Title: Post-acute sequelae of SARS-CoV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection

Authors: Zoe O Demko¹, Tong Yu¹, Sarika K. Mullapudi¹, M. Gabriela Varela Heslin¹, Chamia

A. Dorsey¹, Christine B. Payton¹, Jeffrey A. Tornheim¹, Paul W. Blair^{1,2}, Shruti H. Mehta³,

David L. Thomas¹, Yukari C. Manabe¹, Annukka A.R. Antar¹, and the OutSMART Study Team*

¹Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA;

²Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA;

³Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,

MD, USA; *Study team members are listed in acknowledgements

Keywords: SARS-CoV-2; COVID-19; Long COVID; PASC; Quality of Life

Running Title: PASC impacts QoL at 6, 12, and 18 months

Corresponding Author:

Annukka A. R. Antar

Assistant Professor, Division of Infectious Diseases

Department of Medicine, Johns Hopkins University School of Medicine

Ross Research Bldg Room 1064, 720 Rutland Ave, Baltimore, MD 21205

aantar1@jhmi.edu

Alternate Corresponding Author:

Yukari C. Manabe

Professor, Division of Infectious Diseases

Department of Medicine, Johns Hopkins University School of Medicine

1830 E Monument St Room 443, Baltimore, MD 21205

ymanabe@jhmi.edu

Abstract:

Little data exist on long COVID outcomes beyond one year. In a cohort enrolled with mild-

moderate acute COVID-19, a wide range of symptoms manifest at 6, 12, and 18 months.

Endorsing over 3 symptoms associates with poorer quality of life in 5 domains: physical, social,

fatigue, pain, and general health.

1 Introduction:

2	Millions globally currently experience or have previously experienced one or more
3	symptoms or sequelae of long COVID, also referred to as Post-Acute Sequelae of SARS-CoV-2
4	(PASC).[1] Despite the large global burden, scant data exists on PASC beyond 12 months from
5	acute infection. Here, we prospectively characterize the longitudinal course of symptoms and
6	quality of life among a primarily non-hospitalized cohort enrolled during acute COVID-19 and
7	evaluate the relationship between post-acute symptoms and quality of life at 6, 12, and 18
8	months.
9	
10	Methods:
11	We enrolled a convenience sample of non-hospitalized adults within 48 hours of a
12	positive SARS-CoV-2 PCR test from a large academic health system beginning in April 2020.[2]
13	Non-hospitalized household contacts were also enrolled. Participants completed surveys one,
14	three, six, twelve, and eighteen months post-enrollment. By May 2022, 144 post-COVID adult
15	participants were 12+ months from acute infection, with a median 699 days since infection (IQR
16	665-728). We approximated infection date using symptom onset date except for one acutely
17	asymptomatic participant, for whom first positive test date was used. 70 of 144 participants
18	completed a survey at 12 and/or 18 months and are included here. Participants were included
19	regardless of PASC status. Demographic characteristics of those who did and did not complete
20	surveys are compared in Supplemental Table 1. Five participants received at least one dose of an
21	mRNA COVID-19 vaccine prior to infection with a median 31 days since first dose (range: 2-
22	89). Informed consent was obtained from all participants and the protocol received IRB
23	approval.

3

24	Participants indicated the presence and severity (on a scale of 1-5) in the past week of								
25	each of 49 symptoms: 38 from the FLU-PRO© Plus and 11 additional symptoms derived from								
26	patient-led research on long COVID[3]. Participants reporting fatigue completed the Fatigue								
27	Severity Scale (FSS), and those endorsing sleep disturbances completed the Insomnia Severity								
28	Index (ISI). Mental health and quality of life (QoL) were assessed using the Generalized Anxiety								
29	Disorder 7-item (GAD-7), Personal Health Questionnaire Depression 8-item (PHQ-8), General								
30	Practitioner Assessment of Cognition (GPCOG), EuroQuol EQ-5D-5L overall health question,								
31	and 36-Item Short Form Survey (SF-36). We used the RAND 36-Item Health Survey scoring								
32	method to characterize eight domains of QoL from the SF-36 instrument (Supplemental								
33	Methods, Supplemental Table 2).								
34	Analyses were performed using Stata 16.0[4]. T-tests or rank-sum tests were used to								
35	compare continuous variables between groups, and Pearson's chi-squared or Fisher's exact tests								
36	were used to compare categorical variables.								
37									
38	Results:								
39	The median age of the cohort at enrollment was 53 (IQR 43-61), 61% were women, and								
40	the median BMI was 30 (IQR 24-35). 51% identified as non-Hispanic White, 23% as non-								
41	Hispanic Black or African American, and 19% as Hispanic of any race (Supplemental Table 1).								
42	At 12 months post-COVID, 67% (40 of 60) had returned to their usual pre-COVID health and								
43	80% (48 of 60) had returned to their usual pre-COVID activities. At 18 months, 77% (27 of 35)								
44	had returned to their usual health and 83% (29 of 35) to their usual activities. Having returned to								
45	pre-COVID health was significantly associated with increased quality of life in several domains								
46	at 6 and 12 months post-COVID-19 (Table 1).								

47	Fatigue was the most frequently reported symptom with 38% (14 of 37), 29% (17 of 59),
48	and 31% (11 of 36) of participants reporting fatigue at 6, 12, and 18 months post-COVID-19
49	(Figure 1a, Supplemental Table 3). Of the 34 participants reporting fatigue at any timepoint, 7
50	reported fatigue at more than one timepoint and 2 at all three timepoints, exemplifying the
51	potential waxing/waning character of PASC symptoms. Among participants reporting fatigue,
52	21%, 35%, and 33% reported severe fatigue (4-5 on a scale of 1-5), at 6, 12, and 18 months,
53	respectively. The mean (SD) Fatigue Severity Scale-9 score for participants reporting any fatigue
54	at 6, 12, and 18 months was 3.61 (±1.68), 4.21 (±1.44), and 4.03 (±1.25) (Supplemental Table 4).
55	This compares to mean (SD) FSS-9 scores of 3.00 (±1.08) in healthy people, 4.66 (±1.64) in
56	people with multiple sclerosis, and 4.34 (±1.64) in people diagnosed with sleep-wake disorders
57	in another cohort[5]. Post-exertional fatigue was present in 38% (5 of 13), 50% (8 of 16), and
58	17% (2 of 12) of participants reporting any fatigue at 6, 12, and 18 months post-COVID-19. 8 of
59	the 34 participants (24%) reporting fatigue at any timepoint had pre-COVID diagnoses of
60	depression or bipolar disorder, compared to 20% among all included participants.
61	Insomnia and sleeping more than usual were frequently reported by participants, with
62	38% (14 of 37), 22% (13 of 59), and 31% (11 of 36) reporting one or both at 6, 12, and 18
63	months. ISI scores >10 are a valid screen for insomnia[6]. Median (IQR) ISI scores at 6, 12, and
64	18 months were 17 (13-20), 16 (12.5-20.5), and 14 (12-19.5), in those reporting any sleep
65	problems, suggesting possible modest decline in insomnia severity over time post-infection. 4 of
66	30 participants (13%) reporting insomnia at any timepoint had baseline diagnoses of anxiety, the
67	same proportion as that among all participants included, and 13% had prior diagnoses of
68	depression or bipolar disorder.

69	Cognitive impairment was also highly reported, with 22% (8 of 37), 24% (14 of 59), and
70	17% (6 of 36) reporting brain fog or concentration difficulties at 6, 12, and 18 months post-
71	infection. All participants answered 6 questions modified from the self-report section of the
72	GPCOG indicating difficulties with memory, word-finding, or managing finances, medication, or
73	transportation compared to just before their COVID-19 diagnosis. 30% (11 of 37), 54% (32 of
74	59), and 41% (14 of 34) of participants reported new, post-COVID-19 difficulties in one or more
75	of these tasks at 6, 12, and 18 months post-COVID-19.
76	As 20% of participants reported diagnoses of depression or bipolar disorder and 13%
77	reported a diagnosed anxiety disorder prior to COVID-19 diagnosis and enrollment, we
78	evaluated PHQ-8 and GAD-7 scores stratified by these factors (Supplemental Table 5). Of
79	participants without pre-existing depression or bipolar disorder, 18% (7 of 39) and 38% (9 of 24)
80	had symptoms of mild depression (PHQ-8 score 5-9) at 12 and 18 months post-COVID-19,
81	while 7.7% (3 of 39) and 0% (of 24) had symptoms of moderate to moderately-severe depression
82	(PHQ-8 score 10-19). 2.3% (1 of 44) and 7.1% (2 of 28) of participants without pre-existing
83	anxiety disorder had symptoms of mild anxiety (GAD-7 score 5-9), while 9.1% (4 of 44) and
84	3.6% (1 of 28) had symptoms of moderate to severe anxiety (GAD-7 score 10-21) at 12 and 18
85	months post-COVID-19.
86	Participants at 6, 12, and 18 months post-infection generally reported high quality of life

87 (SF-36) scores in the physical and emotional limitation domains, indicating minimal limitation,

88 while scores in the domains of physical functioning, energy/fatigue, emotional wellbeing, pain,

and general health were lower (Figure 1b, Supplemental Table 4). Scores across the eight SF-36

90 QoL domains did not vary significantly between timepoints. Median (IQR) scores on the EQ-5D-

5L general health question were also similar at 6, 12, and 18 months post-COVID-19: 85 (80-

92 94), 85 (71-90), and 84 (75-95).

93	Participants reported that symptoms directly interfered with their daily activities: 35%
94	(11 of 31), 22% (13 of 58), and 13% (4 of 31) at 6, 12, and 18 months post-COVID-19.
95	Participants reporting 3+ symptoms, compared to those reporting <3 symptoms, had significantly
96	lower scores in 5 of 8 SF-36 QoL domains (physical functioning, social functioning,
97	energy/fatigue, pain, general health) after 6 months (Figure 1b). Physical functioning and
98	energy/fatigue scores were significantly lower among those reporting 3+ symptoms after 12
99	months. There were also statistically significant associations between most QoL domains and
100	symptom domains, particularly neurological and systemic (Supplemental Figure).
101	
102	Discussion:
103	We demonstrate in a prospective observational cohort that a high proportion of
104	individuals with pre-delta variant, non-severe acute COVID-19 continue to report a wide range
105	of symptoms at 6, 12, and 18 months post-infection, and that having multiple symptoms is
106	associated with lower quality of life over a year after infection. This data extend to 18 months
107	previously reported PASC symptoms and associations with QoL measures at earlier time
108	points.[7-11] Fatigue, brain fog, nasal congestion and discharge, headache, sleep disturbances,
109	and body aches were the most common symptoms. Neurological, mood, and systemic symptoms
110	persisted in over half of participants surveyed at 18 months post-COVID-19. Almost one-quarter
111	of participants reported not having returned to their usual pre-COVID health by 18 months,
112	while some reported returning to work and other activities before feeling entirely recovered from
113	COVID-19. Symptomatic participants reported that symptoms interfered with activities up to 18

7

- 114 months post-infection, and several quality of life domains were statistically significantly
- associated with multi-symptom morbidity.
- 116 Limitations of this study include the relatively small size of the cohort, the proportion of
- 117 participants who missed survey timepoints, and attrition over the follow-up period, which may
- 118 lead to sampling and attrition biases. Strengths of the study include prospective enrollment
- during acute COVID-19, prolonged follow-up with validated survey instruments, and a primarily
- 120 non-hospitalized cohort.
- 121 More research is urgently needed to characterize and address the lasting morbidity
- associated with long COVID, especially in the face of omicron vaccine-breakthrough cases.

Funding:

This work was supported by the Henry M. Jackson Foundation for the Advancement of Military Medicine [1007957 to P.W.B. and Y.C.M.]; the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases Discovery Program [to P.W.B. and Y.C.M.]; and the National Institute of Allergy and Infectious Diseases (K08AI143391 to A.A.R.A., K23AI135102 to J.A.T.).

Conflict of Interest Disclosures:

All authors have no conflicts of interest to declare.

Acknowledgements:

We would like to acknowledge Sidney Saint-Hilaire, Zihan Yang, Justin Chan, Mira Prabhu, and Tanique Bennett from the OutSMART Study Team; the CCPSEI Study Team; and the Johns Hopkins Institute for Clinical and Translational Research for their support of this work.

References

- Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global Prevalence of Post COVID-19 Condition or Long COVID: A Meta-Analysis and Systematic Review. J Infect Dis, 2022.
- Blair PW, Brown DM, Jang M, et al. The Clinical Course of COVID-19 in the Outpatient Setting: A Prospective Cohort Study. Open Forum Infect Dis, 2021; 8(2): ofab007.
- 3. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine, **2021**; 38: 101019.

- StataCorp. Stata Statistical Software: Release 16. College Station, TX: StataCorp, LLC, 2019.
- Valko PO, Bassetti CL, Bloch KE, Held U, Baumann CR. Validation of the fatigue severity scale in a Swiss cohort. Sleep, 2008; 31(11): 1601-7.
- Bastien CH, Vallieres A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med, 2001; 2(4): 297-307.
- McFann K, Baxter BA, LaVergne SM, et al. Quality of Life (QoL) Is Reduced in Those with Severe COVID-19 Disease, Post-Acute Sequelae of COVID-19, and Hospitalization in United States Adults from Northern Colorado. Int J Environ Res Public Health, 2021; 18(21).
- O'Brien K, Townsend L, Dowds J, et al. 1-year quality of life and health-outcomes in patients hospitalised with COVID-19: a longitudinal cohort study. Respir Res, 2022; 23(1): 115.
- Tabacof L, Tosto-Mancuso J, Wood J, et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am J Phys Med Rehabil, 2022; 101(1): 48-52.
- Noujaim PJ, Jolly D, Coutureau C, et al. Fatigue and quality-of-life in the year following SARS-Cov2 infection. BMC Infect Dis, **2022**; 22: 541.
- Ali ST, Kang AK, Patel TR, et al. Evolution of neurologic symptoms in non-hospitalized COVID-19 "long haulers". Ann Clin Transl Neurol, **2022**.

Table:

	Month 6 (N=37)				^a Month 12 (N=58)				^a Month 18 (N=33)			
-	Returned Health (n=30)		Returned Activities (n=32)		Returned Health (n=40)		Returned Activities (n=48)		Returned Health (n=27)		Returned Activities (n=29)	
_	Diff. in Means	p-value	Diff. in Means	p-value	Diff. in Means	p-value	Diff. in Means	p-value	Diff. in Means	p-value	Diff. in Means	p-value
PF	15.59	0.006**	11.81	0.132	25.40	< 0.001***	30.89	< 0.001***	0.46	0.632	18.92	0.161
EF	27.13	0.005**	14.86	0.344	23.49	< 0.001***	27.09	< 0.001***	-0.20	0.759	5.56	0.766
EW	10.04	0.073	0.56	0.857	8.65	0.053	16.54	0.004**	2.83	0.366	-3.89	0.888
SF	11.81	0.127	12.31	0.333	13.65	0.016*	23.87	0.007**	-6.94	0.267	12.50	0.575
PA	24.62	0.0151*	18.70	0.449	7.29	0.165	9.65	0.132	-10.65	0.214	4.78	0.919
GH EO-5D-	25.40	0.027*	27.78	0.0441*	18.71	0.004**	24.20	0.004**	4.72	0.741	7.24	0.605
5L	13.02	0.074	10.72	0.721	17.64	< 0.001***	24.09	0.001**	5.38	0.271	13.31	0.706
GAD-7	—	—		—	-0.80	0.573	-2.22	0.279	-1.59	0.485	1.57	0.652
PHQ-8	_		_	_	-2.84	0.022*	-4.69	0.003**	-0.77	0.532	-1.86	0.786
GPCOG	0.75	0.103	0.61	0.395	0.50	0.064	1.27	0.003**	-0.13	0.842	0.07	0.878

Table 1. Correlation between return to usual health/activities and either quality-of-life domains or mental health

^a 2 participants at 12 and 18 months were missing quality of life data and were excluded.

Diff. in Means = Difference between mean scores among those who had and those who had not returned to usual health or activities

SF-36 Quality of Life Domains: PF = Physical Functioning, EF = Energy/Fatigue, EW = Emotional Wellbeing, SF = Social

Functioning, PA = Pain, GH = General Health; EQ-5D-5L = EuroQol Quality of Life scale (general health question only); GAD-7 =

Generalized Anxiety Disorder 7-Item; PHQ-8 = Personal Health Questionnaire 8-item Depression Scale; GPCOG = General

Practitioner Assessment of Cognition (self-report section only). P-values were obtained using rank-sum tests.

*indicates p<0.05, **indicates p<0.01, ***indicates p<0.001; —indicates insufficient data.

Figure Legends:

Figure 1. Long COVID symptoms and their association with quality of life domains

a. Number of participants reporting symptoms over time, grouped by symptom domain

b. SF-36 quality-of-life domain scores by number of symptoms (3+ symptoms versus <3) reported over time. Statistical

significance was determined using a rank-sum test.

