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Abstract

Cardiac auscultation is an accessible diagnostic screening tool that can help to identify
patients with heart murmurs for follow-up diagnostic screening and treatment for
abnormal cardiac function. However, experts are needed to interpret the heart sounds,
limiting the accessibility of auscultation for cardiac care in resource-constrained
environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited
teams to develop algorithmic approaches for detecting heart murmurs and abnormal
cardiac function from phonocardiogram (PCG) recordings of the heart sounds.

For the Challenge, we sourced 5272 PCG recordings from 1568 pediatric patients in
rural Brazil, and we invited teams to implement diagnostic screening algorithms for
detecting heart murmurs and abnormal cardiac function from the recordings. We
required the participants to submit the complete code for training and running their
algorithms, improving the transparency, reproducibility, and utility of their work. We
also devised an evaluation metric that considered the costs of screening, diagnosis,
treatment, and diagnostic errors, allowing us to investigate the benefits of algorithmic
diagnostic screening and facilitate the development of more clinically relevant
algorithms.

We received 779 algorithms from 87 teams during the course of the Challenge,
resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac
function from PCGs. These algorithms represent a diversity of approaches from both
academia and industry.
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The use of heart sound recordings for identifying heart murmurs and abnormal
cardiac function allowed us to explore the potential of algorithmic approaches for
providing accessible pre-screening in resource-constrained environments. The submission
of working, open-source algorithms and the use of novel evaluation metrics supported
the reproducibility, generalizability, and clinical relevance of the research from the
Challenge.

Author summary

Cardiac auscultation is an accessible diagnostic screening tool for identifying heart
murmurs. However, experts are needed to interpret heart sounds, limiting the
accessibility of auscultation in cardiac care. The George B. Moody PhysioNet Challenge
2022 invited teams to develop algorithms for detecting heart murmurs and abnormal
cardiac function from phonocardiogram (PCG) recordings of heart sounds.

For the Challenge, we sourced 5272 PCG recordings from 1568 pediatric patients in
rural Brazil. We required the participants to submit the complete code for training and
running their algorithms, improving the transparency, reproducibility, and utility of
their work. We also devised an evaluation metric that considered the costs of screening,
diagnosis, treatment, and diagnostic errors, allowing us to investigate the benefits of
algorithmic diagnostic screening and facilitate the development of more clinically
relevant algorithms. We received 779 algorithms from 87 teams during the Challenge,
resulting in 53 working codebases and publications that represented a diversity of
approaches to detecting heart murmurs and identifying clinical outcomes from heart
sound recordings.

Introduction

Cardiac auscultation via stethoscopes remains the most common and the most
cost-effective tool for cardiac pre-screening. Despite its popularity, the technology has
limited diagnostic sensitivity and accuracy [1, 2], as its interpretation requires many
years of experience and skill, leading to significant disagreement between medical
personnel [3, 4]. Digital phonocardiography has emerged as a more objective alternative
to traditional cardiac auscultation, enabling the use of algorithmic methods for heart
sound analysis and diagnosis [5]. The phonocardiogram (PCG) can be acquired by a
combination of high-fidelity stethoscope front-ends and high-resolution digital sampling
circuitry, which enable the registration of heart sounds as a discrete-time signal.

As acoustic signals, heart sounds are mainly generated by the vibrations of cardiac
valves as they open and close during the cardiac cycle and by the turbulence of blood
flow within the valves. Turbulent blood flow may cause enough vibrations within the
cardiac valves to create audible heart sounds and abnormal waveforms in the PCG,
which are called murmurs. Different kinds of murmurs exist, and they are characterized
in various ways, including location, timing, duration, shape, intensity, and pitch. The
identification and analysis of murmurs provide valuable information about
cardiovascular pathologies.

However, while cardiac auscultation itself is relatively accessible, experts are needed
to interpret heart sounds and PCGs, limiting the accessibility of auscultation for cardiac
disease management, especially in resource-constrained environments. The ability to
correctly interpret PCGs for murmur detection and for identifying different pathologies
requires time and broad clinical experience. Therefore, the objective interpretation of
the PCG remains a difficult skill to acquire.

The 2022 George B. Moody PhysioNet Challenge (formerly the
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Fig 1. Auscultation locations for the CirCor DigiScope dataset [6], which was used for
the Challenge: pulmonary valve (PV), aortic valve (AV), mitral valve (MV), and
tricuspid valve (TV).

PhysioNet/Computing in Cardiology Challenge) provided an opportunity to address
these issues by inviting teams to develop fully automated approaches for detecting heart
murmurs and abnormal cardiac function from PCG recordings. We sourced and shared
PCG recordings for up to four auscultation locations from a largely pediatric population
in Brazil, and we asked teams to identify both heart murmurs and the clinical outcomes
of a full diagnostic screening from the recordings. The Challenge explored the
diagnostic potential of algorithmic approaches for interpreting PCG recordings.

Methods

Challenge Data

The CirCor DigiScope dataset [6] was used for the 2022 George B. Moody PhysioNet
Challenge. This dataset consists of one or more PCG recordings from several
auscultation locations. The dataset was collected during two screening campaigns in
Paráıba, Brazil from July 2014 to August 2014 and from June 2015 to July 2015. The
study protocol was approved by the 5192-Complexo Hospitalar HUOC/PROCAPE
Institutional Review Board under the request of the Real Hospital Português de
Beneficiência em Pernambuco. A detailed description of the dataset can be found in [6].

During the data collection sessions, the participants answered a socio-demographic
questionnaire, followed by a clinical examination (anamnesis and physical examination),
a nursing assessment (physiological measurements), and cardiac investigations (cardiac
auscultation, chest radiography, electrocardiogram, and echocardiogram). The collected
data were then analyzed by an expert pediatric cardiologist. The expert could
re-auscultate the participant or request complementary tests. At the end of the session,
the pediatric cardiologist either directed the participant for a follow-up appointment,
referred the participant to cardiac catheterization or heart surgery, or discharged the
participant as appropriate.

The PCGs were recorded using an electronic auscultation device, the Littmann 3200
stethoscope, from up to four auscultation locations on the body; see Fig 1:

• Aortic valve: second intercostal space, right sternal border;

• Pulmonic valve: second intercostal space, left sternal border;
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• Tricuspid valve: left lower sternal border; and

• Mitral valve: fifth intercostal space, midclavicular line (cardiac apex).

The choice of locations, the number of recordings at each location, and the duration of
the PCG recordings varied between patients. The recordings were made by potentially
different operators, but each patient’s PCGs was recorded by a single operator in a
sequential manner. The PCG were also inspected for signal quality and
semi-automatically segmented using the three algorithms proposed in [7], [8], and [9]
and then corrected, as necessary, by a cardiac physiologist.

Each patient’s PCGs and clinical notes were also annotated for murmurs and
abnormal cardiac function. These annotations served as the labels for the Challenge.

The murmur annotations and characteristics (location, timing, shape, pitch, quality,
and grade) were manually identified by a single cardiac physiologist independently of the
available clinical notes and PCG segmentation. The cardiac physiologist annotated the
PCGs by listening to the audio recordings and by visually inspecting the corresponding
waveforms. The murmur annotations indicated whether the expert annotator could
detect the presence or absence of a murmur in a patient from the PCG recordings or
whether the annotator was unsure about the presence or absence of a murmur. The
murmur annotations did not indicate whether a murmur was pathological or innocent.

The clinical outcome annotations were determined by cardiac physiologists using all
available clinical notes, including the socio-demographic questionnaire, clinical
examination, nursing assessment, and cardiac investigations. In particular, the experts
used reports from a echocardiogram, which is a standard diagnostic tool for identifying
abnormal cardiac function. The clinical outcome annotations indicated whether the
expert annotator identified normal or abnormal cardiac function. The clinical outcome
annotations were performed by different experts, and these experts were different from
the expert who performed the murmur annotations.

In total, the Challenge dataset consisted of 5272 annotated PCG recordings from
1568 patients. We released 60% of the recordings as a public training set and retained
10% of the recordings as a private validation set and 30% of the recordings as a private
test set. The training, validation, and test sets were matched to approximately preserve
the univariate distributions of the variables. Data from patients who participated in
multiple screening campaigns belonged to only one of the training, validation, or test
sets to prevent data leakage. We shared the training set at the beginning of the
Challenge to allow the participants to develop their algorithms and sequestered the
validation and test sets during the Challenge to evaluate the algorithms.

Table 1 summarizes the variables provided in the training, validation, and test sets
of the Challenge data. Table 2 summarizes the distributions of the variables.

Challenge Objective

We designed the Challenge to explore the potential for algorithmic pre-screening of
heart murmurs and abnormal heart function, especially in resource-constrained
environments. We asked the Challenge participants to design working, open-source
algorithms for identifying heart murmurs and the clinical outcomes from PCG
recordings. For each patient encounter, each algorithm interpreted the PCG recordings
and/or demographic data.

Challenge Timeline

This year’s Challenge was the 23rd George B. Moody PhysioNet Challenge [11]. As with
previous years, this year’s Challenge had an unofficial phase and an official phase.
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The unofficial phase (February 1, 2022 to April 8, 2022) introduced the teams to the
Challenge. We publicly shared the Challenge objective, training data, example
classifiers, and evaluation metrics at the beginning of the unofficial phase. We invited
the teams to submit their code for evaluation, and we scored at most 5 entries from
each team on the hidden validation set during the unofficial phase.

Between the unofficial phase and official phase, we took a hiatus (April 9, 2022 to
April 30, 2022) to improve the Challenge in response to feedback from teams, the
broader community, and our collaborators. During the hiatus, we sourced the clinical
outcomes for the patient encounters to enrich the Challenge.

The official phase (May 1, 2022 to August 15, 2022) allowed the teams to refine their
approaches for the Challenge. We updated the Challenge objectives, data, example
classifiers, and evaluation metric at the beginning of the official phase. We again invited
the teams to submit their code for evaluation, and we scored at most 10 entries from
each team on the hidden validation set during the official phase.

After the end of the official phase, we asked each team to choose a single entry from
their team for evaluation on the test set. We allowed the teams to choose any successful
model from the official phase, but most teams chose their best-scoring entries. We only
evaluated one entry from each team for each task on the test set to prevent sequential
training on the test set. The winners of the Challenge were the teams with the best
scores on the test set. We announced the winners at the end of the Computing in
Cardiology (CinC) 2022 conference.

The teams presented and defended their work at CinC 2022, and they wrote
four-page conference proceeding papers describing their work, which we reviewed for
accuracy and coherence. We will publicly release the algorithms after the end of the
Challenge and the publication of these papers through the Challenge website.

Challenge Rules and Expectations

While we encouraged the teams to ask questions, pose concerns, and discuss the
Challenge in a public forum, we prohibited the teams from discussing or sharing their
work during the unofficial phase, hiatus, and official phase of the Challenge to preserve
the diversity and uniqueness of the teams’ approaches.

For both phases of the Challenge, we required teams to submit their code for
training and running their models, including any code for processing or relabeling the
data. We first ran each team’s training code on the public training set to create trained
models. We then ran the trained models on the hidden validation and test sets to label
the recordings; we ran the trained models on the recordings sequentially to better reflect
the sequential nature of the screening process. We then scored the outputs from the
models using the expert annotations on hidden validation and test sets.

We allowed the teams to submit either MATLAB or Python code; other
implementations were considered upon request, but there were no requests for other
programming languages. Participants containerized their code in Docker and submitted
it by sharing private GitHub or Gitlab repositories with their code. We downloaded
their code and ran it in containerized environments on Google Cloud. We described the
computational architecture of these environments entries more fully in [12].

Each entry had access to 8 virtual CPUs, 52GB RAM, 50GB local storage, and an
optional NVIDIA T4 Tensor Core GPU (driver version 470.82.01) with 16GB VRAM.
We imposed a 72 hour time limit for training each model on the training set without a
GPU, a 48 hour time limit for training each model on the training set with a GPU, and
a 24 hour time limit for running each trained model on either the validation or test set
either with or without a GPU.

To aid the teams, we shared example MATLAB and Python entries. These examples
used random forest classifiers with the age group, sex, height, weight, pregnancy status
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of the patient as well as the presence, mean, variance, and skewness, i.e., the first four
order statistics, of the numerical values in each PCG recording as features. We did not
design these example entries to perform well. Instead, we used them to provide minimal
working examples of how to read the Challenge data and write the model outputs.

Challenge Evaluation

To capture the focus of this year’s Challenge on algorithmic pre-screening, we developed
novel scoring metrics for each of the two Challenge tasks: detecting heart murmurs and
identifying clinical outcomes for abnormal or normal heart function.

As described above, the murmurs were directly observable from the PCGs, but the
clinical outcomes reflected the results of a more comprehensive diagnostic screening,
including the interpretation of an echocardiogram. However, despite these differences,
we asked the teams to perform both tasks using only PCGs and routine demographic
data, which allowed us to explore the diagnostic potential of algorithmic approaches for
interpreting relatively easily accessible PCGs.

The algorithms for both of these tasks effectively pre-screened patients for expert
referral. If an algorithm inferred abnormal cardiac function, i.e., the murmur outputs
were murmur present, murmur unknown, or outcome abnormal, then the algorithm
would refer the patient to a human expert for a confirmatory diagnosis and potential
treatment. If the algorithm inferred normal cardiac function, i.e., if the model outputs
were murmur absent or outcome normal, then the algorithm would not refer the patient
to an expert, and the patient would not receive treatment, even if the patient actually
had abnormal cardiac function. Fig. 2 illustrates this algorithmic pre-screening process
as part of a larger diagnostic pipeline.

For the murmur detection task, we introduced a weighted accuracy metric that
assessed the ability of an algorithm to reproduce the results of a skilled human
annotator. For the clinical outcome identification task, we introduced a cost-based
scoring metric that reflected the cost of expert diagnostic screening as well as the costs
of timely, delayed, and missed treatments for abnormal cardiac function. The team with
the highest weighted accuracy metric won the murmur detection task, and the team
with the lowest cost-based scoring metric won the clinical outcome identification task.

We formulated versions of both of these metrics for both tasks to allow for more
direct comparisons; see the Appendix for the additional metrics. We also calculated
several traditional evaluation metrics to provide additional context to the performance
of the models

Cost-based scoring is controversial, in part, because healthcare costs are an
imperfect proxy for health needs [13, 14]; we reflect on this important issue in the
Section . However, screening costs necessarily limit the ability to perform screening,
especially in resource-constrained environments, so we considered costs as part of
improving access to cardiac screening.

Weighted Accuracy Metric We introduced a weighted accuracy metric to evaluate
the murmur detection algorithms. This metric assessed the ability of the algorithms to
reproduce the decisions of the expert annotator. This weighted accuracy metric is
similar to the traditional accuracy metric, but it assigned more weight to patients that
had or potentially had murmurs than to patients that did not have murmurs. These
weights reflect the rationale that, in general, a missed diagnosis is more harmful than a
false alarm.
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Fig 2. Screening and diagnosis pipeline for the Challenge. All patients would receive
algorithmic pre-screening, and patients with positive results from algorithmic
pre-screening would receive confirmatory expert screening and diagnosis. (i) Patients
with positive results from algorithmic pre-screening and expert annotators would receive
treatment; they are true positive cases. Patients with positive results from algorithmic
pre-screening and negative results from expert annotators would not receive treatment;
they are false positive cases or false alarms. Patients with negative results from
algorithmic pre-screening who would have received positive results from the expert
annotators would have missed or delayed treatment; they are false negative cases.
Patients with negative results from algorithmic pre-screening who would have also
received negative results from expert annotators also would not receive treatment; they
are true negative cases.
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We defined a weighted accuracy metric for the murmur detection task as

amurmur =
5mPP + 3mUU +mAA

5(mPP +mUP +mAP) + 3(mPU +mUU +mAU) + (mPA +mUA +mAA)
,

(1)
where Table 3 defines a three-by-three confusion matrix M = [mij ] for the murmur
present, murmur unknown, and murmur absent classes.

The coefficients were chosen to reflect the trade-off between false positives and false
negatives, where clinicians may tolerate multiple false alarms to avoid a single missed
diagnosis. In (1), murmur present cases have five times the weight of murmur absent
cases (and the murmur unknown cases have three times the weight of murmur absent
cases) to reflect a tolerance of five false alarms for every one false positive.

Like the traditional accuracy metric, this metric only rewarded algorithms for
correctly classified recordings, but it provided the highest reward for correctly
classifying recordings with murmurs and the lowest reward for correctly classifying
recordings without murmurs, i.e., recordings that were labeled as having or not having
murmurs, respectively. It provided an intermediate reward for correctly classifying
recordings of unknown murmur status to reflect the difficulty and importance of
indicating when the quality of a recording is not adequate for diagnosis.

We used (1) to rank the Challenge algorithms for the murmur detection task. The
team with the highest value of (1) won this task.

Cost-based evaluation metric We introduced a cost-based evaluation metric to
evaluate the clinical outcome algorithms for abnormal or normal heart function. This
metric considered the ability of the algorithms to reduce the costs associated with
diagnosing and treating patients, primarily by screening fewer patients with normal
cardiac function. We again emphasize that healthcare costs are an imperfect surrogate
for health needs [13, 14]. However, costs are still a necessary consideration as part of
resource-constrained environments.

For each patient encounter, the algorithm interpreted the PCG recordings and
demographic data for the encounter. If an algorithm inferred abnormal cardiac function,
then it would refer the patient to a human expert for a confirmatory diagnosis. If the
expert confirmed the diagnosis, then the patient would receive treatment, and if the
expert did not confirm the diagnosis, then the patient would not receive treatment.
Alternatively, if the algorithm inferred normal cardiac function, then it would not refer
the patient to an expert, and the patient would not receive treatment, even if the patient
had abnormal cardiac function that would have been detected by a human expert.

We associated each of these steps with a cost: the cost of algorithmic pre-screening,
the cost of expert screening, the cost of timely treatment, and the cost of delayed or
missed treatment.

For simplicity, we assumed that algorithmic pre-screening had a relatively small cost
that depended linearly on the number of algorithmic pre-screenings. We also assumed
that both timely treatments and delayed or missed treatments had relatively large costs
that, on average, depended linearly on the number of individuals. Given our focus on
the ability of algorithmic pre-screening to reduce human screening of patients with
normal cardiac function, we assumed that expert screening had an intermediate cost
that depended non-linearly on the number of screenings as well on as the infrastructure
and capacity of the healthcare system. Of course, treatment costs are also non-linear in
the number of treated patients for similar reasons, but non-urgent treatments can
arguably utilize the capacity of the broader healthcare system. Screening far below the
capacity of the healthcare system was inefficient and incurred a low total cost but high
average cost. Screening above the capacity of the healthcare system was also inefficient
and incurred both a high average cost and a high total cost.
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Therefore, we introduced the following cost-based evaluation metric for identifying
clinical outcomes. We defined the total cost of diagnosis and treatment with algorithmic
pre-screening as

ctotaloutcome = falgorithm(npatients)

+ fexpert(nTP + nFP, npatients)

+ ftreatment(nTP)

+ ferror(nFN),

(2)

where Table 4 defines a two-by-two confusion matrix N = [nij ] for the clinical outcome
abnormal and normal classes, npatients = nTP + nFP + nFN + nTN is the total number of
patients, and falgorithm, fexpert, ftreatment, ferror are defined below.

Again, for simplicity, we assumed that the costs for algorithmic pre-screening, timely
treatments, and missed or late treatments were linear. We defined

falgorithm(s) = 10s (3)

as the total cost of s pre-screenings by an algorithm,

ftreatment(s) = 10000s (4)

as the total cost of s treatments, and

ferror(s) = 50000s (5)

as the total cost of s missed or delayed treatments.
To better capture the potential benefits of algorithmic pre-screening, we assumed

that the cost for expert screening was non-linear. We defined

fexpert(s, t) =

(
25 + 397

s

t
− 1718

s2

t2
+ 11296

s4

t4

)
t (6)

as the total cost of s screenings by a human expert out of a population of t patients so
that

gexpert(x) = 25 + 397x− 1718x2 + 11296x4 (7)

was the mean cost of screenings by a human expert when x = s/t of the patient cohort
receives expert screenings; this reparameterization of (6) allowed us to compare
algorithms on datasets with different numbers of patients. We designed (6) and (7) so
that the mean cost of an expert screening was lowest when only 25% of the patient
cohort received expert screenings but higher when screening below and above the
capacity of the system. Fig 3 and Fig 4 show these costs across different patient cohort
and screening sizes, and the Appendix provides a fuller derivation of (6) and (7).

To compare costs for databases with different numbers of patients, e.g., the training,
validation, and test databases, we defined the mean per-patient cost of diagnosis and
treatment with algorithmic pre-screening as

coutcome =
ctotaloutcome

npatients
. (8)

We used (8) to rank the Challenge algorithms for the murmur detection task. The
team with the lowest value of (8) won this task.
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Fig 3. The expert screening cost gexpert(x) defined for the Challenge: mean cost for
screening a fraction x of a patient cohort for cardiac abnormalities. Mean per-patient
expert screening cost gexpert(x), i.e., the total expert screening cost for a patient cohort
divided by the number of patients in the cohort.

Challenge Results

Challenge Entries

We received 779 entries from 87 teams throughout the course of the 2022 PhysioNet
Challenge, resulting in 77 submitted CinC abstracts, 62 accepted CinC abstracts, 43
published CinC proceedings papers, and 53 final codebases from 53 different teams.

These entries represent a diversity of approaches to the Challenge. A total of 81
teams submitted 293 entries during the unofficial phase of the Challenge, and a total of
63 teams submitted 486 entries during the official phase of the Challenge. Of the 779
entries, we received 652 entries from 75 teams that were implemented in Python, and
127 entries from 17 teams that were implemented in MATLAB. We received 519 entries
from 60 teams that requested a graphics processing unit (GPU) for their entries, and
260 entries from 49 teams requested only a central processing unit (CPU), i.e., no GPU.
In total, we received 473 successful entries that we were able to train on the public
training set and evaluate on the hidden validation set and 306 entries that we were
unable to train on the training set and/or evaluate on the validation validation set due
to various errors in the submitted code.

A total of 58 teams had a successful entry during the official phase that we were able
to train on the training set and evaluate on the validation set. Each team with a
successful entry during the official phase selected a single entry for evaluation on the
test set. Most teams chose their best-scoring entry from the official phase, but some
teams selected their most recent entry or another entry because the entry with the best
score on the validation set may not be the entry with the best score on the test set.

In some cases, a team’s best-scoring entry for the murmur detection task was
different from the team’s best-scoring entry for the clinical outcome identification task
because of the differences between the tasks and the evaluation metrics for grading
them; in these cases, we chose a different entry for each task. However, since the teams
could implement different approaches for each task, and since they could have
submitted the different approaches as part of the same entry, we did not distinguish
between teams and entries that submitted their best scoring entries in the same code
submission or different code submissions. We will share the best scoring entries for both
whether they were part of the same or different code submissions.
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Fig 4. The expert screening cost gexpert(x) defined for the Challenge: mean cost for
screening a fraction x of a patient cohort for cardiac abnormalities. Mean per-screening
expert screening cost gexpert(x)/x, i.e., the total expert screening cost for a patient
cohort divided by the number of patients in the cohort and the fraction of screenings in
the cohort.

Of the 58 teams with a successful entry during the official phase, 53 teams had code
that we were able to score on the training, validation, and test sets for both the murmur
detection and outcome identification tasks, resulting in 53 working entries to the
Challenge.

Fig 5 compares the performance of the working Challenge entries on the murmur
detection and clinical outcome identification tasks. Fig 6 and Fig 7 compare the
Challenge weighted accuracy and cost metrics with traditional scoring metrics,
respectively, including area under the receiver operating characteristic curve (AUROC),
area under the precision recall curve (AUPRC), the macro-averaged F -measure, and the
traditional accuracy metric.

To be officially ranked, we also required the teams to have successful unofficial and
official phase entries, have an accepted CinC abstract, publicly share their CinC
proceedings paper preprint by the CinC preprint submission deadline, have an accepted
final CinC proceedings paper by the CinC final paper deadline, and license their code
under an open source or similar license. We also allowed teams without a successful
unofficial phase entry and/or accepted CinC abstract who had a successful, high-scoring
official phase entry to submit a CinC abstract after the original abstract submission
deadline as a “wild card” team. The abstract and proceedings paper was subject to the
same review as the other participants.

We imposed these requirements in addition to the requirement for working code to
support the dissemination of research into the research community. Of the 53 working
entries, a total of 40 teams were officially ranked. Tables 5 and 6 summarize the
traditional and Challenge evaluation metrics for the officially ranked entries for the
murmur detection and clinical outcome identification tasks, respectively, on the hidden
test set.

To assess the robustness of the algorithms, we also trained them on a subset of the
training set with permuted labels and ran the retrained models on the validation and
test sets with the original labels; we did not change any of the publicly available
training data or labels but simply the size of the training set and the relationship
between the data and the labels in the training set. Algorithms that truly learned from
the training data performed much worse when retrained on the modified training set,
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Fig 5. Weighted accuracy metric (1) for the murmur detection task (x-axis) and the
cost metric (8) scores for the clinical outcome identification task (y-axis) of the final
Challenge entries on the hidden test set. Each point shows an entry, and the shading of
each point shows whether the entry was an official entry (dark red points) that satisfied
all of the Challenge rules or an unofficial entry (light red points) that did not. The
Spearman correlation coefficient ρ between the scores is given in the plot, and a line of
best fit (gray dotted line) is given by a robust linear regression.

while algorithms that did not learn from the training set performed the same or better.
Only 35 of the 53 working entries were robust enough for us to complete this process.
The remaining 18 working entries either crashed or achieving the same or a better score
when retrained on the modified training set. While we encouraged teams to submit
robust code, we did not inform teams a priori how we would test the robustness of their
algorithms to avoid “gaming” the robustness criteria. Therefore, since we did not
provide advance notice of the exact requirements for robustness, we did not disqualify
teams whose algorithms failed this test.

Voting algorithms

While we ranked the official entries for the Challenge, we also recognized that entries
with lower overall performance could achieve higher performance than the top-ranked
entries on certain patient subgroups. Therefore, an algorithm that can learn the
different strengths of different algorithms can improve on the overall performance of the
individual entries. We developed several voting algorithms to leverage the diversity of
Challenge entries.

For the voting algorithms, we considered the discrete classifier outputs (see Tables 3
and 4) from the 39 algorithms from teams that were officially ranked for both the
murmur detection and clinical outcome tasks (see Tables 5 and 6). We considered these
tasks separately, and we used the relevant Challenge scoring metric to evaluate the
voting algorithms for each task: the weighted accuracy metric (1) for the murmur
detection task and the cost metric (8) for the clinical outcome identification task. We
used the common gradient-boosting trees (GBT) and random forests (RF) models for
the voting algorithms [15, 16, 17].

We developed and evaluated the GBT and RF voting models using the following
procedure. First, we trained the GBT and RF voting models on the k = 1, 2, . . . , 39
best-performing teams on the training set. Next, we chose the value of k that achieved
the best performance on the validation set; this step identified k = 14 for the GBT
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Fig 6. Traditional evaluation metric (x-axis) and weighted accuracy metric (y-axis)
scores for the final Challenge entries with the murmur detection task on the hidden test
set. AUROC is area under the receiving operating character curve, AUPRC is area
under the precision-recall curve, F -measure is the macro-averaged F -measure, and
accuracy is the traditional accuracy metric. Each point shows an entry, and the shading
of each point shows whether the entry was an official entry (dark red points) that
satisfied all of the Challenge rules or an unofficial entry (light red points) that did not.
The Spearman correlation coefficients ρ between the metrics are given in the individual
plots, and a line of best fit (gray dotted line) is given by a robust linear regression.

models and k = 2 for the RF models on the murmur detection task and k = 14 for the
GBT models and k = 4 for the RF models on the clinical outcome identification task.
Finally, we evaluated the resulting models on the test set.

The GBT and RF voting models performed slightly better than the highest-ranked
entry for the murmur detection task (weighted accuracy metric of 0.790 and 0.789,
respectively vs. 0.780; see Table 5) and performed slightly worse than the highest-ranked
entries for the clinical outcome identification task (cost of 11357 and 11687, respectively
vs. 11144; see Table 6). In each case, the voting algorithms had comparable performance
to the highest ranked individual entry, but they did not significantly outperform them
in either task by any the traditional or novel scoring metrics that we considered.

Discussion

Cardiac auscultation is one of the most cost-effective tools for helping clinicians to
identify heart murmurs, and the CirCor Digiscope dataset enriches our understanding
cardiac auscultation within resource-constrained environment. However, despite the
novelty and value of this dataset, it, like every dataset, has limitations.

No ages were available for the pregnant individuals in the CirCor DigiScope dataset.
It was unclear to the teams if the pregnant individuals belonged to the pediatric age
group of the rest of the patients, or if they had a different set of exclusion criteria from
the other patients, potentially limiting the performance and appropriateness of models
that use this dataset on pregnant individuals.

There was a single human annotator for labeling the heart murmurs; we did not have
information about the number of human annotators for labeling the clinical outcomes of
abnormal or normal heart function. We expect disagreements between annotators, and
several annotators are often needed to produce a single, consistent annotation of a
health record. Even several annotators may produce disparate annotations [58]. It is
likely that different or more annotators would result in different annotations.

Some heart murmurs are pathological, indicating a physiological problem that
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Fig 7. Traditional evaluation metric (x-axis) and cost metric (y-axis) scores for the
final Challenge entries with the clinical outcome identification task on the hidden test
set. AUROC is area under the receiving operating character curve, AUPRC is area
under the precision-recall curve, F -measure is the traditional F -measure, and accuracy
is the traditional accuracy metric. Each point shows an entry, and the shading of each
point shows whether the entry was an official entry (dark red points) that satisfied all of
the Challenge rules or an unofficial entry (light red points) that did not. The Spearman
correlation coefficients ρ between the metrics are given in the individual plots, and a
line of best fit (gray dotted line) is given by a robust linear regression.

requires monitoring and/or intervention. Other heart murmurs are innocent. The
human annotator did not identify which heart murmurs were pathological or innocent;
the full examination is the only evidence in the dataset that helps to characterize the
severity of any of the heart murmurs. We only evaluated the ability of algorithms to
identify heart murmurs, and not their ability to identify pathological heart murmurs,
but such as task is still valuable for screening.

The definition of a task and the choice of evaluation metrics for quantifying an
algorithm’s performance for the task affects the actual and perceived clinical relevance
of the algorithms [14]. The definitions of the Challenge evaluation metrics (1) and (8)
are attempts to make the evaluation metrics, and therefore the algorithms developed for
these metrics, more clinically relevant. The correlation in performance between the
traditional and Challenge metrics demonstrate that methods that perform better by one
metric tended to perform better by another (at least for the murmur detection task),
but the best-scoring method by one metric was often different from the best
best-scoring method by another metric, motivating the careful consideration of metrics;
see Fig 6 and Fig 7. We also recognize that these metrics are imperfect descriptions of
clinical needs; in particular, healthcare cost can be a poor proxy for health needs [13].

The relatively poor performance of the methods on the clinical outcome
identification task by all metrics suggests the difficulty of performing this task using the
PCG recordings alone; we note that echocardiography is a standard diagnostic tool for
assessing cardiac function, which is a more expensive and less accessible modality than
phonocardiography.

The voting algorithms had only modest performance improvements, if any, over the
individual algorithms. Indeed, the voting algorithms did not use any data-derived
features, which could help to provide context by associating different algorithms with
different patient subgroups. The features for the voting algorithms included the top k
algorithms, even when including a lower-ranked entry with a worse overall score or
excluding a higher-ranked entry with a better overall score would improve the
performance of the voting algorithm. This experiment only considered GBT and RF
models, but other types of models could potentially achieve better performance. The
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training procedure for the GBT and RF models did not use hyperparameter
optimization (beyond the selection of the number k of individual algorithms), limiting
their performance as well. Also, unlike the Challenge teams, we had access to the test
set, but, like the Challenge teams, our formal training procedure did not use it. Despite
these limitations, the ability of the voting algorithms to slightly improve on the
performance on the top-ranked algorithms for the murmur detection task, but not the
clinical outcome identification task, also suggests the differences in difficulty between
the two related tasks considered by the Challenge.

Conclusions

This year’s Challenge explored the potential for algorithmic pre-screening for heart
murmurs and abnormal cardiac function in resource-constrained environments. We
invited the Challenge participants to design working, open-source algorithms for
identifying heart murmurs and clinical outcomes from PCG recordings, resulting in 53
working implementations of different algorithmic approaches for interpreting PCGs. A
voting approach to combining the diverse approaches resulted in a superior performance
over the individual algorithms for murmur detection but not for clinical outcome
identification.

By reducing human screening of patients with normal cardiac function, algorithms
can lower healthcare costs and increase the effective screening capacity for patients with
abnormal cardiac function. The cost function proposed in this Challenge could be the
basis for cost-effective screening that balances both the financial and health burden of
correctly or incorrectly classifying patients. However, it will be important to optimize
the proposed cost function for a given healthcare system or population, since disease
prevalence, financial resources, and healthcare resources can differ enormously in
different settings.
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Additional scoring metrics

We defined additional scoring metrics to allow us to make more direct comparisons
between methods and tasks.
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In particular, we defined a weighted accuracy metric for the clinical outcome
identification task as

aoutcome =
5nTP + nTN

5(nTP + nFN) + (nFP + nTN)
, (9)

where Table 4 defines a two-by-two confusion matrix N = [nij ] for the clinical outcome
abnormal and normal classes.

We defined the total cost of diagnosis and treatment with algorithmic pre-screening
of murmurs as

ctotaloutcome = falgorithm(npatients)

+ fexpert(oPA + oPN + oUA + oUN, npatients)

+ ftreatment(oPA + oUA)

+ ferror(oAA),

(10)

where Table 7 defines a three-by-two confusion matrix O = [oij ] for the clinical outcome
abnormal and normal classes, npatients is the total number of patients, and falgorithm,
fexpert, ftreatment, ferror are defined above.

Mathematical derivation of the cost-based scoring
metric

We defined the cost of expert screening to reflect the non-linear costs associated with a
limited screening capacity of healthcare systems. While providing fewer screenings
incurs a lower total screening cost, the screenings are typically more expensive on a
per-screening basis because of the wasted capacity of the system. Similarly, while more
screenings incur higher costs, the screenings are also typically more expensive on a
per-screening basis because of the inadequate capacity of the system.

Let s be the number of expert screenings in a patient cohort of t patients, and let
x = s/t be the fraction of the cohort receiving expert screenings. We defined
gexpert(x) = a+ bx+ cx2+ dx4 as the mean expert screening cost for screening a fraction

x of a cohort, and we in turn defined fexpert(s, t) = gexpert(s/t)t = at+ bs+ cs2

t + ds4

t3 as
the total cost for s expert screenings in a cohort of t patients. These quantity are
quartic functions with four unknowns, allowing us to satisfy four criteria:

1. We set gexpert(0) = 25 to define a cost for maintaining the ability to perform
expert screening incurs a cost, even when screening x = 0 of a cohort, i.e.,
screening none of the cohort.

2. We set d
dx gexpert(x)/x |x= 1

4
= 0 so that mean expert screening cost cost achieved

its minimum when screening x = 1
4 of a cohort, which was roughly half of the

prevalence rate of abnormal cases in the database,

3. We set gexpert(
1
2 ) = 1000 so that the mean expert screening cost was $1000 when

screening x = 1
2 of a cohort, which is roughly the prevalence rate of abnormal

cases in the database.

4. We set gexpert(1) = 10000 so that the mean expert screening cost was $10000
when screening x = 1, i.e., screening all of the cohort, which is ten times the cost
of screening half of the database.

The unique coefficients that satisfy these conditions are a = 25, b = 397, c = −1718,
and d = 11296.
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Table 1. Demographic, murmur, and clinical outcome information in the Challenge
training, validation, and/or test sets; nan values indicate unknown or missing values.

Variable Description Possible values Dataset
splits

Age Reported age Neonate (birth to 27 days), In-
fant (28 days to 1 year), Child
(1 to 11 years), Adolescent (12
to 18 years), nan

Training,
validation,
test

Sex Reported sex Female, Male Training,
validation,
test

Height Height in centimeters Positive number or nan Training,
validation,
test

Weight Weight in kilograms Positive number or nan Training,
validation,
test

Pregnancy
status

Reported pregnancy status True, False Training,
validation,
test

Murmur Indicates if a murmur is
present, absent, or uniden-
tifiable or unknown for the
annotator; a Challenge label

Present, Absent, Unknown Training

Murmur
locations

Auscultation locations for
observed murmurs

PV, TV, AV, MV, Phc, nan;
concatenated with +

Training

Most audible
location

Auscultation location where
murmurs sounded most in-
tense

PV, TV, AV, MV, Phc, nan Training

Systolic
murmur
timing

Timing of the murmur within
the systolic period

Early-systolic, Mid-systolic,
Late-systolic, Holosystolic, nan

Training

Systolic
murmur
shape

Shape of the murmur in the
systolic period

Crescendo, Decrescendo, Dia-
mond, Plateau, nan

Training

Systolic
murmur
pitch

Pitch of the murmur in the
systolic period

Low, Medium, High, nan Training

Systolic
murmur
grading

Grading of the murmur in the
systolic period according to a
modified Levine scale [10]

I/VI, II/VI, III/VI, nan Training

Systolic
murmur
quality

Quality of the murmur in the
systolic period

Blowing, Harsh, Musical, nan Training

Diastolic
murmur
timing

Timing of the murmur within
the diastolic period

Early-diastolic, Mid-diastolic,
Holodiastolic, nan

Training

Diastolic
murmur
shape

Shape of the murmur in the
diastolic period

Decrescendo, Plateau, nan Training

Diastolic
murmur
pitch

Pitch of the murmur in the
diastolic period

Low, Medium, High, nan Training

Diastolic
murmur
grading

Grading of the murmur in the
diastolic period

I/IV, II/IV, III/IV, nan Training

Diastolic
murmur
quality

Quality of the murmur in the
diastolic period

Blowing, Harsh, nan Training

Outcome Indicates a normal or abnor-
mal clinical outcome as diag-
nosed by the medical expert; a
Challenge label

Normal, Abnormal Training

Campaign Screening campaign attended
by the patient

CC2014, CC2015 Training

Additional
ID

Other patient identifier for
patients who attended both
screening campaigns

Patient identifier Training
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Table 2. Demographic, murmur, and clinical outcome distributions across the
Challenge training, validation, and/or test data. For categorical variables, the entries of
the table denote the fraction of the dataset with each possible value. For numerical
variables, the entries of the table denote the median and first and third quartiles,
respectively, of the values in the dataset, i.e., median [Q1, Q3].
Variable Training set Validation set Test set Entire dataset
Age
- Neonate 0.006 0.007 0.006 0.006
- Infant 0.134 0.101 0.107 0.122
- Child 0.705 0.678 0.723 0.708
- Adolescent 0.076 0.094 0.099 0.085
- nan 0.079 0.121 0.065 0.078
Sex
- Female 0.516 0.530 0.453 0.498
- Male 0.484 0.470 0.547 0.502
Height 115 [89, 133] cm 116 [89, 136] cm 113 [92, 135] cm 115 [89, 134] cm
Weight 20.4 [12.5, 31.2] kg 20.9 [12.9, 34.6] kg 21.0 [13.4, 32.7] kg 20.6 [12.7, 32.0] kg
Pregnancy status
- False 0.926 0.899 0.948 0.930
- True 0.074 0.101 0.052 0.07
Murmur
- Absent 0.738 0.711 0.719 0.730
- Unknown 0.072 0.107 0.073 0.076
- Present 0.190 0.181 0.208 0.195
Outcome
- Normal 0.516 0.617 0.493 0.518
- Abnormal 0.484 0.383 0.507 0.482
Campaign
- CC2014 0.409 0.403 0.436 0.416
- CC2015 0.591 0.597 0.564 0.584

Murmur Expert
Present Unknown Absent

Murmur Classifier
Present mPP mPU mPA

Unknown mUP mUU mUA

Absent mAP mAU mAA

Table 3. Confusion matrix M for murmur detection with three classes: murmur
present, murmur unknown, and murmur absent. The columns are the ground truth
labels from the human annotator, and the rows are the model outputs. The entries of
the confusion matrix provide the number of patients with each model output for each
ground truth label.

Clinical Outcome Expert
Abnormal Normal

Clinical Outcome Classifier
Abnormal nTP nFP

Normal nFN nTN

Table 4. Confusion matrix N for clinical outcome detection with two classes: clinical
outcome abnormal and clinical outcome normal. The columns are the ground truth
labels from the human annotator, and the rows are the classifier outputs. The entries of
the confusion matrix provide the number of patients with each classifier output for each
ground truth label.
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Rank Team AUROC AUPRC F -measure Accuracy
Weighted
Accuracy

* Voting - GBT 0.677 0.465 0.660 0.845 0.790
** Voting - RF 0.775 0.589 0.650 0.832 0.789
1 HearHeart [18] 0.884 0.716 0.619 0.801 0.780
2 CUED Acoustics [19] 0.757 0.528 0.623 0.763 0.776
2 HearTech+ [20] 0.771 0.561 0.647 0.822 0.776
4 PathToMyHeart [21] 0.880 0.684 0.686 0.778 0.771
5 CAU UMN [22] 0.763 0.621 0.521 0.786 0.767
6 Care4MyHeart [23] 0.891 0.717 0.695 0.851 0.757
6 SmartBeatIT [24] 0.873 0.707 0.633 0.809 0.757
8 CeZIS [25] 0.804 0.587 0.586 0.761 0.756
9 ISIBrno-AIMT [26] 0.897 0.746 0.555 0.839 0.755
9 Murmur Mia! [27] 0.867 0.688 0.592 0.771 0.755

11 PhysioDreamfly [28] 0.885 0.723 0.652 0.799 0.752
12 Heart2Beat [29] 0.849 0.650 0.579 0.738 0.751
13 Listen2YourHeart [30] 0.836 0.656 0.597 0.706 0.737
14 Revenger [31] 0.776 0.611 0.559 0.843 0.736
15 matLisboa [32] 0.269 0.248 0.610 0.807 0.735
15 uke-cardio [33] 0.890 0.735 0.597 0.790 0.735
17 One Heart Health [34] 0.756 0.597 0.530 0.820 0.729
18 MetaHeart [35] 0.868 0.691 0.548 0.834 0.723
19 Team IIITH [36] 0.725 0.584 0.536 0.813 0.708
20 prna [37] 0.723 0.579 0.489 0.759 0.694
21 HCCL [38] 0.717 0.569 0.571 0.769 0.690
22 amc-sh [39] 0.814 0.658 0.595 0.803 0.688
23 JUST IT Academy1 [40] 0.797 0.610 0.572 0.757 0.671
23 LSMU [41] 0.741 0.584 0.523 0.824 0.671
25 listNto urHeart [42] 0.819 0.627 0.565 0.780 0.668
26 USST Med [43] 0.779 0.593 0.524 0.803 0.642
27 PCGPAW [44] 0.890 0.721 0.522 0.824 0.637
28 Melbourne Kangas [45] 0.789 0.599 0.499 0.725 0.632
29 SeaCrying [46] 0.798 0.612 0.461 0.447 0.601
30 Simulab [47] 0.711 0.530 0.398 0.497 0.593
31 MainLab [48] 0.754 0.537 0.557 0.734 0.583
32 Leicester Fox [49] 0.764 0.608 0.449 0.782 0.536
33 Eagles [50] 0.357 0.276 0.115 0.208 0.525
33 fly h [51] 0.614 0.481 0.444 0.778 0.525
33 lubdub [52] 0.500 0.333 0.115 0.208 0.525
36 AKSJ 97BSc [53] 0.655 0.425 0.425 0.491 0.494
37 UKJ FSU [54] 0.576 0.406 0.379 0.730 0.458
38 BrownBAI [55] 0.571 0.367 0.361 0.526 0.406
39 Bear FH [56] 0.688 0.488 0.328 0.727 0.402
40 MobiHealth [57] 0.562 0.367 0.369 0.606 0.374

Table 5. Scores of the officially ranked methods on the test set for the murmur
detection task. AUROC is the area under the receiver operating characteristic curve,
AUPRC is the area under the precision-recall curve, F -measure is the macro-averaged
F -measure, accuracy is the traditional accuracy, and weighted accuracy is the weighted
accuracy metric (1).
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Rank Team AUROC AUPRC F -measure Accuracy Cost
1 CUED Acoustics [19] 0.693 0.715 0.549 0.602 11144
* Voting-GBT 0.583 0.553 0.546 0.587 11357
2 prna [37] 0.691 0.706 0.536 0.587 11403

** Voting-RF 0.625 0.584 0.596 0.606 11687
3 Melbourne Kangas [45] 0.663 0.667 0.528 0.568 11735
4 CeZIS [25] 0.614 0.579 0.511 0.560 11916
5 CAU UMN [22] 0.660 0.653 0.505 0.562 11933
6 HCCL [38] 0.605 0.579 0.532 0.562 11943
7 Listen2YourHeart [30] 0.627 0.607 0.512 0.558 11946
8 uke-cardio [33] 0.665 0.658 0.509 0.556 11990
9 HearTech+ [20] 0.547 0.527 0.508 0.551 12069

10 HearHeart [18] 0.593 0.605 0.528 0.556 12110
11 Heart2Beat [29] 0.636 0.625 0.560 0.572 12244
12 ISIBrno-AIMT [26] 0.586 0.567 0.505 0.541 12313
13 UKJ FSU [54] 0.565 0.582 0.481 0.539 12373
14 Simulab [47] 0.375 0.421 0.503 0.537 12419
15 MetaHeart [35] 0.500 0.500 0.511 0.537 12536
16 matLisboa [32] 0.644 0.654 0.545 0.558 12593
17 PathToMyHeart [21] 0.566 0.567 0.460 0.535 12637
18 PhysioDreamfly [28] 0.602 0.626 0.486 0.518 12831
19 Revenger [31] 0.594 0.604 0.442 0.520 12944
20 amc-sh [39] 0.593 0.594 0.512 0.528 13002
21 MainLab [48] 0.572 0.572 0.517 0.528 13259
22 Team IIITH [36] 0.616 0.610 0.533 0.541 13264
23 One Heart Health [34] 0.587 0.594 0.531 0.539 13283
24 JUST IT Academy1 [40] 0.624 0.631 0.559 0.562 13394
25 SmartBeatIT [24] 0.647 0.655 0.593 0.593 13815
26 Leicester Fox [49] 0.662 0.646 0.620 0.621 13844
27 listNto urHeart [42] 0.489 0.490 0.495 0.505 13866
28 Murmur Mia! [27] 0.682 0.688 0.382 0.528 14228
29 Care4MyHeart [23] 0.624 0.632 0.597 0.597 14410
30 USST Med [43] 0.623 0.621 0.583 0.583 14529
31 lubdub [52] 0.560 0.551 0.345 0.509 14905
32 PCGPAW [44] 0.500 0.500 0.337 0.507 15083
32 SeaCrying [46] 0.500 0.500 0.337 0.507 15083
34 LSMU [41] 0.325 0.399 0.344 0.388 15402
35 Bear FH [56] 0.578 0.590 0.549 0.551 15982
35 fly h [51] 0.578 0.590 0.549 0.551 15982
37 AKSJ 97BSc [53] 0.549 0.550 0.518 0.520 16427
38 BrownBAI [55] 0.487 0.486 0.497 0.499 16773
39 MobiHealth [57] 0.523 0.512 0.503 0.520 18754

Table 6. Scores of the officially ranked methods on the test set for the clinical outcome
identification task. AUROC is the area under the receiver operating characteristic curve,
AUPRC is the area under the precision-recall curve, F -measure is the traditional
F -measure, accuracy is the traditional accuracy metric, and cost is the cost-based
evaluation metric (8).

Clinical Outcome Expert
Abnormal Normal

Murmur Classifier
Present oPA oPN

Unknown oUA oUN

Absent oAA oAN

Table 7. Confusion matrix for murmur detection task with three classes (murmur
present, murmur unknown, and murmur absent) using clinical outcomes with two
classes (clinical outcome abnormal and clinical outcome normal). The columns are the
ground truth labels from the human annotator, and the rows are the classifier outputs.
Each entry of the confusion matrix is the number of patients with the classifier outputs
for the ground truth labels.
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