191. 

When analyzing single-cell RNAseq data, there was no expression enrichment across 
88 brain cell types in mouse brain data DropViz 18 (Supplementary Figure 13). When narrowed 
down to substantia nigra tissue, glutamate receptor (Grin2c) in neurons were enriched 
(Supplementary Figure 13). In human midbrain data 19 oculomotor and trochlear nucleus 
(OMTN), dopaminergic (DA1), neuroblast GABAnergic (NbGABA), and GABA were enriched 
(Supplementary Figure 13). 
 
Out of 15,479 gene ontology sets in MsigDB c5, 110 gene sets were significantly enriched 
among the random effect hits (Supplementary Table S6), a significant increase from previous 11 
gene sets in Nalls et al. 2019. Out of the 11, only 3 gene ontology terms were replicated in the 
multi-ancestry: vacuole (PFDR = 6.9 x 10-4), vacuolar part (PFDR = 0.009), and vacuolar 
membrane (PFDR = 0.01). At the tissue level the genes of interest were enriched in all brain cells 
as well as pituitary tissue (Supplementary Figure 9), consistent with the results from Nalls et al. 
20191. 

eQTL and SMR nominate 23 putative genes near novel loci 
When comparing the SNPs in novel loci with multi-ancestry brain eQTL results14, 28 genes 
showed high levels of association (Supplementary Figures 8). SMR found 23 genes near four 
novel loci associated with PD risk. Interestingly, PPP6R2 and CENPV expression changes in 
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substantia nigra were associated with PD risk. PPP6R2 or protein phosphatase 6 regulatory 
subunit 2 is a regulatory protein for Protein Phosphatase 6 Catalytic Subunit (PPP6C), which is 
involved in the vesicle-mediated transport pathway. CENPV or Centromere Protein V is involved 
in centromere formation and cell division. Detailed results for eQTL and the SMR can be found 
in Supplementary Table S8, S9, and S10. 

Discussion 
This is the first large-scale GWAS meta-analysis of PD that incorporates multiple diverse 
ancestry populations. From the joint cohort analysis, we were able to confirm 65 independent 
known risk loci and identify 12 potentially novel risk loci, 9 with homogeneous effect and 3 with 
heterogeneous effect across the different cohorts. We further found 17 suggestive loci at the 
more traditional method of fixed-effect at 5 x 10-8 and fine-mapped 11 putative SNPs in 11 of the 
known loci by leveraging the diverse ancestry populations. We highlighted tissues and cell types 
involved with the loci, which were consistent with previous findings1. Finally we used SMR to 
nominate 23 putative genes near our novel loci. 

Novel loci contain genes previously implicated with PD. The MTF2 and PPP6R2 loci 
contain genes TMED5 and PPP6R2, which intersect with golgi body20 and vesicular transport 
pathways21,22, both implicated in PD pathogenesis23–28. Because substantia nigra deterioration is 
a hallmark pathogenic feature of PD, PPP6R2, and CENPV expression in substantia nigra and 
their association with PD merit additional investigation. Within a known locus, a new 
independent signal was found in RILPL1 (rs28659953), which interacts with LRRK2-
phosphorylated Rab10 to block primary cilia generation29. All potentially novel PD loci identified 
in this analysis will require additional replication and functional validation to elucidate their role 
in PD pathogenesis. Previous findings in European populations found that the known variants 
explained 16–36% of the heritable risk1, and while we did not test for genetic liability of the novel 
loci, they have been added to the list of variants that explain potential heritable PD risk.  

We found that 26 of the 68 detected known PD loci have nominal ancestral 
heterogeneity (PANC-HET < 0.05) and 5 significant after bonferroni correction (PANC-HET < 
0.05/4,512 significant SNPs) (Supplementary Table S2). This heterogeneity may be caused by 
significant differences in allele effect sizes and frequencies between the different ancestry 
populations and thus should be studied as potential loci with ancestrally divergent risk. 18 
known loci from single-ancestry GWASes failed to replicate (Supplementary Table S4) which 
implies that the variants associated in these loci may only be relevant in certain populations. 
However, it is worth noting that there are large differences in statistical power for each included 
ancestry. Additional population-specific loci will likely reach significance when larger sample 
sizes are available for non-European datasets. 

Our fine mapping isolated several putative causal variants in previously discovered loci. 
TMEM175-rs34311866 has been previously identified as functionally relevant to PD risk17, 
which is consistent with our fine-mapping results. While the fine-mapping results provided by 
MR-MEGA are sufficient to identify putative causal variants for loci driven by one independent 
signal, multiple variants in a locus can contribute to complex traits. The additive and epistatic 
effects of multiple causal variants in a locus can be difficult to interpret when the effects 
associated with each independent signal are small. 
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Although this is the largest multi-ancestry PD meta-analysis GWAS to date, the 
European population is still overrepresented in this analysis. Around 79% of effective PD cases 
are of European descent. Individuals of African descent were particularly underpowered at just 
0.5% of the effective PD cases. The discoveries in our study warrant future efforts to expand the 
studies in more diverse populations. The Global Parkinson’s Genetics Program (GP2) is 
partnering with institutions that care for underrepresented populations to generate data for these 
underserved communities all over the world5, and we will continue the ongoing analysis as more 
participants are genotyped. Just as the first PD GWASs failed to identify significant signals 30,31, 
we are confident that future diverse-ancestry GWAS will produce impactful association results 
as sample sizes increase. Further efforts in multi-ancestry and non-European GWAS will 
identify loci that are more relevant to the global population and will continue to facilitate fine 
mapping efforts to identify the genetic variants that drive these associations. 

Data and code availability 
The analysis pipeline code is available on GP2 github: https://github.com/GP2code/GP2-
WorkingGroups/tree/main/CD-DAWG-Complex-Data-Analysis/PROJECTS/GP2-Multiancestry-
PD  
 
GWAS summary statistics for 23andMe datasets (post-Chang and data included in Chang et al. 
2017 and Nalls et al. 2014) will be made available through 23andMe to qualified researchers 
under an agreement with 23andMe that protects the privacy of the 23andMe participants. 
Please visit research.23andme.com/collaborate/#publication for more information and to apply 
to access the data. An immediately accessible version of the summary statistics is available 
here https://drive.google.com/file/d/1TmDZNFgyQvsOZ0xu-aZmBpVCpeUUa0UX/  
excluding Nalls et al. 2014, 23andMe post-Chang et al. 2017 and Web-Based Study of 
Parkinson’s Disease (PDWBS) but including all analyzed SNPs. After applying with 23andMe, 
the full summary statistics including all analyzed SNPs and samples in this GWAS meta-
analysis will be accessible to the approved researcher(s). 
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Online Methods 

Study Design and Cohort Descriptions 
We used a single joint meta-analysis study design to maximize statistical power 6. We used 
datasets representing four different ancestry groups: European, East Asian, Latin American, 
and African. The meta-analysis included 49,049  PD cases, 49,049 PD proxy cases (participant 
with a parent with PD) and 2,458,063 neurologically normal controls (Table 1, Supplementary 
Table S1). GWAS results of European1, East Asian2, and Latin American3 populations were 
previously reported. African dataset as well as the additional Latin American and East Asian PD 
GWAS summary statistics were provided by 23andMe. The Finnish PD GWAS summary 
statistics was acquired from FinnGen Release 4 (G6_PARKINSON_EXMORE). For the 
FinnGen data, we chose the endpoint “Parkinson’s Disease (more controls excluded)” 
(G6_PARKINSON_EXMORE), which excludes control participants with psychiatric diseases or 
neurological diseases. While some FinnGen GWAS results also include UK Biobank 
participants, our FinnGen data did not include any UK Biobank participants. 

23andMe diverse ancestry data 
All self-reported PD cases and controls from 23andMe provided informed consent and 
participated in the research online, under a protocol approved by the external AAHRPP-
accredited IRB, Ethical & Independent Review Services (E&I Review). Participants were 
included in the analysis on the basis of consent status as checked at the time data analyses 
were initiated. The name of the IRB at the time of the approval was Ethical & Independent 
Review Services. Ethical & Independent Review Services was recently acquired, and its new 
name as of July 2022 is Salus IRB (https://www.versiticlinicaltrials.org/salusirb). Samples were 
genotyped on one of five genotyping platforms: V1 and V2, which are variants of Illumina 
HumanHap550+ BeadChip; V3, Illumina OmniExpress+ BeadChip; V4, Illumina custom array 
that includes SNPs overlapping V2 and V3 chips; or V5, Illumina Infinium Global Screening 
Array. For inclusion, samples needed a minimal call rate of 98.5%. Genotyped samples were 
then phased using either Finch or Eagle232 and imputed using Minimac3 and a reference panel 
of 1000 Genomes Phase III33 and UK10K data34. For this replication study, samples were 
classified as African, East Asian, or Latino using a genotype-based pipeline35 consisting of a 
support vector machine and a hidden Markov model, followed by a logistic classifier to 
differentiate Latinos from African Americans. Unrelated individuals were included in the 
analysis, as determined via identity-by-descent (IBD). Variants were tested for association with 
PD status using logistic regression, adjusting for age, sex, the first five PCs, and genotyping 
platform. Reported p-values were from a likelihood ratio test. 

Multi-ancestry Meta-Analysis 
We performed a multi-ancestry meta-analysis of GWAS results using Meta-Regression of Multi-
Ethnic Genetic Association (MR-MEGA)8 and PLINK 1.9. MR-MEGA performs a meta-
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regression by generating axes of genetic variation for each cohort, which are then used as 
covariates in the meta-analysis to account for differences in population structure. While MR-
MEGA was able to generate 4 principal components as axes of genetic variation, 3 principal 
components visibly separated the super population ancestries and explained 98% of the 
population variance (Supplementary Figure 7). Therefore we used 3 principal components to 
minimize overfitting. MR-MEGA has reduced power to detect associations for variants with 
homogeneous effects across populations. It is therefore recommended to run MR-MEGA 
alongside another meta-analysis method. PLINK 1.9 was used to perform random-effect (RE) 
meta-analysis to detect homogenous allelic effects. 

Before the analysis, all datasets were harmonized to genome build hg19 using 
CrossMap36 and all variants were filtered by imputation score (r2 > 0.3) and minor allele 
frequency (MAF >= 0.001). Only autosomal variants were kept in the final results. In total 
20,590,839 variants met the inclusion criteria. Only 5,662,641 SNPs were analyzed in the MR-
MEGA analysis due to cohort-number requirements. Bonferroni-adjusted alpha was set to a 
more stringent 5 × 10-9 for all multi-ancestry meta-analyses to account for the larger number of 
haplotypes resulting from the ancestrally diverse datasets9. Genomic inflations were measured 
for all cohorts and the meta-analysis. Inflation for cohorts with large discrepancy between the 
case and control numbers were normalized to 1000 cases and 1000 controls. All inflation was 
nominal and below 1.02 (Supplementary Figure 3, Supplementary Table S1). No genomic 
control was applied prior to meta-analysis. 

We identified genomic risk loci within our meta-analysis results using Functional 
Mapping and Annotation (FUMA) v1.3.811,12. In brief, FUMA first identifies independent 
significant SNPs in the GWAS results by clumping all significant variants with the r2 threshold < 
0.6, then a locus is defined by merging linkage disequilibrium (LD) blocks of all independent 
significant SNPs within 250kb of each other. Start and end of a locus is defined by identifying 
SNPs in LD with the independent significant SNPs (r2 ≥�0.6) and defining a region that 
encompasses all SNPs within the locus. The 1000 Genome reference panel with all ancestries 
were used to calculate the r2. 

To determine if any associated loci in the meta-analysis were not previously identified, 
all significant SNPs were compared to the 92 known PD risk variants found in the previous two 
major meta-analyses1,2. Two variants identified in the Latin American admixture population3 
could not be replicated as the variants and their proxies were removed during quality control of 
the discovery cohort. When a genomic risk loci was scanned for significant variants in previous 
European and East Asian results. If the locus contained a significant hit in either results, the 
locus was annotated with the closest previously nominated risk SNP within 250kb. Any loci that 
did not have previously significant variants or failed the annotation step was considered a novel 
hit. 

Fine-Mapping 
Fine-mapping was performed using MR-MEGA8, which approximates a single-SNP Bayes’ 
factor in favor of association. This is reported as the natural log of Bayes’ factor (lnBF) per SNP 
in the MR-MEGA meta-analysis summary statistics. SNPs were selected at meta-GWAS 
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significance level (P < 5 × 10-9). Posterior probabilities (PPs) of driving the association signal at 
each locus were calculated from the Bayes' factor as follows:  

� � �
� �

∑�
���  � �

 

Where �j is the Bayes’ factor of the jth SNP within a locus with n number of SNPs. Credible set 
of SNPs with PP (� �) greater than 0.99 were accepted as putative causal variants. 

Putative variant burden estimation by population 

Proportion of population-specific and shared causal variants (PESCA)10 was used to estimate 
the population-specific and shared burden of the variants tested in the meta-analysis. In brief, 
genome-wide heritability was estimated for the European and East Asian GWAS summary 
statistics using LD Score regression (LDSC)37,38. Summary statistics of both populations were 
intersected with common variants with the 1000 Genome reference panels provided by PESCA, 
which have already been LD pruned (R2 > 0.95) and low frequency SNPs removed (minor allele 
frequency < 0.05). The intersected variants were further split according to independent LD 
regions from the European and East Asian populations. The genome-wide prior probabilities of 
population-specific and shared causal variants were calculated using default parameters or as 
otherwise recommended by PESCA, then the results were used to calculate the PP for each 
variant. When the lead SNP was unavailable in the results, proxy variants (r2 > 0.8) were used 
to approximate the PP for each variant. Other cohorts were not included due to sample size 
constraints for this method. 

Functional Annotation 
Functional annotation of the discovery results utilizing publicly available gene expression and 
ontology data was done using FUMA v1.3.811,12. The summary statistics were annotated by 
ANNOVAR39 through the FUMA platform. Our meta-analysis results were analyzed using Multi-
marker Analysis of GenoMic Annotation (MAGMA)13 to compare gene expression data from 
gene sets and tissues in GTEx v840. FUMA tested 15,479 gene sets and gene ontology terms 
from MsigDB v741 as well as single-cell RNAseq expression data from mouse brain samples in 
DropViz18 and human ventral midbrain samples19. Test parameters were set to default. Results 
were adjusted for multiple tests using Benjamini–Hochberg False Discovery Rate (FDR) 
correction with the alpha of 0.05. Additional pathway analyses of genes mapped by FUMA 
SNP2GENE were performed through GENE2FUNC with default parameters. 

SNPs in the novel loci were searched in multi-ancestry brain eQTL meta-analysis 
results14. We used a P-value cutoff of 10−6 as previously described14. eQTL and GWAS 
comparison plots were generated using LocusCompare42. Multi-SNP Summary-Based 
Mendelian Randomization (SMR) was used to test if DNA methylation and/or RNA expression of 
genes near the novel loci were associated with PD risk15. The nearest genes from the lead 
SNPs, significant genes in the multi-ancestry meta-analysis brain eQTL results, and significant 
genes in GTEx v8 brain tissue were chosen for SMR. In total 44 genes near the novel loci were 
searched in a list of previously completed PD SMR results15,43–51. The association signals were 
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adjusted using FDR correction with the alpha of 0.05 and all signals with PHEIDI > 0.05 were 
removed due to heterogeneity. 
 

Figures/Tables 
 
Table 1. Cohort Description 
 

Study Ancestral Population Cases/Proxy/Controls 

Nalls et al. 2019 European (EUR) 37,688 / 18,618 / 1,411,006 

Foo et al. 2020 East Asian (EAS) 6,724 / 0 / 24,851 

LARGE-PD 3 Latin American (AMR) 807 / 0 / 690 

FinnGen Release 4 European-Finnish (EUR) 1,587 / 0 / 94,096 

23andMe - African African (AFR) 288 / 0 / 193,985 

23andMe - East Asian East Asian (EAS) 322 / 0 / 151,905 

23andMe - Latino Latin American (AMR) 1,633 / 0 / 583,163 

Multi-ancestry meta-analysis  49,049 / 18,618 / 2,458,063 
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Figure 1 - Study design of Multi-Ancestry Meta-Analysis  
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Figure 2: Miami plot of random-effect and MR-MEGA meta-analyses. Top: random effect; Bottom: MR-
MEGA. Dotted lines indicate the bonferroni adjusted significant threshold of P < 5 x 10-9. All -log10P 
values greater than 40 were truncated to 40 for visual clarity. SNPs significant in random-effect and MR-
MEGA models are colored red and orange respectively. Novel loci are indicated by the nearest gene. 
 
 
Table 2. Meta-analysis results of lead SNPs in the novel loci. RE – random effect, A1 – effect allele, A2 – 
alternate allele, ANC-HET – ancestry heterogeneity, RES-HET – residual heterogeneity 
 

rsID 
Nearest 
Gene CHR:BP:A1:A2 BETA(RE) SE P(RE) P(MR-MEGA) 

P(ANC-
HET) 

P(RES-
HET) 

rs11164870 MTF2 1:93552187:C:G 0.054 0.009 1.15E-10 2.64E-09 0.229 0.928 

rs6806917 
RP11-
360P21.2 3:178861417:T:C -0.070 0.011 1.65E-10 3.43E-09 0.215 0.762 

rs16843452 ADD1 4:2849168:T:C -0.068 0.012 4.11E-09 3.19E-07 0.747 0.687 

rs6469271 SYBU 8:110644774:T:C -0.056 0.010 3.62E-09 2.04E-07 0.590 0.954 

rs1078514 IRS2 13:110463168:T:C 0.068 0.026 0.004817 2.30E-09 5.30E-03 0.261 

rs28648524 
USP8:RP11-
562A8.5 15:50787409:A:T 0.064 0.010 6.45E-10 2.58E-08 0.406 0.661 

rs11650438 PIGL 17:16234260:A:G 0.050 0.009 2.93E-09 1.46E-07 0.528 0.288 

rs4485435 FASN 17:80045086:C:G 0.082 0.014 2.61E-09    

rs6060983 MYLK2 20:30420924:T:C 0.069 0.037 0.03221 3.86E-09 0.035 0.149 

rs1736020 AJ006998.2 21:16812552:A:C 0.006 0.005 0.8853 1.12E-09 4.74E-05 0.638 

rs73174657 Y_RNA 22:41434158:A:G -0.059 0.010 3.81E-09 4.90E-07 0.983 0.655 

rs10775809 PPP6R2 22:50808017:A:T 0.092 0.015 4.09E-10 5.61E-08 0.943 0.903 
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Table 3. MR-MEGA fine mapping results for loci with a single SNP within the 99% credible set. Known PD 
genes are either known PD risk genes (SNCA, TMEM175, MAPT) or genes with the highest score in the 
nearest known PD locus by the PD GWAS Locus Browser52 

Locus 

Number of 
significant 

SNPs 

Nominated 
variant CHR:BP:A1:A2 Nearest Gene 

Known PD 
Genes +/- 1MB 

Functional 
Consequence CADD RDB 

11 6 rs57891859 2:135464616:A:G TMEM163 TMEM163 intronic 6.746 4 

19 926 rs34311866 4:951947:C:T TMEM175 TMEM175 exonic 11.09 NA 

23 1483 rs356182 4:90626111:A:G RP11-115D19.1 SNCA 

ncRNA 
intronic 8.962 NA 

45 1371 rs10847864 12:123326598:G:T HIP1R HIP1R intronic 2.403 2b 

56 1060 rs62053943 17:43744203:C:T 
CRHR1:RP11-

105N13.4 MAPT 
ncRNA 
intronic 0.183 5 

60 1 rs55818311 19:2341047:C:T SPPL2B LSM7 ncRNA exonic 1.096 5 
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