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Purpose:  To evaluate whether an AI-based method could be used routinely as part of 10 

patient care to assist in detecting non-enhancing glioma progression. 11 

Materials and Methods:  A 3D U-Net trained (n=481) and validated (n=121) to segment 12 

post-surgical lower grade gliomas was used to measure tumor volumes over time and 13 

assess progression in a clinical test set. Eight prospective and eight retrospective patients 14 

(total 72 exams) who were suspected of progression during their routine outpatient 15 

imaging were clinically assessed. Gold standards for progression were derived from 16 

clinical reports a posteriori using visual read, and radiologists were blinded to the AI 17 

decision at time of reporting. 18 

Results:  Progression assessments were presented to radiologists via an easy-to-use, 19 

interactive, and interpretable environment in under 10 minutes. Combining prospective 20 

and retrospective cases, a final sensitivity of 0.72 and specificity of 0.75 was achieved at 21 

progression detection. 22 

Conclusions:  Automated detection of glioma progression would provide valuable 23 

decision support for routine use. 24 
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Introduction. 28 

Radiological assessment of treatment response of glioma is primarily based on change 29 

of tumor size on anatomical MRI sequences. Subtle increases in size can be difficult to 30 

detect on serial MRI exams, potentially leading to delays in treatment1–3. Although 31 

assessment of tumor progression is known to have smaller variance when performed 32 

volumetrically4, the intensive human labor involved in segmentation limits its routine use 33 

in clinical practice5. 34 

Deep learning methods are particularly suited for medical image evaluation tasks and 35 

have been shown to perform well in multiple neuroimaging contexts6. However, most 36 

reports of AI-informed models focus on performance accuracy, and often do not address 37 

the many challenges associated with clinical deployment, such as data quality and 38 

variability, usability in clinical workflows, the handling of errors, and transparent 39 

presentation of clinically useful and interpretable results 7. 40 

To bridge the gap from research to clinically deployable AI, a lesion segmentation model 41 

to assist with the automated detection of tumor progression in lower grade gliomas was 42 

developed and deployed for clinical validation. The model was trained on T2-weighted 43 

FLAIR images from post-surgical cases, which are of particular importance because 44 

resection can lead to brain shifts and image artifacts that make it difficult for automated 45 

segmentation algorithms to correctly delineate the tumor8. 46 

Preliminary results of the clinical validation of our model on accurately detecting glioma 47 

progression are presented here to highlight the challenges that must be overcome prior 48 

to adoption of a model for routine use in clinical care. The method is based on real-time, 49 

neural-network-based lesion segmentation and longitudinal changes in associated 50 

volumetrics to predict progression. By integrating automatic image pre-processing, fast 51 

and accurate segmentation, and a deployment pipeline for model visualization and 52 

evaluation, 3D changes in glioma volume can be tracked over time and presented in an 53 

interpretable way to the radiologist. 54 

Project goal and software design. The primary goal of this project was to evaluate 55 

whether an AI-based method could be used routinely as part of patient care to assist in 56 
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detecting non-enhancing glioma progression. The software package was intended to be: 57 

i) easy to use, showing minimal impact on radiologists’ workflow; ii) interactive, offering 58 

the ability for real-time choice of baseline exam and threshold for progression; and iii) 59 

interpretable, showing 3D image segmentations side-by-side with tumor volumes to 60 

facilitate interpretation of the model results. For that reason, both the number of times the 61 

AI-derived progression agreed with radiologist reports as well as the radiologists’ 62 

sentiment on software usability were used as success metrics. 63 

Materials and Methods. 64 

Data collection. The study received institutional review board approval with consent 65 

waiver. 605 T2-weighted FLAIR images from a single institution (GE 750 3T scanner, 3D 66 

sagittal acquisitions) were split into training/test sets (80%, 20%). Manually or semi-67 

automatically segmented T2-hyperintense lesions were defined on FLAIR images by 68 

experienced investigators using open-source software (3D Slicer9). Automatic 69 

segmentation of lesion volumes was performed using an encoder-decoder architecture10 70 

previously found to perform well on pre-surgical brain tumor cases11. Pre-processing and 71 

post-processing steps including data augmentation were performed as described by 72 

Myronenko10, modified for single channel (FLAIR), rather than four channel (FLAIR, T1 73 

pre-contrast, T1 post-contrast, T2) input. 74 

Automatic segmentation and clinical integration. Clara Deploy12 was used as the 75 

inference service for the model and to handle the communication between PACS and an 76 

XNAT13 server where results were stored and displayed. Selected exams being read in 77 

PACS were sent in real time to a virtual machine running Clara Deploy which identified 78 

the desired FLAIR series, performed the lesion segmentation, and stored the results in 79 

XNAT. Radiologists could then log into a dedicated XNAT webpage where cases were 80 

displayed in tabular form together with respective tumor volumes and progression 81 

assessment. In-browser visualization of images and AI-derived segmentations was 82 

supported by OHIF14 (Figure 1). 83 

Model interpretability. Instead of directly modeling progression, image segmentation 84 

and volume change heuristics for assessing progression were employed to provide 85 
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clinicians with a transparent decision process where thresholds, baseline exams, and 86 

segmentations are selected and editable at will Figure 1).  This was intended to enhance 87 

confidence in results by exposing the visually interpretable segmentations underlying the 88 

progression predictions. 89 

Progression detection heuristic. Tumors were marked as ‘progressed’ for volume 90 

changes larger than 40% between baseline and the MRI of interest1. Because the 91 

baseline exam was variable based on treatment, the system allowed the clinician to 92 

choose the baseline scan interactively. This allowed, for instance, selection of baseline 93 

tumors with volume greater than 1cm3, as suggested by van den Bent et al1. Once a 94 

baseline exam was chosen, all other exams were marked as blue (stable) or red 95 

(progressed) with respect to that baseline (Figure 1). 96 

Prospective evaluation. Eight prospective cases were obtained during a two-week 97 

period from patients who were suspected of progression during routine outpatient 98 

imaging. The current MRI and two preceding MRIs (24 total exams) were manually 99 

pushed from PACS to the AI algorithm for segmentation. Gold standards for progression 100 

were derived from clinical reports a posteriori using visual read, and radiologists were 101 

blinded to the AI decision at the time of their reporting. 102 

Retrospective evaluation. To evaluate model true and false positive rates, cases with 103 

slow progression were identified via text search of radiology reports. In total, 8 patients 104 

with 6 visits each for a total of 48 exams were analyzed. 105 

Results. 106 

Segmentation training. The model achieved a mean DICE score of 0.87 ± 0.20 for AI-107 

segmented FLAIR lesions on 124 images composing the test set. The 90th percentile 108 

DICE score was also 0.87, revealing that most images had an excellent agreement with 109 

ground truth.  110 
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Prospective evaluation. Radiology reports revealed that all 24 baseline-to-follow-up 111 

pairs were marked as stable, of which 20 were correctly identified as such by the 112 

algorithm, resulting in a specificity = 0.83 (see Fig. 2A-B). 113 

Retrospective evaluation. For the 48 exams analyzed (8 patients, 6 serial exams per 114 

patient), 26 out of the total 37 stable cases were correctly identified as such by the model 115 

upon correct choice of baseline, for a specificity of 0.70. For the progression cases, 8 out 116 

of 11 cases were correctly identified, for a sensitivity of 0.72 (Fig. 2C-D). 117 

Model performance. The automated volumetrics measurement showed variance 118 

between 2-18% which, for all these cases, is below the 9 mL variability observed in 119 

manual diameter calculation15. For all but one patient, AI progression assessment 120 

discrepancies with gold standard were due to imaging acquisitions differing significantly 121 

from those used during model training (GE 3D Cube). For the remaining case, a small 122 

increase in tumor volume from 1.7 mL to 2.7 mL was likely below the threshold for human 123 

reader detection4,15 and only later marked as progressive. 124 

System Usability. All prospective results were available for the radiologist within 10 125 

minutes of DICOM transmission (90th percentile: 4 minutes and 40 seconds).  72 out of 126 

73 cases were processed correctly (success rate: 99%). Two radiologists reported that 127 

the results and presentation were interpretable and would provide valuable decision 128 

support for routine use if data selection could be automated. 129 

Discussion and Conclusions. 130 

This work presents the first steps toward clinical deployment of an AI-based solution for 131 

real-time detection of glioma progression. Combining prospective and retrospective 132 

cases, a final sensitivity of 0.72 and specificity of 0.75 was achieved. 90% of the 133 

successfully processed cases were available in under 5 minutes and only one case in 73 134 

failed to be processed. Results were presented via an easy-to-use, interactive, and 135 

explainable environment. Radiologists could manually choose baseline cases, adjust 136 

threshold for progression, visually inspect segmentations associated with the exam, and 137 

graphically check how volume varied over time. 138 
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Discrepancies between model and ground truth were mostly due to imaging acquisitions 139 

differing from those used during model training (Fig. 3). This should be mitigated through 140 

additional training iterations on a more representative clinical cohort, with varied 141 

acquisition parameters. Additionally, if inadequate data does arrive at the AI model, the 142 

output should explicitly note that the model confidence is low as opposed to simply giving 143 

the wrong answer. 144 

A potential solution for both issues would involve a “human in the loop” scenario, where 145 

images would be first sent to a dedicated QC team responsible for checking (input / 146 

output) data quality prior to notifying the doctor about the results. This would yield a 147 

database of common ‘real-life’ failures that future models could be trained on.  148 

Additionally, QC team triage would mitigate the risk of unintended clinical consequences7 149 

and increase trust from clinicians and patients. 150 

The aforementioned performance nevertheless highlights the benefit of the automated 151 

method to reduce variability in FLAIR lesion measurement and hence increase accuracy 152 

in disease progression detection. To maximize applicability at all treatment timepoints, 153 

the ability to change the baseline provides a needed function particularly in the context of 154 

changing therapies or clinical trials. 155 

 156 

  157 
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 225 

Figure 1. Deployed tumor progression detection pipeline in action. Visual 

representation of glioma volume over time (A) followed by a table of individual exams (B) 

containing tumor volumes, and percentage change with respect to baseline (highlighted 

in blue). Arrow connections exemplify two baseline-to-follow-up pairs. Exams whose 

tumor volume exceeds a chosen threshold (defaulted to 40%) are marked in red to 

indicate progression. Interactive options include: i) selection of AI model version; ii) 

selection of baseline exam; iii) manipulation of threshold percentage value; and iv) ability 

to choose which exam to be visualized. (C) in-browser visualization of two exams – 

baseline (left) and latest (right) – as well as AI-generated glioma segmentation (pink). The 

volume increase is clear and facilitates the visual confirmation of progression or 

identification of model mistakes.  
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Figure 2. Glioma segmentation volumes and progression detection. Glioma volumes 226 

as a function of time for prospective (A) and retrospective (C) cases. Dashed lines show 227 

cases where the model made significant mistakes due to acquisition protocol issues. 228 

Volumes were normalized by the maximum volume observed to facilitate collected 229 

visualization. 230 
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 232 

233 

Figure 3. An example of an AI tumor progression misclassification. (A) Glioma 234 

volume over time for a patient whose prior visits came from another institution. Because 235 

the prior data was a 2D acquisition – and therefore different from what the model was 236 

trained on – the AI model was not able to segment the glioma clearly present in the image 237 

(B). 238 
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