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Abstract: 
To effectively reduce vision loss due to age-related macular generation (AMD) on a global scale, 

knowledge of its genetic architecture in diverse populations is necessary. A critical element, AMD 

risk profiles in African and Hispanic/Latino ancestries, remains largely unknown due to lower 

lifetime prevalence. We combined genetic and clinical data in the Million Veteran Program with 

five other cohorts to conduct the first multi-ancestry genome-wide association study of AMD and 

discovered 63 loci (30 novel). We observe marked cross-ancestry heterogeneity at major risk loci, 

especially in African-ancestry populations which demonstrate a primary signal in a Major 

Histocompatibility Complex Class II haplotype and reduced risk at the established CFH and 

ARMS2/HTRA1 loci. Broadening efforts to include ancestrally-distinct populations helped uncover 

genes and pathways which boost risk in an ancestry-dependent manner, and are potential targets 

for corrective therapies.   

 

One Sentence Summary:  Probing electronic health record data with genomics unearths novel 

paths to age-related macular degeneration.   
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Main Text: 

Introduction 

Blindness is one of the most feared health problems, reflecting the critical role that vision 

plays in daily living. Age-related macular degeneration (AMD) is a common disorder that impacts 

the central retina region or macula which is specialized for high acuity vision. Because AMD 

spares the peripheral retina, patients retain useful side vision, but the loss of central vision 

interferes with important daily activities such as reading, close work, driving, and recognizing 

faces. 

AMD is a progressive disease that alters various histological layers of the retina, although 

progression rates vary by age, sex, and ancestry (1). Lipoproteinaceous deposits called drusen 

formed between the Bruchs’ membrane and the retinal pigment epithelium (RPE) are the earliest 

indications. The clinical presentation of dry AMD typically involves drusen, pigmentary 

abnormalities and geographic atrophy occupying the central fovea. Decreased choroidal 

perfusion and retinal tissue oxygenation may stimulate choroidal neovascularization, resulting in 

wet AMD. 

AMD shows differential risk across diverse populations (2, 3) with Black subjects being 

74% less likely to receive an AMD diagnosis compared to non-Hispanic white subjects after 

adjustment for age and sex (3). In the same study, Hispanic/Latino subjects showed a 44% 

reduction, while Asian subjects showed a 19% reduction in AMD diagnosis. The cause of the 

reduced risks in these populations is not well understood, although genetic or environmental 

exposure differences, or disparities in life expectancy are likely factors (4). While genome-wide 

association studies (GWAS) for AMD have been published for European ancestry (EA) and Asian 

ancestry (AS) populations, comparable analyses have not been conducted for African ancestry 

(AA) or Hispanic/Latino-ancestry (HA) populations in part because of lower AMD prevalence. 
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GWAS have been highly successful in exploring the etiology of AMD; CFH is widely 

regarded as the first disease susceptibility locus discovered through a GWAS (5–7). The largest 

genetic analysis for AMD focused primarily on EA populations (8), leaving the question of risk in 

other ancestral groups unanswered. A central feature of the current investigation is the multi-

ancestry nature of the biobank-scale sample available from the Department of Veterans Affairs 

(VA) Million Veteran Program (MVP) (9). Examining 61,248 cases and 364,472 controls from 

multiple cohorts, we discovered 30 new genetic loci, and validated 33 known loci. In this study, 

we synthesize several lines of evidence to show that decreased AMD prevalence in AA is at least 

partly mediated by reduced risk at CFH, and other alternative complement pathway genes, 

allowing effects of other loci to be isolated. This work underscores the value of inclusive population 

studies to advance our mechanistic understanding of AMD and likely other diseases as well. 

Results 

Epidemiology of AMD in MVP 

An overview of the present study is depicted in Fig. 1, with additional details in Fig. S1. 

Table S1 summarizes the AMD cohorts used for our analyses. Among demographic factors 

(Tables S2a, S2b), not surprisingly, increased age was significantly associated with AMD status. 

Female sex was also significantly associated with AMD status, even in MVP, where 91% of 

participants are male. In a multiple regression model, smoking and history of heavy drinking 

(score of 8 or higher on at least one AUDIT-C questionnaire) were significant risk factors in the 

MVP EA cohort, and were positively associated but below significance in AA or HA. Elevated HDL 

cholesterol was significantly associated in the EA and AA cohorts, while BMI showed a modest 

negative association with AMD in the EA cohort; a standard deviation increase was associated 

with an odds ratio (OR) of 0.96 [0.95-0.98]; p=2×10-6), even in the fully adjusted model, which was 

replicated with similar effect size (though not with statistical significance) in the AA and HA 
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cohorts. Reduced serum albumin was significantly associated with AMD in all three cohorts, with 

similar effect sizes.  

Using summary statistics from a prior GWAS conducted by the International AMD 

Genomics Consortium (IAMDGC) (8), we constructed polygenic risk scores (PRS) in MVP using 

PRS-CS software (10). We observed strong evidence of increasing penetrance of AMD with 

genetic risk and age in MVP males (Fig. 2a), ranging from a prevalence of approximately 35% in 

the top PRS decile within the 75-85 age range, compared to less than 10% in the bottom decile. 

History of heavy alcohol use and smoking are significant lifestyle risk factors (Table S2b), yet 

they demonstrate smaller changes in penetrance with age compared to the PRS.  

To quantify if there were an overall reduction in risk for AMD in other ancestry groups 

across the entire MVP cohort, we performed a Cox proportional-hazards model with time to AMD 

diagnosis as the outcome and found that AA veterans had a 57% reduction in risk and HA 

veterans had a 26% reduction in risk, relative to EA veterans (Table S2c). Supporting this overall 

result, the PRS demonstrated weak transferability to non-European ancestries in our selected 

case-control sample (Fig. S2): in our EA sample, a standard deviation increase in the PRS was 

associated with an AMD OR=1.76 [95% confidence interval (CI) 1.73-1.78] in a fully adjusted 

model (Table S2b), but only OR=1.13 [1.08-1.18; p=1.2×10-7] in our AA sample and OR=1.47 

[1.39-1.56; p=1.6×10-41] in our HA sample.  

We next interrogated pleiotropy of the AMD PRS using diagnostic codes (i.e., phenome-

wide association study, or PheWAS) and laboratory measures (i.e., laboratory-wide association 

study, or LabWAS) recorded in the EHR. We evaluated PheWAS associations of 1,665 ICD code-

based phenotypes with the normalized PRS and contrasted the top vs. bottom deciles and top 

decile vs. remaining 90% to evaluate risk stratification. Fifty-four phenotypes were significantly 

associated (Fig. 2b; Table S3).  As expected, retinal codes were highly significant -- compared 

to the bottom PRS decile, the top decile had OR=17.8 [15.1-20.9] for a diagnosis of wet AMD. 

Unsurprisingly, alcohol and tobacco exposure also showed strong associations. Other notable 
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positive associations included cataracts, refractive error, and mood disorders. Interestingly, the 

AMD PRS was also associated with lowered risks of Alzheimer’s disease and other dementias, 

which may reflect opposing roles of HDL cholesterol. Of the 69 lab measurements, 16 were 

significantly associated, including positive associations with HDL cholesterol, red cell distribution 

width, platelets, serum magnesium, monocytes, and neutrophils, compared with negative 

associations with triglycerides, serum albumin and serum glucose (Fig 2c; Table S4). 

European meta-analysis for AMD identifies 27 novel loci 

GWAS of AMD in two MVP tranches and meta-analysis with the summary statistics from 

five other cohorts (IAMDGC, GERA, UK Biobank, Genentech geographic atrophy, and Genentech 

choroidal neovascularization) was followed by replication, i.e., meta-analysis with a third MVP 

tranche that later became available to us, for a total EA analysis comprising 57,290 AMD cases 

and 324,430 controls (Table S1). This analysis (Fig. 3a) revealed 60 index variants: 33 previously 

reported and 27 novel significant loci (Table S5; Figs. S3-S4). Due to oversampling for severity 

in the IAMDGC, effect sizes of the index variants at major association peaks are lower overall in 

the MVP EA cohorts, similar to other EHR-based cohorts (Table S6). However, genetic correlation 

(11) between the MVP and IAMDGC GWAS was very high (rG=0.95; se=0.04). Of the 34 loci 

reported by the IAMDGC (8), 31 are genome-wide significant in the EA meta-analysis; the 

exceptions are PRLS-SPEF2, TRPM3, and VTN.  

We observed novel loci in or near genes related to complement cascade regulation 

(CD46/CD55), TGF-β signaling (TGFB1, SMAD3, ADAM19), pigmentation (TYR, HERC2/OCA2, 

TRPM1), angiogenesis and vascular homeostasis (RRAS, RASIP1, IGFBP7, PDGFB, MYO1E, 

EXOC3L2), inflammation (CSK/ULK3), proteolysis (SERPINA1), cell proliferation and apoptosis 

(ZBTB38, ZNF385B), ubiquitin-proteasome system (CAND2/TEMEM40), lipid metabolism and 

biogenesis (CHD9, LBP, HSDL2, AFF1, ACAA2/LIPG, ME3), and photoreceptor function (RLBP1, 

CLUL1). Finally, we observed a novel locus in an intergenic region near LINC02343, a non-coding 
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RNA of uncharacterized function. A conditional analysis revealed 176 mutually significant variants 

in or near the 60 loci (Table S7). 

At the 20q13 locus, the previously reported MMP9 index SNP was not replicated in our 

meta-analysis, and a new signal at nearby PLTP (phospholipid transfer protein), a CETP and LBP 

paralog, emerged. Although partially in LD (r2 = 0.2), conditioning on the MMP9 SNP (rs1888235) 

in our meta-analysis, and on the PLTP SNP (rs17447545) in IAMDGC, weakened but did not 

eliminate either signal, demonstrating independence (Fig. S5). This result is consistent with the 

reported specificity of the MMP9 signal for wet AMD, which is enriched in IAMDGC (8). 

Rare protective missense mutations in novel genes CFD and RRAS emerged, 

independent of any common variation. The CFD missense mutation (p.Glu69Lys, rs35186399), 

which was not genotyped in the IAMDGC study, has OR=0.73 [0.66-0.81; p=8.0×10-10], with a 

frequency just under 1%, and is a pQTL for decreased complement C8 levels (12). Although 

rs35186399 is not predicted by most variant effect classifiers to have a significant impact on 

protein function (13, 14), it is within a CTCF binding site, which could potentially affect the 

insulation of topologically associated domains and enhancer-promoter regulatory interactions. We 

also identified a novel protective mutation in RRAS, a Ras-family GTPase with reported regulatory 

functions in angiogenesis and vascular homeostasis (15–17). The putatively protein-altering 

mutation, rs61760904 (p.Asp133Asn), has a frequency of 0.6% in MVP EA, with OR=0.75 [0.68-

0.83; p=9.5×10-9], and also associates with increased blood pressure (18).  

At SERPINA1, which encodes α-1 antitrypsin (A1AT), we observed associations with the 

pathogenic PiZ (p.Glu366Lys; rs28929474) and PiS (p.Glu288Val; rs17580) alleles. Intriguingly, 

PiZ is protective for AMD (OR=0.81 [0.77-0.86; p=3.2×10-12]), while PiS increases risk (OR=1.10 

[1.06-1.14; p=1.2×10-7]). A1AT is a serine protease inhibitor primarily expressed in the liver which 

regulates proinflammatory neutrophil elastase. Notably, A1AT is cleaved by HTRA1 to form NET 

(neutrophil extracellular trap) inhibitory peptides (NIPs) (19). Z and S allele heterozygosity are 
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associated with numerous inflammatory biomarkers, including serum albumin (20), C reactive 

protein, and glycoprotein acetyls (21).  

Genetic correlations with a number of eye traits and related phenotypes revealed some of 

the strongest correlations with pigment dispersion syndrome and glaucoma (22), as well as eye 

color (23) and hair color (24) (Table S8). Similarly, genetic risk to intraocular pressure was 

inversely correlated with that of AMD. We further scanned genetic correlations with blood-based 

biomarkers (Pan-UKB team, 2020) and found the strongest correlations with serum albumin (rG=-

0.13; p=4.2×10-8), albumin/globulin ratio, and kidney biomarkers phosphate, calcium, and cystatin 

C (Table S9). 

We further explored the causality of pigmentation associations using Mendelian 

randomization (MR) (Fig. 4; Table S10). Drawing instrumental variables from some of the largest 

studies of pigmentation, we report for the first time a causal effect of pigmentation on AMD in EA 

populations. Comparing AMD data with those from a study (23) in which eye color was measured 

on a quantitative scale (range 0-6) from blue to dark brown, we find that each step towards darker 

eye color decreases the risk of AMD by about 5% (OR=0.95 [0.94-0.97]). Selecting only the 

instruments with known associations in other pigmentary traits, which likely represent the best 

proxies for melanin metabolism in the retina (23), we obtain a similar effect estimate (OR=0.95 

[0.93-0.98]). To further confirm the involvement of melanin metabolic pathways in AMD, we 

examined other pigmentary traits. We found that each step up from blond to black hair color (range 

0-4) (24) decreases the risk of AMD by 12% (OR=0.88 [0.85-0.92]). The more modest protective 

effect of eye color relative to hair color may be due to the higher phenotypic contribution of light 

diffraction genes (23). Finally, we find also that proxies of skin color, such as non-melanoma skin 

cancers (25) (OR=1.07 [1.02-1.12]) and low tanning response (26) (OR=1.07 [1.02-1.13]) are 

significantly associated in MR models with higher AMD risk. We strongly believe that these 

examples are simply proxies for fundamental pigmentation processes and approximate the 

presence of melanin in the RPE and choroid. 
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Multi-ancestry GWAS for AMD identifies the first loci in admixed Black and 

Hispanic-Latino populations 

We conducted the first GWAS on AMD in individuals of African and Hispanic/Latino 

ancestries. In the AA GWAS (2,302 cases and 29,223 controls), a primary locus centered at HLA-

DQB1 (index SNP rs3844313; OR=1.41 [1.30-1.52]; p=9.1×10-18) reached genome-wide 

significance (Figs. 3b and S6). Supporting the AA result, the HLA-DQB1 locus was significant in 

the EA GWAS at a direction-consistent but lower OR (Fig. 5a; Table S11). In contrast to the EA 

population, much smaller effect sizes were observed in the AA GWAS at major AMD risk loci 

CFH, ARMS2, and CFB/C2 (Fig. 5a). However, EA index markers have similar allele frequencies 

in the MVP AA sample. 

We constructed a new AA-specific PRS based on the AA GWAS and used it to score 

unrelated AA subjects in MVP that were not included in our GWAS cohort. We then performed 

PheWAS and LabWAS on the AA PRS (N up to 80,345 depending on the phenotype) to better 

understand the pleiotropy of genetic risk in AA populations. We observed significant increases in 

median neutrophil count, white blood cell count, neutrophil fraction, and HDL cholesterol, and a 

decrease in lymphocyte fraction (Table S12). This result demonstrates that lipid metabolism and 

immune pathways continue to play a role in AMD pathogenesis in AA despite divergent genetic 

architecture. 

In the HA GWAS (1,545 cases and 10,930 controls), CFH and ARMS2 reached genome-

wide significance (Fig. 3c and S6; Table S13), despite smaller sample size than AA. The HA 

GWAS showed effect sizes more comparable to the EA estimates, though still generally smaller 

at the major EA loci (Fig. 5b). In summary, AMD risk is attenuated in AA and HA which we ascribe 

at least partly to genetic precursors, with AA showing the most dissimilar profiles to EA. 
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Multi-ancestry meta-analysis and fine-mapping identifies three additional 

novel loci and candidate causal variants 

 To capture cross-ancestry effects and to increase discovery power, we conducted a multi-

ancestry meta-analysis, combining our EA meta-analysis, EA replication GWAS, and AA and HA 

GWAS reaching a total of 61,248 cases and 364,472 controls. A total of 62 loci were genome-

wide significant, including three novel loci beyond that reported above for the EA meta-analysis: 

LRP2, RP1L1, and complement C5 (Table S14; Fig. S7), and all significant EA loci except for 

ADAM19. LRP2 encodes the transmembrane low-density lipoprotein receptor megalin, which is 

expressed in the RPE (27, 28), and RP1L1 encodes a retina-specific protein involved in 

photoreceptor differentiation and function (29). 

We leveraged differential LD structure across ancestries, along with multi-model 

expression data, to identify candidate causal variants. We fine-mapped genome-wide significant 

loci in the multi-ancestry and EA discovery meta-analyses using the program FINEMAP (30) 

(Tables S15-S16). To co-localize eQTLs, multivariate multiple QTL (mmQTL) (31) was first 

applied to detect eQTL, and eCAVIAR (32) was then used to obtain a co-localization posterior 

probability (CLPP) for each GWAS credible set variant. Based on co-localization with the multi-

ancestry meta-analysis, we identified seven candidate causal variants modifying the gene 

expression of CD46, RDH5, BLOC1S1, FAM227A, CFI, TNFRSF10A, and ABCA1 (Fig. S8; 

Table S17). Expression co-localization of the variant with the highest CLPP, TNFRSF10A, is 

shown in Fig. S8a. TNFRSF10A encodes for a receptor, which is activated by tumor necrosis 

factor and induces cell apoptosis. 
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Genetic risk at CFH in admixed Black and Hispanic/Latino populations 

comes from European haplotypes 

 We conducted local ancestry analyses to investigate the contribution of genetic risk at 

CFH in admixed individuals. We inferred local ancestry (33), and extracted ancestry-specific 

imputed dosages and haplotype counts. On average, the MVP AA cohort had 81% African (AFR) 

and 19% European (EUR) admixture, and the MVP HA cohort had 31% Native American (NAT), 

61% EUR, and 8% AFR admixture. We used Fisher’s Exact Test to test for significant differences 

in the proportion of cases and controls with EUR haplotypes at CFH (Table S18). We conducted 

a 2x2 test on haplotypes in AA subjects, which was statistically significant (OR=1.12 [1.04-1.20]; 

p=0.0033) and a 3x2 test on haplotypes in admixed HA subjects (AFR/EUR/NAT x case/control) 

which was also statistically significant (p=1.7×10-5). 

The CFH locus was tested using the Tractor method (34), a local ancestry-aware GWAS 

model which partitions the contributions to genetic risk according to the ancestry of origin of each 

haplotype to obtain ancestry-specific marginal effect size estimates (Fig. 6). In AA subjects, the 

conventional GWAS found a modest effect at the established risk polymorphism CFH Y402H 

(rs1061170) with OR=1.13 [1.06-1.20, p=1.8×10-4]. However, the Tractor GWAS found differential 

effect across haplotype ancestry, with AFR haplotypes (“AFR tract”) having OR=1.07 [1.00-1.15; 

p=0.045] and EUR haplotypes (“EUR tract”) having OR=1.40 [1.23-1.60; p=7.1×10-7] (Fig. 6c). 

Moreover, the genetic architecture of the EUR tract was similar to the analysis conducted within 

EA individuals (Fig. 6a). Within HA subjects (Fig. 6b-c), however, the conventional GWAS 

demonstrated a large effect (OR=1.49 [1.37-1.63]; p=2.4×10-19) similar to that in EA only. 

Examining the risk by local ancestry, the EUR and the native American (NAT) tracts demonstrated 

a large effect size, whereas the AFR tract did not (OR=1.04 [0.78-1.39; p = 0.79]), consistent with 

the AFR tract in the AA population. However, the NAT tract had much smaller allele frequency 
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(3% in NAT vs 38% in EUR haplotypes). Thus, most of the risk at CFH in the AA and HA GWAS 

arises from EUR haplotypes. 

Smaller CFH Y402H effect size observed in AFR could be explained through haplotype 

analysis. In particular, a protective deletion of CFHR3 and CFHR1 (35) has a higher frequency in 

AFR haplotypes (40% compared to 20% in EUR haplotypes) (36) and has been proposed as an 

explanation for lower rates of AMD observed in AA (37). As no SNPs tag the CFHR3-CFHR1 

deletion with r2 > 0.8 in AFR haplotypes, we called the deletion directly from genotype intensities 

and phased the deletion with the genotypes. We found that the deletion is largely out of phase 

with the CFH Y402H risk allele (D’=0.87) in AFR haplotypes; thus, it cannot fully explain the 

reduced effect size. Stratified by local ancestry, haplotypes in AA were analyzed using two models 

(38, 39), excluding SNPs that are rare in AFR haplotypes (Table S19). While both models suggest 

that the putative risk haplotype may have a lower frequency in AFR compared to EUR, neither 

model demonstrated enrichment in cases with homozygous AFR local ancestry; they did, 

however, find haplotypes with enrichment in cases with homozygous EUR local ancestry. Thus, 

our analysis suggests a smaller effect size in AFR haplotypes, which may contribute to the lower 

incidence of AMD in AA; we acknowledge that the CFH locus comprises a complex genetic 

architecture (40). 

Genetic risk at ARMS2 is lower in admixed Black subjects, but does not 

vary by haplotype ancestry 

 Similarly, we dissected the local ancestry contribution of genetic risk at the ARMS2-

HTRA1 locus, which also demonstrated marked cross-ancestry heterogeneity. In contrast to CFH, 

we did not find significant differences in the proportion of European haplotypes at ARMS2 in 

admixed African or Hispanic subjects using Fisher’s Exact Test (Table S20). We tested the 

ARMS2 locus using the Tractor method (Fig. 6d). Within AA subjects, OR at the ARMS2 A69S 
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polymorphism were close to 1 and not significant in both the AFR and EUR tracts. However, within 

admixed HA subjects, EUR, NAT, and AFR local ancestry tracts surprisingly all showed similar 

statistically significant OR. We hypothesized that risk at ARMS2 was partially dependent on 

genetic architecture at CFH, and isolated admixed AA subjects with EUR/EUR local ancestry at 

CFH. We observed OR in AFR and EUR tracts similar to the EA and HA GWAS, with the AFR 

tract reaching statistical significance (p=0.0026). In contrast, OR were close to 1 in both AFR and 

EUR tracts in subjects with homozygous AFR local ancestry at CFH. Thus, our results suggest 

that the causal variant at ARMS2 has similar effect size across ancestries, and the lack of 

association in AA may be due to epistasis or pathway effects related to the conspicuous lack of 

complement loci in the AA GWAS. Supporting this hypothesis, we modeled epistatic interaction 

between the CFH and ARMS2 risk alleles in MVP EA (Table S21) and observed a significant 

association of AMD with the interaction term (OR=1.11 [1.08-1.14]; p=1.6×10-13). 

An MHC Class II haplotype is associated with AMD in African and 

European ancestries 

As the AA GWAS demonstrated a primary association with the MHC and not CFH and 

ARMS2 as observed in other ancestries, we dissected the MHC signal by testing HLA alleles 

imputed with HIBAG (41). Full summary statistics are provided in Tables S22-S24. Within MVP 

EA (32,567 cases and 130,444 controls), we replicated HLA allele associations (42) with 

DQB*02:01 (p=1.2×10-7), DQB*02:02 (p=4.7×10-10), and DRB*03:01 (p=2.5×10-7); however, the 

DQB*02:01 and DRB*03:01 alleles were no longer significant in the fully adjusted model, 

especially after adjustment for the nearby CFB/C2 SNP rs429608. Eight alleles were significant 

after Bonferroni correction, with four novel associations reaching genome-wide significance 

(A*11:01, B*14:01, DRB1*07:01, and DQA1*02:01). Within AA subjects (2,296 cases and 28,478 

controls), three Class II alleles were highly significant: DRB1*07:01 (1.52 [1.37-1.68]; p=5.2×10-
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15), DQA1*02:01 (1.39 [1.26-1.52]; p=2.4×10-11), and DQB1*02:02 (1.39 [1.27-1.52]; p=2.1×10-12). 

These three alleles are known to form a haplotype (HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02) 

that is associated with autoimmune conditions such as celiac disease (43) and asparaginase 

hypersensitivity (44, 45). In an additive model, the risk haplotype was highly associated with AMD, 

with OR=1.51 [1.37-1.66; p=1.8×10-16] in AA and replicated with a smaller effect size, OR=1.16 

[1.12-1.20; p=2.1×10-15], in EA, with all other haplotypes as reference. A PheWAS of the risk 

haplotype in AA led to significant enrichment of diagnostic signals for drusen (p=1.2×10-26) and 

dry AMD (p=4.7×10-9), which were corroborated in the EA analysis (p=6.7×10-4 and p=2.4×10-3, 

respectively). Additionally, we replicated the celiac disease association in the EA cohort 

(p=1.0×10-12). Antibodies directed against HLA-DR showed immunoreactivity in drusen (46), 

supporting biological plausibility. 

Multi-tissue TWAS of AMD identifies novel AMD-associated genes 

To pair the GWAS signals with functional gene units, predictive models of gene expression 

(47) were used to perform a multi-tissue transcriptome-wide association study (TWAS), based on 

our EA discovery meta-analysis (N=45,045 cases, 275,806 controls). We performed TWAS using 

the high-powered dorsolateral prefrontal cortex (DLPFC) dataset from the PsychENCODE 

Consortium (PEC) (48) (Table S25), as well as retina (49) (Table S26), and 35 other tissue 

models built from GTEx v8 (50) and STARNET (51). We then meta-analyzed tissue p-values 

using ACAT (52) (Table S27). AMD-related gene expression was highly correlated across tissues 

(Fig. S9a). Consistent with the high protein and gene expression similarity among retina and brain 

(Human Protein Atlas, proteinatlas.org) (53), we found that the retina TWAS clustered together 

with the TWAS in DLPFC and other brain tissues (Fig. S9b). 

Applying the DLPFC model, 156 genes and 326 transcripts were significant at the FDR-

corrected p<0.05 association threshold (Fig. 3a). Novel TWAS genes include regulatory genes 

for protein glycosylation (MAN2C1, MPI, TMEM199, and CTSA), lipid metabolism (CHD9), cell 
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cycle (FRK), and neurogenesis and neural differentiation (NTN5 and NIF3L1). Significant genes 

not at a genome-wide significant GWAS locus include CAB39, CUL1 antisense transcript 

AC005229.4 (ENSG00000273314), and WAC-AS1 (Fig. S10). Along with the novel GWAS locus 

near CAND2, CUL1 and WAC are components of the ubiquitin-proteasome system, suggesting 

a larger role for that pathway in AMD than previously appreciated. 

At CD46/CD55 we observed significant downregulation of the CD55-203 transcript and 

upregulation of CD46 overall, with differential regulation of some CD46 transcripts (Fig. 5c), likely 

corresponding to a strong splice QTL at the index SNP (rs2724360) observed in many tissues in 

GTEx (p=1.3×10-25 in DFPLC). We further performed retina summary-based MR (SMR) 

experiments (Table S28), which provide support for a causal link between AMD risk variants and 

expression of CD46, but not CD55. 

We then conducted gene set enrichment analysis (GSEA) on significant TWAS genes in 

the DLPFC-based model (Table S29; Fig. S11a) and the tissue meta-analysis (Table S30; Fig. 

S11b). In addition to complement cascade, humoral immunity, and HDL cholesterol regulation 

pathways, we observed significant enrichment in genes belonging to pathways related to 

regulation of immune and inflammatory responses, and death receptor-mediated apoptosis. We 

further performed semantic clustering of significant GO terms in the tissue meta-analysis GSEA, 

which identified two major themes associated with AMD pathology: immune functions and lipid 

homeostasis (Fig. S12). Finally, we conducted gene-based rare variant burden analyses of the 

MVP EA cohort (Table S31), which confirmed the risk-increasing effect of rare CFH and CFI 

mutations, and performed enrichment using our TWAS results (Fig. S13). In addition to CFH and 

CFI, genes prioritized by this analysis include CETP, ABCA7, ELP5 and B3GLCT. 
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Discussion 

We performed the largest GWAS meta-analysis to date and the first GWAS of AMD in AA 

and HA populations using data from veterans participating in MVP, nearly quadrupling the number 

of cases and doubling associated loci. Importantly, we uncovered marked differences in risk 

between major AMD loci across populations even at loci with known large effect sizes, especially 

CFH and ARMS2/HTRA1, which may partially explain lower rates of AMD in these groups. We 

submit that the overall reduction in risk in AA is due to tempered involvement of the complement 

pathway, substantiated through overall weak PRS transferability. In contrast to other ancestries, 

our AA GWAS had a primary peak at HLA-DQB1, corresponding to an MHC Class II risk haplotype 

which was replicated with a smaller effect size in EA subjects. This heterogeneity in genetic 

architecture may reflect the role of natural selection in shaping immune responses across 

ancestries (54, 55). However, our PRS-PheWAS experiment using the AA GWAS as a base, 

which demonstrated associations between the AA AMD PRS and increases in both HDL 

cholesterol and neutrophil counts, points to shared disease mechanisms. 

We dissected cross-ancestry heterogeneity at the CFH and ARMS2 loci using haplotype-

based local ancestry analyses, “painting” the ancestral origin of each chromosome. These 

analyses revealed that AFR haplotypes have a smaller marginal effect size at the CFH risk allele, 

compared to EUR and NAT haplotypes in the same individuals, in both AA and HA populations. 

In contrast with CFH, the lack of association at ARMS2 in AA is not due to ancestry-based 

haplotype-specific effects. In AA individuals, both AFR and EUR haplotypes demonstrated 

similarly small effect sizes. However, in HA individuals, which show high risk at ARMS2, AFR, 

EUR, and NAT haplotypes all showed similarly large marginal effect sizes. We infer from these 

observations a diminished role for the ARMS2/HTRA1 locus in the absence of genetic risk at 

CFH. We further leveraged the statistical power offered by MVP to confirm a robust interaction 

effect between the CFH and ARMS2 risk alleles in EA. 
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A general conclusion from years of investigative efforts is that the genetic architectures at 

the broader CFH and ARMS2/HTRA1 loci are multifaceted (40, 56).  At CFH, both common and 

rare variation (8) as well as structural variation (35) plays a role. At ARMS2/HTRA1, broad linkage 

disequilibrium between variants has made fine-mapping and identification of causal mechanisms 

difficult. Current literature points to a tissue-specific cis-regulatory element within ARMS2 that is 

disrupted by the risk allele, leading to downregulation of HTRA1 (57). HTRA1, a serine protease 

with reported roles in TGF-β signaling (58) and regulation of monocyte elimination (59), has also 

been shown to cleave neutrophil elastase inhibitor α-1 antitrypsin (SERPINA1) (60), producing 

NET inhibitory peptides, or NIPs (19, 61). NETs activate complement (62–64), and CFH itself may 

both regulate NETosis (65) and bind to NETs (66), potentially connecting the biology of the two 

principal AMD risk loci. Supporting this pathway, we discovered that two low-frequency 

pathogenic mutations in SERPINA1 that cause α-1 antitrypsin deficiency are associated with 

AMD, but with opposite directions of effect. Additionally, consistent with histological (67) and 

observational (68) evidence, our AMD PRS-PheWAS experiments in both EA and AA showed 

association with increased neutrophil counts. Thus, integration of epidemiologic and genetic data 

from European and non-European populations synergizes and unifies evidence, and refines risk 

models. 

Other loci to emerge in our GWAS meta-analysis continue to expand on known AMD 

themes, including numerous novel loci related to the complement cascade, lipid metabolism, 

angiogenesis, TGF-β signaling, photoreceptor function, apoptosis, and inflammation. We also 

identified the first pigmentation loci associated with AMD: HERC2/OCA2, TYR, and TRPM1. We 

explored this theme further by demonstrating for the first time a protective effect of pigmentation 

on AMD in EA using MR, supporting a causal relationship where long-standing observational 

evidence has been inconsistent (69). 

To pinpoint causal changes in genetically regulated gene expression, we performed multi-

tissue TWAS and SMR experiments. Our analysis adds transcriptomic imputation models from 
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new cohorts (PsychENCODE and STARNET), expands sample sizes in GTEx (GTEx v8 vs. GTEx 

v7), leverages a higher-powered GWAS, and introduces expression information at the transcript 

level in the DLPFC model. A comparison with previous TWAS studies (49, 70) is summarized in 

Table S32. TWAS enabled us to refine several loci, such as at CD46/CD55, where we identified 

specific CD46 transcripts associated with AMD. Our TWAS analysis also enabled us to identify 

numerous additional novel AMD-associated genes across several pathways, including ubiquitin-

proteasome system, protein glycosylation, cell cycle regulation, and neural differentiation. 

While our analysis demonstrated a very high genetic correlation with IAMDGC (95%), one 

limitation is that our phenotyping approach used only ICD code-based diagnoses and 

demographic parameters (71), which limited our ability for deep phenotyping. An important future 

direction will be to review ophthalmologic imaging data to assess disease severity and pathology 

in patients diagnosed with AMD and associate findings with specific genetic risk factors, such as 

the HLA risk haplotype in AA. To date, most large-scale imaging studies of AMD have focused on 

EA populations, and as our results demonstrate, increasing diversity is important. 

In conclusion, our study expands the number of genetic loci associated with AMD and fills 

in important gaps in the literature regarding the genetics of AMD in non-European ancestries. 

Moreover, it illustrates the importance of considering diverse admixed genomes and using local 

ancestry-aware analyses (34), which can leverage differences in effect size, frequency, and LD 

to tease apart mechanisms of genetic risk and improve risk prediction. 
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Materials and Methods 

Samples 

A general description of the MVP sample may be found in Gaziano et al. (9). Composition 

of the cohorts studied here is available in Table S1. Informed consent was obtained from all 

participants, and all studies were performed with approval from the Institutional Review Boards at 

participating centers, in accordance with the Declaration of Helsinki. 

MVP 

We used ICD9/ICD10 codes in VA electronic health records to define AMD case/control 

status, using Algorithm 4 in Halladay et al. (71) in which AMD cases and controls were required 

to be 50 and 65 years of age, respectively. Briefly, AMD cases had ICD9/ICD10 codes indicating 

AMD from at least two separate eye clinic visits; controls had either no eye clinic visits or no AMD 

diagnoses. The three EA cohorts represent three separate releases of the MVP genotype data. 

A description of the custom MVP Affymetrix Biobank chip, and general quality control (QC) 

procedures for genetic data, have been published (72). Briefly, the MVP sample was genotyped 

for a custom Affymetrix Biobank chip, containing 725,000 variants. Samples were imputed to the 

1000 Genomes Phase 3 panel. AA and HA samples were additionally imputed to the African 

Genome Resources imputation panel from the Sanger Institute (73) to improve imputation of 

African haplotypes. Imputed genotypes were available for a total of 658,000 Veterans across all 

ethnic groups. We used HARE categories (74) AFR (African American), EUR (European 

American) and HIS (Hispanic American) to harmonize genetic ancestry with self-identified 

race/ethnicity. Principal components for ancestry were determined within HARE groups. 

Genentech 

Study Design and Populations. We performed whole-genome sequencing of  DNA derived 

from blood samples obtained from patients with choroidal neovascularization (CNV) participating 
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in clinical trials for Ranibizumab (NCT00891735 [HARBOR], NCT00061594 [ANCHOR] and 

NCT00056836 [MARINA]) and from patients with geographic atrophy (GA) participating in clinical 

trials for Lampalizumab (NCT02247479 [CHROMA], NCT02247531 [SPECTRI], NCT01229215 

[MAHALO]) and an observational study (NCT02479386 [PROXIMA]). Patients had to consent for 

genetic analysis for inclusion eligibility and these cohorts were selected for inclusion based on 

available phenotypic information and DNA availability for whole-genome sequencing.  

Two independent sets of non-AMD controls were used for the GA risk analysis and the 

CNV risk analysis. Samples and data for non-AMD controls without CNV were obtained from 

clinical trial cohorts of asthma and RA. Samples and data for non-AMD controls without GA were 

obtained from clinical trial cohorts of asthma, colorectal cancer, COPD, inflammatory bowel 

disease, IPF and RA. No healthy controls were used because no whole-genome sequencing data 

was available. All non-AMD controls were aged 50 or older and of European ancestry. 

All patients (AMD and non-AMD controls) included in this study provided written informed 

consent for whole-genome sequencing of their DNA. Ethical approval was provided as per the 

original clinical trials. 

DNA analysis. The whole-genome sequencing data was generated to a read depth of 30X 

using the HiSeq platform (Illumina X10, San Diego, CA, USA) processed using the Burrows-

Wheeler Aligner (BWA) / Genome Analysis Toolkit (GATK) best practices pipeline. Whole genome 

sequencing short reads were mapped to hg38 / GRCh38 (GCA_000001405.15), including 

alternate assemblies, using BWA version 0.7.9a-r786 to generate BAM files. All sequencing data 

was subject to quality control and was checked for concordance with SNP fingerprint data 

collected before sequencing. After filtering for genotypes with a GATK genotype quality greater 

than 90, samples with heterozygote concordance with SNP chip data of less than 75% were 

removed. Sample contamination was determined with VerifyBamID software. And samples with 

a freemix parameter of more than 0.03 were excluded. Joint variant calling was done using the 

GATK best practices joint genotyping pipeline to generate a single variant call format (VCF) file. 
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The called variants were then processed using ASDPEx to filter out spurious variant calls in the 

alternate regions. 

Quality Control. Samples were then excluded if the call rate was less than 90%. Identity 

by descent analysis was used to detect and filter out relatedness in the dataset; samples were 

excluded if PI_HAT was 0.4 or higher. Samples were removed if they showed excess 

heterozygosity with more than three standard deviations of the mean. This resulted in 1,703 GA 

patients with 2,611 non-GA controls, and 1,175 CNV patients with 3,225 non-CNV controls. 

Sample genotypes were set to missing if the Genotype Quality score was less than 20 

and SNPs were removed if the missingness was higher than 5%. SNPs were filtered if the 

significance level for the Hardy-Weinberg equilibrium test was less than 5×10-8. The allele depth 

balance test was performed to test for equal allele depth at heterozygote carriers using a binomial 

test; SNPs were excluded if the p-value was less than 1×10-5.  

 
GWAS 

MVP EA. GWAS on the first two EA tranches of the MVP cohort were conducted in PLINK 

2.0, adjusting for sex and six ancestry-specific principal components. 

MVP AA and HA. Individuals were classified by genetic ancestry using the HARE method 

(74) which harmonizes self-reported ethnicity with genetic ancestry. We conducted GWAS in MVP 

AA and HA populations with REGENIE v1.6.7 (75) using sex and 10 ancestry-specific PCs as 

covariates. We used the approximate Firth mode (--firth --approx) with a p-value threshold of 0.05 

to control type I error rate in rare SNPs. We additionally used option --firth-se to generate standard 

errors computed from the Firth effect size and likelihood ratio test p-value for meta-analysis 

purposes. 

MVP EA replication GWAS. We conducted a GWAS in a third tranche of MVP data that 

later became available to us. To ensure that novel associations in the EA meta-analysis were 

robust to population structure, we conducted the EA replication GWAS in REGENIE v2.2.4 (75)  
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using sex and ten ancestry-specific PCs as covariates. We used the approximate Firth mode (--

firth --approx) with a p-value threshold of 0.05 to control type I error rate in rare SNPs. We 

additionally used option --firth-se to generate standard errors computed from the Firth effect size 

and likelihood ratio test p-value for meta-analysis purposes. 

IAMDGC. Phenotyping and GWAS analysis in IAMDGC is described in detail elsewhere 

(8). Briefly, European-ancestry subjects were genotyped on a custom Illumina HumanCoreExome 

array and imputed to the 1000 Genomes Phase 1 panel. GWAS analyses were conducted using 

EPACTS using DNA type (whether whole genome-amplified or not) and two PCs as covariates. 

GERA. Phenotyping and sample collection in GERA are described in detail elsewhere (42, 

76). Cases and controls were selected from European-ancestry subjects. Samples were 

genotyped on an Affymetrix Axiom array and imputed to the 1000 Genomes panel. GWAS were 

conducted in PLINK 1.07 using age, gender, PCs 1-10 (calculated within European-ancestry 

subjects), and percentage of Ashkenazi ancestry as covariates. 

UK Biobank. Cases and controls were selected from subjects of at least 65 years of age. 

Samples were genotyped on the UK BiLEVE Axiom Array or the UK Biobank Axiom Array and 

imputed to the Haplotype Reference Consortium (HRC) reference panel. GWAS analyses were 

conducted in PLINK 1.9 using sex and the first two PCs as covariates. 

Genentech GA and CNV. Common variant (MAF>=1%) genome-wide association studies 

(GWAS) were conducted to separately assess GA risk and CNV risk as compared to independent 

non-AMD control cohorts. PLINK was used to perform logistic regression using an additive model, 

adjusting for age, sex and the first three principal components. 

Statistical Analysis 

Epidemiological analyses. Observational association analyses were conducted using the 

statsmodels (version 0.12.2) Python module. Case-control analyses were performed with logistic 

regression. Time-to-AMD-diagnosis analysis was performed using a Cox proportional hazards 
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model. The index date was defined as the date of first recorded visit to the VA healthcare system. 

An event was defined as a subject receiving AMD diagnoses on two unique days. The time-to-

event was defined as the time from the first recorded visit to the first recorded AMD diagnosis. 

Subjects with fewer than two unique days with AMD diagnoses were right-censored by the date 

of the last recorded VA healthcare system visit.  

GWAS Meta-analysis. GWAS meta-analyses were conducted using the inverse variance-

weighted fixed effects scheme as implemented in METAL (77). 

Additional QC. We imposed the following criteria for the GWAS and meta-analysis: 

imputation quality score ≥ 0.5, minor allele frequency ≥ 0.005, and p ≥ 1×10-50 from an exact test 

for Hardy-Weinberg proportions. 

Locus definition. Association loci were defined using the FUMA GWAS online tool (78) 

with default options (merging together LD blocks closer than 250 kb into a locus). 

IAMDGC-based polygenic risk score analysis. We derived AMD PRS scores for subjects 

in MVP across all ancestries using the IAMDGC GWAS (8) as a base. Weights were derived from 

the base GWAS using PRS-CS (10) with a global shrinkage prior of 1×10-4 (the default 

recommended for less-polygenic traits), using the UK Biobank European-ancestry LD reference. 

Imputed SNPs meeting R2 > 0.8 and minor allele frequency > 1% QC criteria were included in the 

model. Scores were then normalized to zero mean and unit variance within each ancestry group. 

AA GWAS-based polygenic risk score analysis. To better understand the pleiotropy of 

AMD genetic risk in African ancestries, we used the AA summary statistics as the base for scoring 

polygenic risk in unrelated MVP AA subjects that were not included as cases or controls in the 

GWAS cohort. As our phenotyping approach required subjects to have visited a VA eye clinic and 

been evaluated by an eye specialist, the PRS was evaluated in the remaining unrelated AA 

subjects with no such history. Weights were derived from the base MVP AA GWAS using PRS-

CS (10) with a global shrinkage prior of 1×10-4 (the default recommended for less-polygenic traits), 
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using the UK Biobank African-ancestry LD reference. Scores were then normalized to zero mean 

and unit variance. 

Conditional association analysis. We determined a set of mutually independent genome-

wide significant variants using the conditional analysis procedure implemented in GCTA-COJO 

(79). A subset of 100,000 MVP EA individuals (as classified by the HARE method) formed the 

reference population for LD structure. Independent significant variants were chosen over all loci 

simultaneously by means of the --cojo-slct procedure for stepwise regression. Selected variants 

had association p < 5×10-8 while adjusting for all other variants and were not necessarily pairwise 

independent. 

HLA analysis. Four-digit HLA alleles were imputed in all subjects in MVP using HIBAG 

(41) with the Axiom UK Biobank Array multi-ethnic model as reference. Allele calls with posterior 

probability less than 50% were filtered out. Alleles were tested additively relative to all other alleles 

at each locus using the logistf R package for Firth logistic regression (80). Two models were 

applied: the ‘standard’ model with adjustment for sex and PCs 1-10, and the ‘fully adjusted’ model 

with adjustment for sex, PCs 1-10, and major AMD risk alleles at CFH, ARMS2, CFB/C2, and C3. 

Alleles with a minor allele count less than 50 were not tested. P-values and confidence intervals 

are based on the penalized likelihood ratio test and profile penalized likelihood, while the standard 

error and z-score are based on the Wald method. 

HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype analysis. Two SNPs (rs28383172 

and rs7775228) were recently reported to tag the haplotype with high sensitivity and specificity 

(81), both of which are genotyped on the MVP array. We phased genotypes using SHAPEIT4 

(82) and designated the risk haplotypes as those with G and C alleles, respectively. 

Local ancestry analysis. We inferred local ancestry within our AA sample assuming two-

way (AFR/EUR) admixture, and within our HA sample assuming three-way (AFR/EUR/NAT) 

admixture. The 1000 Genomes YRI (N=108) and CEU (N=99) populations, were used as the AFR 

and EUR reference, respectively, and 43 Native American samples from Mao et al. (83, 84) were 
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used as the NAT reference. We used RFMIX version 2 (33) to generate local ancestry calls for 

phased genotypes. We then extracted ancestry-specific dosages from the imputed data into 

PLINK 2.0-compatible files (85) using custom scripts based on the Tractor workflow (34). For the 

AA analysis, EUR-specific dosages were put into a PGEN file, and AFR-specific dosages and 

EUR haplotype counts were interlaced in a zstandard-compressed table. For the HA analysis, 

EUR-specific dosages were put into a PGEN file, with AFR and NAT-specific dosages and EUR 

and AFR haplotype counts interlaced into a zstandard-compressed table. We used these files to 

conduct a local ancestry-aware GWAS using the PLINK 2.0 local covariates feature, obtaining 

ancestry-specific marginal effect size estimates. 

CFHR3-CFHR1 deletion calling. We calculated log-R ratio intensities for 12 probesets 

spanning the CFHR3 and CFHR1 deletion. We then clustered intensities by constructing a two-

dimensional UMAP embedding (86), which separated samples into 0, 1, and 2-copy number 

clusters. In order to conduct haplotype analyses, the deletion was phased with the genotype data 

using SHAPEIT 4.2 (82), and the locus was re-imputed using Minimac4 (87) to obtain accurate 

deletion calls alongside imputed genotypes. 

Rare variant gene-based analysis.  We conducted gene-based rare variant burden 

association analyses of the entire MVP EA cohort (N=34,046 cases, 135,775 controls). We 

considered only variants genotyped on the MVP 1.0 array (72), which is enriched in protein-

altering rare variants, and applied a recent technical advance (88) that improves the positive 

predictive value of rare genotype calls. We further restricted the included markers to ultra-rare 

variants (MAF < 0.25% in controls) classified as “high-impact” (89). We then defined a series of 

three “masks” over which the burden test was performed: mask 1 including frameshift and 

nonsense loss of function (LoF) variants only, mask 2 including LoF + missense variants, and 

mask 3 including LoF + missense + splice site variants. Burden test association analyses were 

conducted in REGENIE v2.02 with Firth logistic regression (75). 
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Relatedness. For experiments in unrelated samples, we used KING version 2.2.7 (90) to 

generate a maximal set of samples that are unrelated within two degrees. 

Summary-based MR. We performed summary-based MR experiments on retina eQTL 

data from EyeGEx using the Summary-based Mendelian Randomization (SMR) software tool 

(91). 

Two-sample MR. We performed MR on selected pigmentation traits and AMD using the 

TwoSampleMR R package (92). Instruments were derived from genome-wide significant loci 

reported in the exposure trait GWASs and clumped using the TwoSampleMR clump_data tool 

with default options (r2 < 0.001) to ensure no correlation between instruments. 

Genetic correlation. Genetic correlation analyses were performed using LDSC 1.01 (11) 

using the provided European-ancestry LD scores derived from the 1000 Genomes project. 

Fine-mapping. We performed Bayesian fine-mapping of each genome-wide significant 

locus in the European-ancestry meta-analysis and trans-ancestry meta-analysis using FINEMAP 

1.4 (30). Pairwise SNP correlations were calculated directly from imputed dosages on 320,831 

European-ancestry samples in MVP using LDSTORE 2.0. The maximum number of allowed 

causal SNPs at each locus was set to 10 (the default used in the FinnGen fine-mapping pipeline: 

https://github.com/FINNGEN/finemapping-pipeline). Finally, we performed multivariate multiple 

QTL (mmQTL) analysis as previously described (31), leveraging the multi-ancestry RNA-seq-

based brain gene expression reference dataset derived from 2,119 donors (31) and the GWAS 

summary statistics from the AMD multi-ancestry discovery meta-analysis. 

PheWAS. We performed PheWAS and LabWAS in unrelated subjects as implemented in 

the R PheWAS package version 0.12 (93). For each ICD code, cases were defined as at least 2 

counts of the code on separate days, and controls were 0 counts. Subjects with 1 count were 

excluded. Additionally, we applied phenotype-based control exclusion (i.e., exclusion of controls 

that were cases in similar phenotypes) and we excluded females in male-specific phenotypes and 

vice versa. After this process, only phenotypes with 100 or more cases were considered. For labs, 
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we used the median value in regression analyses, and required that each individual have at least 

two lab measurements to be included. Labs with measurements in at least 50 individuals were 

considered. Lab measurements were then normalized using inverse rank normal transformation 

(IRNT). All ICD code-based phenotypes were tested with logistic regression, at the Bonferroni-

corrected p-value of 3×10-5. All 69 lab-based phenotypes were tested with linear regression, at 

Bonferroni-corrected p-value of 7×10-4. Both analyses adjusted for age, age-squared, sex (for 

non-sex specific phenotypes), and 20 ancestry-specific PCs. 

TWAS 

Transcriptomic imputation model construction. Transcriptomic imputation models are 

constructed as previously described (47, 94) for tissues of the GTEx v8 (50), STARNET (51) and 

PsychENCODE (48, 95) cohorts. For GTEx and STARNET cohorts, we consider adipose tissue: 

subcutaneous (GTEx & STARNET) and visceral (GTEx & STARNET); arterial tissue: aorta (GTEx 

& STARNET), coronary artery (GTEx) and mammary artery (STARNET); Blood (GTEx & 

STARNET); brain (GTEx): anterior cingulate cortex, frontal pole cortex, hippocampus and 

substantia nigra; adrenal gland (GTEx); colon (GTEx): sigmoid and trasverse; esophagus (GTEx): 

gastroesophageal junction, mucosa and mascularis; pancreas (GTEx); stomach (GTEx); terminal 

ileum (GTEx); heart (GTEx): atrial appendage and left ventricle; liver (GTEx & STARNET), 

skeletal muscle (GTEx & STARNET); mammary tissue (GTEx); ovary (GTEx); lung (GTEx); skin 

(GTEx): not sun and sun exposed; spleen (GTEx). The genetic datasets of the GTEx (50), 

STARNET (51) and PsychENCODE (95) cohorts are uniformly processed for quality control (QC) 

steps before genotype imputation as previously described (47, 94). We restrict our analysis to 

samples with European ancestry as previously described (47). Genotypes are imputed using the 

University of Michigan server (87) with the Haplotype Reference Consortium (HRC) reference 

panel (73). Gene expression information is derived from RNA-seq gene level counts which are 

adjusted for known and hidden confounders, followed by quantile normalization. For GTEx, we 
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use publicly available, quality-controlled, gene expression datasets from the GTEx consortium 

(http://www.gtexportal.org/). RNA-seq data for STARNET were obtained in the form of 

residualized gene counts from a previously published study (51). For the dorsolateral prefrontal 

cortex from PsychENCODE we used post-quality-control RNA-seq data that were fully processed, 

filtered, normalized, and extensively corrected for all known biological and technical covariates 

except the diagnosis status (48) as previously described (94). Finally, we constructed a retinal 

transcriptomic imputation model based on reference data from Ratnapriya et al. (49) comprising 

imputed genotypes and expression data for 406 individuals. Genotypes and gene expression data 

were subjected to additional quality control steps as described below. For population classification 

we used individuals of known ancestry from 1000 Genomes. We excluded variants in regions of 

high linkage disequilibrium, variants with minor allele frequency < 0.05, variant with high 

missingness (>0.01), and variants with Hardy-Weinberg equilibrium p < 1×10-10; the remaining 

variants were pruned (--indep-pairwise 1000 10 0.02 with PLINK (96)) and PCA was performed 

with PLINK 2 (85). We used the first (PC1), second (PC2) and third (PC3) ancestral principal 

components to define an ellipsoid based on 1000Gp3v5 EUR samples (97) and samples within 3 

SD from the ellipsoid center were classified as EUR; based on this definition of EUR samples, we 

excluded one non-European ancestry individual. In the remaining samples (n = 405), we 

performed additional sample-level quality control by retaining non-related samples (--king-cutoff 

0.0884 with PLINK 2 (85)) with sample-level missingness < 0.015 for variants with variant-level 

missingness < 0.02, and heterozygosity rate of < 3SD away from the mean; of note, no samples 

were excluded by these steps. For the next step of our pipeline, we performed outlier testing in 

the gene expression data; we performed PCA on raw gene counts and excluded individuals 

located more than 4 SD away from the mean of the ellipsoid defined by PC1 to PC3. The latter 

led to the exclusion of twelve samples, giving us a final sample size of 393 individuals for the 

training of the model. In this final set of individuals, we performed variant-level quality control of 

the genotypes by removing variants with greater than 0.05 minor allele frequency and 0.02 
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missingness rate; only variants present in the reference panel of the Haplotype Reference 

Consortium were retained to ensure good representation of variants in the target GWAS (73). 

After conversion of genotypes to dosages, missing values were replaced with twice the variant’s 

minor allele frequency. Expression data corresponding to the retained individuals were prepared 

as follows: genes with > 0.5 counts per million in at least 30% of samples were retained, 

expression values were normalized by voom (98), residualized for 10 PEER factors (99) and 

quantile normalized. For training, we used PrediXcan (100) for the construction of the retinal 

transcriptomic imputation model due to a lack of SNP epigenetic annotation information; for all 

other models, we used EpiXcan (47). 

Multi-tissue transcriptome-wide association study (TWAS). We performed the gene-trait 

association analysis as previously described (47). Briefly, we applied the S-PrediXcan method 

(101) to integrate the summary statistics and the transcriptomic imputation models constructed 

above to obtain gene-level association results. Results were corrected for multiple testing with 

the Benjamini & Hochberg (FDR) method (102). P-values across tissues were meta-analyzed 

using ACAT (52) ≤ 0.05 and predictive r2 > 0.01 (to control both for significance and variance 

explained). 

Gene set enrichment analysis for TWAS results. To investigate whether the genes 

associated with AMD exhibit enrichment for biological pathways, we use gene sets from MsigDB 

5.1 (103) and filter out non-protein coding genes, genes located at MHC as well as genes whose 

expression cannot be reliably imputed. In addition, we assay enrichment for genesets deriving 

from the rare variant analysis as above. Statistical significance is evaluated with one-sided 

Fisher’s exact test and the corrected p-values are obtained by the Benjamini-Hochberg (FDR) 

method (102). Semantic enrichment analysis of the TWAS results was performed as follows: a) 

gene ontology (GO) data (104, 105) were retrieved on 2021-07-10; b) we run Fisher-based gene 
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set enrichment analysis as above and kept enrichments with FDR-corrected p-value ≤ 0.1; c) we 

used GOGO (106) to generate the directed acyclic graphs (DAGs) and estimated all possible 

pairwise semantic similarities when both GO terms of each pair fell within one of the three DAG 

domains: molecular function ontology (MFO), biological process ontology (BPO), and cellular 

component ontology (CCO); d) to characterize/illustrate the semantic clusters deriving from the 

significantly enriched gene sets, we converted semantic similarity between GO terms to distance 

and determined the optimal number of clusters with NbClust (107) using the ward.D2 method 

(108) according to the Silhouette criterion (109); e) finally, we built a word cloud for each semantic 

cluster by mining text terms (110) from its members' GO term titles. 
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Figure Legends: 

Fig. 1. Overview of AMD GWAS meta-analysis primary and secondary analyses. 
Abbreviations: EA, European ancestry; AA, African ancestry; HA, Hispanic/Latino ancestry; 

TWAS, transcriptome-wide association study; PRS, polygenic risk score; eQTL, expression 

quantitative trait loci; PheWAS, phenome-wide association study; LabWAS, lab measurement-

wide association study; HLA, human leukocyte antigen; GSEA, gene set enrichment analysis; 

MR, Mendelian randomization. 

Fig. 2. Penetrance and pleiotropy of the AMD PRS. (A) Prevalence of AMD in EA males in 

MVP as a function of PRS decile, age range, and lifestyle risk factors. (B) PheWAS of the AMD 

PRS with 1,665 ICD code-based binary phenotypes in MVP EA. Phenotypes with association p-

values less than 1×10−5 are shown. Odds ratios contrasting the top decile of PRS vs. the bottom 

decile (blue) and the top decile vs. the remaining 90% (red) are presented, with the x-axis in log 

scale. Phenotypes not directly related to vision are italicized. (C) LabWAS of the AMD PRS with 

69 quantitative clinical lab measurements in MVP EA. Labs significant after Bonferroni 

adjustment for the number of labs are shown. 

Fig. 3. GWAS analyses identify 27 novel loci in EA and the first loci in AA and HA. (A) Miami 

plot of the EA GWAS replication meta-analysis (57,290 cases, 324,430 controls) and DLPFC 

TWAS (45,045 cases, 275,806 controls). Red lines: genome-wide significance in the GWAS and 

TWAS analyses; blue line: FDR-corrected association p-value < 0.05 in the DLPFC TWAS; 

dashed gray line: transition from linear to log-scale on the y-axis. (B) Manhattan plot of the AA 

GWAS (2,302 cases, 29,223 controls). (A second potential locus near COPS2 could not be 

confirmed in other ancestries.) (C) Manhattan plot of the HA GWAS (1,656 cases, 10,819 

controls). 

Fig. 4. MR of pigmentation traits on AMD risk in European ancestries. Forest plot of OR and 

95% confidence intervals from the inverse variance-weighted MR analyses are shown. Eye color 

(23) was analyzed using all genome-wide significant instruments and using a selection of 14 

instruments with known pleiotropic associations with other pigmentation traits. Other traits 

representing proxies for pigmentation, such as hair color (24), non-melanoma skin cancer (25), 

and tanning response (26) were also analyzed. 

Fig. 5. Highlighted results from the multi-ancestry GWAS and TWAS. (A) Comparison of 

effect sizes (log-OR) of EA and AA index SNPs in the MVP EA GWAS (x-axis) and the MVP AA 
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46 

GWAS (y-axis). (B) Comparison of effect sizes in the MVP EA GWAS (x-axis) and the MVP HA 

GWAS (y-axis). Highlighted highly heterogeneous loci are shown in red. Error bars correspond to 

95% confidence intervals. (C) Regional Miami plot of genetically regulated gene expression at the 

1q32 (CD46/CD55) locus. GWAS results are above the axis and TWAS results from the DFPLC 

brain model below the axis. GWAS points are colored according to linkage disequilibrium r2 with 

the top SNP. 

Fig. 6. Local ancestry analysis of the CFH and ARMS2/HTRA1 loci. (A) Regional association 

plots of AMD risk at CFH in a standard GWAS in AA individuals (top), and the EUR (middle) and 

AFR (bottom) tracts from the Tractor analysis. (B) Regional association plots of AMD risk at CFH 

in a standard GWAS in HA individuals (top), the EUR ancestry tract from the tractor analysis 

(middle) and the NAT ancestry tract (NAT) (bottom). (C) Forest plot comparing effect sizes and 

confidence intervals of the CFH Y402H risk allele in EA, AA, and HA populations, with Tractor 

analyses for AA (AFR and EUR tracts), and HA (EUR, NAT, and AFR tracts). (D) Forest plot 

comparing effect sizes and confidence intervals of the ARMS2 A69S risk allele in EA, AA, and 

HA populations, with Tractor analyses for AA (AFR and EUR tracts), and HA (EUR, NAT, and 

AFR tracts). Additionally, Tractor effect size estimates in AA populations with either homozygous 

EUR ancestry at CFH (“EUR CFH”) or homozygous AFR ancestry at CFH (“AFR CFH”) are 

provided. Error bars are colored according to whether they correspond to a standard GWAS 

(black), or a Tractor GWAS, with blue for AFR tracts, red for EUR tracts, and green for NAT tracts. 
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HLA fine-mapping

MR and genetic correlation

Local ancestry analysisTWAS

Rare variant analysis

PheWAS and LabWAS

GSEA and semantic enrichment

PRS analysis

Multi-ancestry fine-mapping 

and eQTL co-localization

Multi-ancestry meta-analysis (discovery)

EA meta-analysis

Cases: 45,025

Controls: 275,806

AA GWAS

Cases: 2,302

Controls: 29,223

HA GWAS

Cases: 1,656

Controls: 10,819

EA replication

Cases: 12,245

Controls: 48,624

Cases: 49,003

Controls: 315,48

Cases: 61,248

Controls: 364,472

Fig. 1. Overview of AMD GWAS meta-analysis primary and secondary analyses.

Abbreviations: EA, European ancestry; AA, African ancestry; HA, Hispanic/Latino ancestry;

TWAS, transcriptome-wide association study; PRS, polygenic risk score; eQTL, expression

quantitative trait loci; PheWAS, phenome-wide association study; LabWAS, lab

measurement-wide association study; HLA, human leukocyte antigen; GSEA, gene set

enrichment analysis; MR, Mendelian randomization.
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Fig. 2. Penetrance and pleiotropy of the AMD PRS. (A) Prevalence of AMD in EA males in MVP as a function of PRS decile, age range, and 
lifestyle risk factors. (B) PheWAS of the AMD PRS with 1,665 ICD code-based binary phenotypes in MVP EA. Phenotypes with association p-values 
less than 1×10−5 are shown. Odds ratios contrasting the top decile of PRS vs. the bottom decile (blue) and the top decile vs. the remaining 90% (red) 
are presented, with the x-axis in log scale. Phenotypes not directly related to vision are italicized. (C) LabWAS of the AMD PRS with 69 quantitative 
clinical lab measurements in MVP EA. Labs significant after Bonferroni adjustment for the number of labs are shown.
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Fig. 3. GWAS analyses identify 27 novel loci in EA and the first loci in AA and HA. (A) Miami plot 
of the EA GWAS replication meta-analysis (57,290 cases, 324,430 controls) and DLPFC TWAS 
(45,045 cases, 275,806 controls). Red lines: genome-wide significance in the GWAS and TWAS anal-
yses; blue line: FDR-corrected association p-value < 0.05 in the DLPFC TWAS; dashed gray line: tran-
sition from linear to log-scale on the y-axis. (B) Manhattan plot of the AA GWAS (2,302 cases, 29,223 
controls). (A second potential locus near COPS2 could not be confirmed in other ancestries.) (C) Man-
hattan plot of the HA GWAS (1,656 cases, 10,819 controls).
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Eye color
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Fig. 4. MR of pigmentation traits on AMD risk in European ancestries. Forest plot of OR and 95% 
confidence intervals from the inverse variance-weighted MR analyses are shown. Eye color (23) was 
analyzed using all genome-wide significant instruments and using a selection of 14 instruments with 
known pleiotropic associations with other pigmentation traits. Other traits representing proxies for 
pigmentation, such as hair color (24), non-melanoma skin cancer (25), and tanning response (26) 
were also analyzed.
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Fig. 5. Highlighted results from the multi-ancestry GWAS and TWAS. (A) Comparison of 
effect sizes (log-OR) of EA and AA index SNPs in the MVP EA GWAS (x-axis) and the MVP 
AA GWAS (y-axis). (B) Comparison of effect sizes in the MVP EA GWAS (x-axis) and the MVP 
HA GWAS (y-axis). Highlighted highly heterogeneous loci are shown in red. Error bars corre-
spond to 95% confidence intervals. (C) Regional Miami plot of genetically regulated gene 
expression at the 1q32 (CD46/CD55) locus. GWAS results are above the axis and TWAS 
results from the DFPLC brain model below the axis. GWAS points are colored according to 
linkage disequilibrium r2 with the top SNP.
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Fig. 6. Local ancestry analysis of the CFH and ARMS2/HTRA1 loci. (A) Regional association plots 
of AMD risk at CFH in a standard GWAS in AA individuals (top), and the EUR (middle) and AFR (bot-
tom) tracts from the Tractor analysis. (B) Regional association plots of AMD risk at CFH in a standard 
GWAS in HA individuals (top), the EUR ancestry tract from the tractor analysis (middle) and the NAT 
ancestry tract (NAT) (bottom). (C) Forest plot comparing effect sizes and confidence intervals of the 
CFH Y402H risk allele in EA, AA, and HA populations, with Tractor analyses for AA (AFR and EUR 
tracts), and HA (EUR, NAT, and AFR tracts). (D) Forest plot comparing effect sizes and confidence 
intervals of the ARMS2 A69S risk allele in EA, AA, and HA populations, with Tractor analyses for AA 
(AFR and EUR tracts), and HA (EUR, NAT, and AFR tracts). Additionally, Tractor effect size estimates 
in AA populations with either homozygous EUR ancestry at CFH (“EUR CFH”) or homozygous AFR 
ancestry at CFH (“AFR CFH”) are provided. Error bars are colored according to whether they corre-
spond to a standard GWAS (black), or a Tractor GWAS, with blue for AFR tracts, red for EUR tracts, 
and green for NAT tracts.
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