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Rare Mendelian disorders pose a major diagnostic challenge and collectively affect 300-4001

million patients worldwide. Many automated tools aim to uncover causal genes in patients2

with suspected genetic disorders, but evaluation of these tools is limited due to the lack of3

comprehensive benchmark datasets that include previously unpublished conditions. Here,4

we present a computational pipeline that simulates realistic clinical datasets to address this5

deficit. Our framework jointly simulates complex phenotypes and challenging candidate6

genes and produces patients with novel genetic conditions. We demonstrate the similarity of7

our simulated patients to real patients from the Undiagnosed Diseases Network and evaluate8

common gene prioritization methods on the simulated cohort. These prioritization meth-9

ods recover known gene-disease associations but perform poorly on diagnosing patients with10

novel genetic disorders. Our publicly-available dataset and codebase can be utilized by med-11

ical genetics researchers to evaluate, compare, and improve tools that aid in the diagnostic12

process.13
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Introduction14

Rare congenital disorders are estimated to affect nearly 1 in 17 people worldwide [1], yet the15

genetic underpinnings of these conditions—knowledge of which could improve support and treat-16

ment for scores of patients—remain elusive for 70% of individuals seeking a diagnosis and for17

half of suspected Mendelian conditions in general [2, 3]. This diagnostic deficit results in a sub-18

stantial cumulative loss of quality-adjusted life years and a disproportionate burden on healthcare19

systems overall [4–6]. Organizations such as the Undiagnosed Disease Network (UDN) in the20

United States have been established to facilitate the diagnosis of such patients, which has resulted21

in both successful diagnoses for many patients as well as the discovery of new diseases [7, 8].22

The diagnostic workup of patients with suspected Mendelian disorders increasingly includes23

genomic sequencing. Whole genome or exome sequencing typically identifies thousands of genetic24

variants which must be analyzed to identify the subset of causal variant(s) yielding the patient’s25

syndrome (Figure 1a). This process is challenging and error prone; for example, patients may26

have variants that do not ultimately cause their presenting syndrome, yet fall into genes that are27

plausibly associated with one or more of their phenotypes. Further challenges arise in situations28

where patients present with a novel set of symptoms that do not match any known disorder, or29

when their disease-causing variants occur in genes not previously associated with any disease30

(Figure 1b). In the first phase of the UDN for instance, 23% of eventual patient diagnoses were31

due to novel syndromes [4].32

To accelerate the diagnostic process, a plethora of computational tools are used by clini-33

cal teams to automatically analyze patients’ genetic and phenotypic data to prioritize causal vari-34

ants [9–12]. Unfortunately, a comprehensive evaluation of these tools’ performance is hindered35

by the lack of a public benchmark database of rare disease patients of sufficient size to cover the36

full breadth of genomic diseases. While efforts such as the Deciphering Developmental Disorders37

project provide useful benchmarks for specific populations of rare disease patients, they are lim-38

ited in diagnostic scope and require an extensive DUA for full access [13]. In lieu of real patient39

data, simulated patient data offers several clear advantages: the simulation approach can be scaled40

to an arbitrary number of patients and disorders, data are inherently private, and the transparency41

of the simulation process can be leveraged to expose specific failure modes of different methods.42

However, simulated patient data is only useful insofar as it reflects the challenges of real-world43

diagnosis. This requires a faithful simulation of the complex relationship between candidate genes44

and the patient’s phenotypes as well as the notion of disease novelty, as described above. Existing45
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Figure 1: Identification and categorization of causal disease genes. a. Genomic variation uncovered in an affected
patient through DNA sequencing is investigated using variant-level and gene-level evidence in order to identify the
impacted gene that is most likely responsible for causing the patient’s symptoms. Here we depict a subset of relevant
information that a care team may use to make this assessment. b. The causal gene responsible for a patient’s disorder
can be categorized based on the extent of medical knowledge that exists about the gene and its associated disorder.
Intuitively, diagnosing patients where less is known about their causal gene and disease (bottom category) is a more
challenging task than diagnosing patients where more is known about causal gene and disease (top category).

approaches for simulating rare disease patients unrealistically model the patient’s genotype and46

phenotype disjointly by inserting disease-causing alleles into otherwise healthy exomes and sepa-47

rately simulating patient phenotypes as a set of precise, imprecise, and noisy phenotypes [14–16].48

Although healthy individuals may randomly harbor variants in disease-causing genes, these genes49

would be weak candidates as the patients’ symptoms would not cause a physician to hone in on50

those genomic regions. In addition, with few exceptions, most studies analyzing tools for rare dis-51

ease diagnosis do not assess the ability of tools to identify novel syndromes or variants [15,17,18].52

Given the importance and prevalence of automated prioritization tools in the diagnostic process,53

enabling meaningful comparisons and improvement of these tools via benchmarks that capture the54

notion of novelty and realistic phenotypes will be essential.55

Here, we present a computational pipeline to simulate undiagnosed patients that can be used56

to evaluate gene prioritization tools. Each simulated patient is represented by sets of candidate57

disease-causing genes and standardized phenotype terms. To model novel genetic conditions58

in our simulated patients, we first curate a knowledge graph (KG) of known gene–disease and59

gene–phenotype annotations that is time-stamped to 2015. This enables us to define post-201560
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medical genetics discoveries as novel with respect to our KG. We additionally provide a taxonomy61

of categories of “distractor” genes that do not cause the patient’s presenting syndrome yet would62

be considered plausible candidates during the clinical process. We then introduce a simulation63

framework that jointly samples genes and phenotypes according to these categories to simulate64

nontrivial and realistic patients and show that our simulated patients closely resemble real-world65

patients profiled in the UDN. Finally, we reimplement existing gene prioritization algorithms and66

assess their performance in identifying etiological genes in our simulated patient set, revealing67

specific settings in which established tools excel or fall short. Overall, the approach to patient68

simulation we present here is, to the best of our knowledge, the first to incorporate realistic, non-69

trivial candidate distractor genes and phenotype annotations as well as the notion of novel genetic70

disorders. We provide our framework and simulated patients as a public resource to advance the71

development of new and improved tools for medical genetics.72

Results73

We design and implement a pipeline for simulating patients with difficult-to-diagnose Mendelian74

disorders (Figure 2a). Each simulated patient is represented by an age range, a set of positive75

symptoms (phenotypes) that they exhibit, a set of negative phenotypes that they do not exhibit,76

and a set of candidate genes that may be causing their disease. There are three components of77

our simulation framework. First, each patient is initialized with a genetic disorder profiled in the78

comprehensive and well-maintained rare genetic disease database Orphanet [19]. Second, the im-79

precision in real-world diagnostic evaluations is modeled via phenotype dropout to mimic patients’80

partially observed symptoms, phenotype corruption which replaces specific symptoms with more81

general phenotype terms, and phenotype noise which adds unrelated symptoms and comorbidi-82

ties proportionally to their prevalence in age-matched patients from a medical insurance claims83

database. Finally, we develop a framework to generate strong, yet ultimately noncausal, candidate84

genes inspired by the typical rare disease diagnostic process (Figure 2b). These challenging dis-85

tractor genes and some associated phenotype terms are added according to each of six distractor86

gene modules (See Methods for further details).87

Simulated patients mimic real-world patients. We leverage our computational pipeline to simu-88

late 42,680 realistic rare disease patients representing a total of 2,134 unique Mendelian disorders89

and 2,401 unique causal genes. Each simulated patient is characterized by 18.39 positive phe-90

notypes (sd = 7.7), 13.5 negative phenotypes (sd = 8.5), and 14 candidate genes (sd = 3.5) on91

4
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Figure 2: Simulation process generates patients with multiple phenotype terms and candidate genes. a. Patients
are first assigned a true disease and initialized with a gene known to cause that disease (blue circle) as well as with
positive and negative phenotypes associated with that disease (gray diamonds). Phenotype terms are then randomly
removed through phenotype dropout, randomly altered to be less specific according to their position in an ontology
relating phenotype terms, and augmented with terms randomly selected by prevalence in a medical claims database.
Finally, strong distractor candidate genes and relevant additional phenotypes are generated based on six distractor gene
modules. b. The six distractor gene modules are inspired by genes that are frequently considered in current clinical
genomic workflows and are designed to generate highly plausible, yet ultimately non-causal, genes for each patient.
Four of the distractor gene modules are defined by the overlap—or lack thereof —between the phenotypes associated
with the distractor gene and the phenotypes associated with the patient’s causal gene. The remaining two modules are
defined by their similar tissue expression as the true disease gene or solely by their frequent erroneous prioritization
in computational pipelines.

average.92

To assess whether our simulated patients are systematically distinguishable from real-world93

patients, we assemble a cohort of 121 real-world patients from the Undiagnosed Diseases Network94

(UDN) who were diagnosed with a disease in Orphanet annotated with genes and phenotypes and95

then select 2,420 simulated patients with matching diseases. There are 92 unique diseases repre-96

sented in the real and disease-matched simulated patient cohorts. Real and simulated patients have97

similar numbers of candidate genes (13.13 vs 13.94 on average; Figure 3a) and positive phenotype98

terms (24.08 vs 21.57 on average; Figure 3b). Real-world patients are also more similar to their99

simulated counterparts than to other real-world patients. When we apply dimensionality reduction100

on the positive phenotype terms of patients, real-world patients cluster with and are visually in-101

distinguishable from simulated patients within each disease category (Figure 3c), suggesting that102
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Figure 3: Simulated patients mimic real-world patients. Diagnosed, real-world patients from the Undiagnosed
Diseases Network (orange) and a disease-matched cohort of simulated patients (teal) have similar numbers of a can-
didate genes per patient (average of 13.13 vs. 13.94) and b positive phenotype terms per patient (average of 24.08
vs. 21.57). c. Real patients (orange) and simulated patients (teal) are indistinguishable based on their annotated posi-
tive phenotype terms within each Orphanet disease category, as visualized using non-linear dimension reduction via a
Uniform Manifold Approximation and Projection (UMAP) plot. The horizontal and vertical axes are uniform across
all plots. The number of real patients within each disease category is listed in the corner of each plot; there are 20
simulated patients for each real patient. d. For each real-world patient, all simulated patients in the disease-matched
cohort are ranked randomly (black) and by the Jaccard similarity of their phenotype terms to the query real-world
patient (purple). The Cumulative Distribution Function (ECDF) plot shows that the basic Jaccard similarity metric is
able to retrieve simulated patients with the same disease as the query real patient more accurately than if the simulated
patients were retrieved randomly.

there are not consistent differences in phenotype term usage between real and simulated patients.103

Moreover, for each real-world patient, the ten phenotypically-closest simulated patients with the104

same disease are closer than the ten phenotypically-closest real-world patients with different dis-105
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eases (average Jaccard Similarity of 0.952 vs 0.930; p-value=7.4e-81, Wilcoxon one-sided test).106

We also employ a nearest neighbor analysis using Jaccard Similarity as our distance metric to eval-107

uate whether the simulated patients’ phenotype terms are sufficiently reflective of and specific to108

their assigned diseases. We find that simulated patients with similar sets of phenotype terms to109

real patients are more likely to have the same disease as those real patients than randomly selected110

simulated patients (Figure 3d).111

Pipeline simulates patients with novel and diverse genetic conditions. A primary challenge112

in diagnosing real-world patients, and one that should be reflected in relevant simulated patients,113

is when their causal gene-disease relationships have never previously been documented (Figure114

1b). However, simulating patients with “novel” genetic conditions is conceptually nontrivial, as115

simulated disease associations must be drawn from some existing knowledge graph. To overcome116

this issue, we consider the gene-phenotype-disease associations annotated in a knowledge graph117

timestamped to 2015 to be “existing knowledge” and discoveries made post-2015 to be “novel”118

(see Section 6). This enables us to categorize simulated patients according to the novelty of their119

gene-disease relationships with respect to this timestamped knowledge graph (Table 1). Although120

only 2% and 1% of the total simulated patients respectively correspond to previously known and121

previously unknown diseases caused by genes never before associated with any disease, the total122

number of simulated patients in these two categories are 14x and 190x higher respectively than123

in our real-world dataset. Moreover, whereas only 231 unique disease genes have been identified124

as causal in our phenotypically-diverse, real-world UDN dataset, our simulated patients’ 2,100+125

unique diseases are caused by 2,401 unique disease genes. Overall, these results demonstrate that126

our pipeline can simulate substantially higher numbers of patients—that are diverse with respect127

to disease and the degree of novelty of their causal gene-disease relationships—than compared to128

a national dataset of real-world patient data.129

Performance of gene prioritization algorithms on real and simulated patients. The size and di-130

versity of our real and simulated patient datasets enable us to evaluate how well existing algorithms131

are able to prioritize causal genes in patients with different degrees of preexisting knowledge of132

their gene–disease relationships. We run four commonly-used gene prioritization algorithms on133

patients in each of the causal gene–disease association categories outlined in Figure 1b, ensuring134

that each algorithm only had access to the existing knowledge found in the timestamped 2015135

knowledge graph. Each algorithm inputs the patient’s positive phenotype terms and the patient’s136

individualized set of candidate genes and produces a ranking of the candidate genes according to137
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Causal Gene Category # Simulated Patients # Real-world UDN Patients

Known disease caused by an
associated causal gene

36,226 (85%) 149 (58%)

Known disease caused by a
disease-causing gene previously
unassociated with their disease

4,339 (10%) 15 (6%)

Known disease caused by a gene
never before associated with any

disease
835 (2%) 5 (2%)

Novel disease caused by a
disease-causing gene

947 (2%) 60 (23%)

Novel disease caused by a gene
never before associated with any

disease
333 (1%) 29 (11%)

Table 1: Counts of simulated and real-world UDN patients in each causal gene–disease category. UDN patients with
multiple causal genes may appear in several categories.

how likely they are to cause the patient’s phenotypes. Briefly, Phrank uses semantic similarity of138

phenotype terms in the Human Phenotype Ontology (HPO) and prevalence of gene associations139

across these phenotypes to match patient symptoms to genes or diseases [10]. The Patient–Gene140

version of Phrank directly compares a patient’s phenotype terms and the phenotype terms associ-141

ated with the candidate gene. The Patient-Disease version considers all diseases associated with a142

candidate gene and compares the patients’ phenotypes and those diseases’ phenotypes, assigning143

the candidate gene the highest similarity score across all of its associated diseases. Phenomizer144

uses semantic similarity of phenotype terms and prevalence of phenotype associations across all145

known diseases to match patient symptoms to diseases [12]. Candidate genes are assigned the146

highest score across their associated diseases. Phenolyzer uses semantic similarity to match patient147

symptoms to diseases and scores genes directly associated with the diseases as well as additional148

genes connected via a gene-gene network [11].149

Real-world and simulated patients are equally difficult to diagnose. We first assess whether150

gene prioritization performance was similar between the simulated patient cohort and the real-151

world patient cohort. Across both patient sets, correctly ranking the causal gene becomes more152

difficult as the amount of information about the causal gene-disease relationship in the knowl-153

edge graph decreases (Figure 4). We find that the performance between simulated and real-world154

patients was similar for all four algorithms across all but the easiest gene-disease association cat-155
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Figure 4: Ability of computational approaches to rank causal genes differs across disease–gene categories. We
group simulated patients and real-world UDN patients into five categories based on their type of causal gene–disease
association (patient counts in Table 1). These categories, described in detail in Figure 1b, are illustrated in the blue
header bars above each plot and ordered decreasingly from left to right by the amount of existing knowledge of the
association in the underlying knowledge graph. We run four gene ranking methods on the positive phenotype terms
and the candidate gene list for each simulated and real-world patient within each causal gene–disease category, and
we show here the ability of these methods to correctly rank each patient’s causal gene within the top 10 ranked genes.
The average rank of the causal gene is italicized above each bar. Dashed lines denote the average percent of patients
where the causal gene appeared in the top 10 across ten random rankings of the candidate genes.

egories. Overall, these results indicate that the simulated patient cohort can serve as a reasonable156

proxy for real-world patients, particularly when evaluating a method’s ability to perform well de-157

spite reduced existing knowledge about the causal gene and disease.158

Novel syndromes and disease genes represent greatest challenge. All four gene prioritization159

tools perform well when the patient’s causal gene-disease relationship is in the knowledge graph160

(Figure 4a). Specifically, all methods rank the causal gene in the top 3 in approximately 75%161

of simulated and real-world patients, with the causal gene ranked first in over 60% of simulated162

9
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and over 40% of real-world patients by all methods. However, all methods perform incrementally163

worse as less information about the simulated patient’s causal gene-disease relationship is present164

in the knowledge graph. In patients with a known disease caused by a gene previously unassociated165

with that disease (Figure 4b), the average rank of the causal gene is 5.79 at best. When the patient166

has a novel disease, even when the causal gene has some other existing disease associations (Figure167

4c), performance further declines; the average rank of the causal gene is only 6.86 for the highest168

performing method. The most difficult scenarios occur when the patient’s causal gene has never169

been associated with any disease. When the patient’s disease is known (Figure 4d), the average170

rank of the causal gene is 8.73 for the highest performing method, and when both the disease and171

causal gene are unknown (Figure 4e), the average rank is 9.08 at best.172

Phrank and Phenomizer, which both exclusively use phenotype–phenotype, phenotype–gene173

and phenotype–disease annotations, excel in settings where the patient’s causal gene and disease174

are in the knowledge graph (Figure 4a,b). Phenolyzer, which leverages gene–gene associations in175

addition, outperforms the other two algorithms when either the causal gene or disease are unknown176

(Figure 4c,d). Indeed, when both the causal gene and disease are unknown (Figure 4e), Phenolyzer177

ranks the causal gene 9.08 for simulated patients on average whereas both versions of Phrank178

and Phenomizer rank the causal gene significantly lower, at 10.92, 12.10, and 12.10 respectively179

on average (all P values < 2.89 ∗ 10−17). This suggests that the consideration of gene–gene180

associations may help gene prioritization algorithms generalize to settings where the causal gene181

has not been previously associated with a disease. When algorithms are evaluated on all patients182

together rather than separately by novelty category, the general performance decline for all methods183

across categories as well as relative differences in performance within each novelty category are184

obfuscated (Supplemental Figure 1).185

Simulation pipeline components are key to simulating realistic, challenging patients. To deter-186

mine the importance of each component in our simulation pipeline (Figure 2), we run our pipeline187

using only subsets of these components and then evaluate how well Phrank, the fastest of the three188

gene prioritization algorithms we evaluated, is able to rank causal genes in the resultant simulated189

patients. In all ablations, we set the probability of sampling each candidate gene module to be190

uniform. As expected, we find that the gene prioritization task is easiest when all of the phenotype-191

altering components and distractor gene modules (as illustrated in Figure 2) are excluded from our192

simulation pipeline, that is, when candidate genes are selected randomly and phenotype terms do193

not undergo corruption, dropout, or augmentation with phenotypic noise (Figure 5a). In this set-194
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Figure 5: Pipeline components increase the difficulty of causal gene identification in simulated patients. We run
a gene prioritization algorithm on patients simulated by our pipeline when varying subsets of pipeline components are
included. We report the fraction of simulated patients where the causal gene was prioritized within the top 10 ranked
genes (horizontal axis for all plots) when different components of the simulation pipeline are included (vertical axis
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ting, the diagnostic gene appears at rank 1.855 on average. The task becomes significantly more195

difficult when only phenotype-altering components are added (average causal gene rank drops to196

1.955; P value < 0.001) and even more difficult when only distractor gene modules are added (av-197

erage causal gene rank of 2.570; P value < 0.001). The task is most difficult when the complete198

pipeline is used (average causal gene rank of 2.936; P value < 0.001), suggesting that both the199

phenotype- and gene-based components of our simulation pipeline contribute to the generation of200

realistic, challenging rare disease patients.201

We next measure how each phenotype-altering component—phenotype corruption, dropout,202

noise, and phenotypes added by the distractor gene modules—impacts the difficulty of the gene203

prioritization task (Figure 5b). To this end, we include a “gene-only” version of all distractor204

gene modules in the simulation pipeline, and we vary whether the distractor gene modules add205

associated phenotypes and whether phenotype terms undergo corruption, dropout, or noise aug-206

mentation. When we restrict to using only one phenotype-altering component at a time, we find207

that the component that increases the difficulty of the gene prioritization task the most is pheno-208

type noise (average causal gene rank 2.583), followed by phenotypes added by distractor gene209

modules, phenotype dropout, and phenotype corruption (average causal gene ranks 2.570, 2.435,210

and 2.316 respectively). Including either the distractor gene-associated phenotypes or phenotype211

noise alone increases the difficulty of the gene prioritization task more than including both phe-212

notype dropout and corruption together (average causal gene rank 2.448). However, we confirm213

that including these latter two phenotype-altering components in addition to either one or both of214

the distractor gene phenotypes and phenotype noise does in fact increase the difficulty of the task215

more than if they were excluded. In general, adding additional phenotype-altering components216

makes the gene prioritization task progressively more difficult, and as expected, the most difficult217

combination is when all phenotype components are included. As before, we find that when the218

two strongest phenotype-altering components (noisy and distractor gene-associated phenotypes)219

are applied together, the gene prioritization task is more difficult than when certain sets of three220

phenotype-altering components are used (average causal gene rank of 2.773 versus average causal221

gene ranks of 2.767 and 2.702).222

Finally, we perform an ablation of each of the six distractor gene modules by removing a223

single module at a time (Figure 5c). When each distractor gene module is removed, the number224

of genes that would have been sampled from that module are instead sampled randomly to en-225

sure that the total number of candidate genes for each patient is constant. Removing the module226
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that generates phenotypically-similar disease genes or the module that generates phenotypically-227

distinct disease genes make the gene prioritization task substantially easier for Phrank relative to228

the individual exclusion of other distractor gene modules (average causal gene rank of 2.564 and229

2.666 respectively). This is intuitive because Phrank’s gene prioritization approach is based on230

disease–phenotype and gene–phenotype associations. We suspect that the other modules in our231

pipeline may generate distractor genes that are more challenging for gene prioritization algorithms232

that explicitly leverage cohort-based mutational recurrence, gene expression, and other additional233

data. Nevertheless, we confirm that removal of every gene module except for the insufficiently234

explanatory gene module makes the gene prioritization task easier. There are fewer insufficiently235

explanatory candidate genes in the ablation patient cohort (Supplemental Figure 2), which may236

explain why their removal does not change gene prioritization performance. Furthermore, removal237

of all distractor gene modules together makes the task much easier compared to the removal of238

any individual module, demonstrating that no one module is solely responsible for generating the239

distractor genes that increase the difficulty of causal gene prioritization in simulated rare disease240

patients.241

Discussion242

In this work, we developed a flexible framework for simulating difficult-to-diagnose patients with243

genetic disorders like those profiled in the Undiagnosed Diseases Network (UDN). Key features244

of our framework include: (i) jointly modeling patients’ genotype and phenotype, (ii) capturing245

imprecision in real-world clinical workups by corrupting, excluding, and adding noise to patients’246

recorded symptoms, and (iii) simulating patients with novel causal gene–disease associations rela-247

tive to an established knowledge graph, to emulate the challenging task of diagnosing a previously248

unpublished disorder. Our framework can generate a phenotypically diverse cohort that is repre-249

sentative of all rare diseases characterized in Orphanet, and these simulated patients can be freely250

shared without privacy concerns.251

Our simulated patients are represented as sets of phenotypes and candidate genes, rather252

than candidate variants. Variant-level properties, such as variant inheritance patterns, functional253

impacts, and cohort-based frequencies, are considered only indirectly, as we assume that a patient’s254

candidate genes have been clinically shortlisted because compelling variants have implicated or lie255

within them [9, 20]. Some variants, such as regulatory variants or larger indels, may impact multi-256

ple genes simultaneously. In addition, real-world patients may have two or more genes contributing257
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to their presenting disorder(s). Although our current framework generates patients with mono-258

genic conditions, it could be extended to simulate patients with more than one causal gene; this259

will become more feasible at scale as the number of rare, multigenic diseases curated in Orphanet260

increases. As the biomedical data leveraged by prioritization methods diversifies, our framework261

could be extended to reflect these additions, for instance, by incorporating distractor genes that262

are highly constrained across human populations and/or phenotypic noise inspired by errors in263

machine learning-based parsing of clinical notes. Similarly, by building upon the published lit-264

erature, our work is subject to biases inherent in the field of clinical genetics research writ large,265

including the historical overrepresentation of individuals of European descent and the diseases that266

affect them; indeed, we expect that the dataset and methods we present in this paper could be267

used to further interrogate these biases, for example by examining the differential performance of268

gene-prioritization tools on diseases that more often affect underrepresented populations.269

Finding and annotating ”novel” gene–disease associations—defined in our framework as270

those published post-2015—required significant manual review of public databases and literature.271

Databases that curate these associations (e.g., Orphanet, HPO) are often missing publication or272

discovery dates and are not updated in real time, and so an indeterminate lag exists between causal273

gene–disease associations being present in the literature and being reflected in these knowledge274

bases. To fairly evaluate gene prioritization methods across the disease novelty categories we de-275

scribe in Figure 1b, we ensured that all tested methods accessed solely our time stamped knowledge276

graph from 2015; only methods that used or could be reimplemented to exclusively use this form277

of input data were included. Indeed, due to their reliance on statically curated data, these meth-278

ods may have misprioritized real-world patients’ gene–disease associations that were “known” by279

2015 but had yet to be incorporated into the knowledge graph, reflecting an expected and ongoing280

hindrance for diagnosing present-day patients (Figure 4a). We suspect that diagnostic tools that281

frequently mine the literature for new gene–phenotype–disease associations would excel at diag-282

nosing patients with known causal genes and known diseases relative to tools that rely on structured283

rare disease databases [21, 22].284

We found that the algorithm that was most effective at finding novel disease-causing genes285

performed relatively poorly at diagnosing patients with known causal genes and diseases, under-286

scoring the importance of evaluating performance separately across distinct novelty categories.287

Given these findings, clinicians may opt to use certain computational tools earlier in the diagnostic288

process and move to research-oriented tools only in cases where a novel disease-causing gene is289
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suspected.290

We expect that the simulated patients produced via our framework can be leveraged for a291

wide range of applications [23]. As we demonstrate here, the simulated patients can enable a uni-292

form evaluation of existing gene prioritization tools on a representative patient cohort. Developers293

can also internally validate and improve their tools by separately evaluating them on simulated294

patients across novelty categories and distractor gene categories. Another application area for our295

pipeline will be the generation of training data for machine learning algorithms. As the promise296

of machine learning solutions in the clinic grows, access to large-scale datasets of relevant clinical297

data will be essential [24]. We suspect that simulated patients such as those yielded by our method298

may provide invaluable training data for machine learning models for rare disease diagnosis, which299

would expose algorithms to data from diverse genetic disorders while reflecting realistic clinical300

processes.301
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Data availability. The simulated patient dataset as well as all intermediate data used in its cre-302

ation are shared with the research community via Harvard Dataverse at the DOI:303

https://doi.org/10.7910/DVN/ANFOR3. Anonymized UDN data has been deposited in dbGaP (ac-304

cession phs001232) and PhenomeCentral. Phenotypes and causal variants and genes related to305

UDN diagnoses are also shared publicly in ClinVar: ncbi.nlm.nih.gov/clinvar/submitters/505999/.306

Code availability. The code to reproduce results, together with documentation and examples of307

usage, can be found at https://github.com/EmilyAlsentzer/rare-disease-simulation.308
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Methods380

1 Simulated Patient Initialization381

We simulate patients for each of the 2,134 diseases in Orphanet [19] (orphadata.org, accessed382

October 29, 2019) that do not correspond to a group of clinically heterogeneous disorders (i.e.,383

“Category” classification), have at least one associated phenotype, and have at least one causal384

gene. For Orphanet diseases that were missing either a causal gene or phenotypes (but not both),385

and were listed as being a ‘clinical subtype’, ‘etiological subtype’, or ‘histopathological subtype’386

of another Orphanet disease that did have a causal gene and/or phenotypes, we imported the causal387

gene and/or phenotypes from the parent disease. For each patient, the gene set is initialized with the388

known causal disease gene (mapped to its Ensembl identifier); the age is randomly sampled from389

the age ranges associated with the disease (e.g., ”infant”); and positive and negative phenotype390

terms from the Human Phenotype Ontology [25] (HPO, version 2019) are added with probabilities391

Pr(term|disease) and 1–Pr(term|disease) respectively, where Pr(term|disease) is provided392

in Orphanet and corresponds to the observed prevalence of a specific phenotype term presenting in393

patients with the disease.394

2 Modeling Diagnostic Process Imprecision395

To mimic real-world patients’ partially observed phenotypes, we perform phenotype dropout where396

each positive and negative phenotype term is removed from the simulated patient with probabilities397

Pr(positive dropout) and Pr(negative dropout), respectively set to 0.7 and 0.2 in our implementa-398

tion. We also perform phenotype corruption to replace specific phenotype terms (e.g., “arachn-399

odactyly”) with their less precise parent terms (e.g., “long fingers”) in the HPO ontology. Positive400

and negative phenotypes annotated to each patient are corrupted with probabilities Pr(positive cor-401

ruption) and Pr(negative corruption), each set to 0.15 in our implementation. Finally, to model402

unrelated symptoms and comorbidities that would be present in real-world patients, we introduce403

phenotype noise by sampling new HPO phenotype terms that were mapped from ICD-10 billing404

codes from a large medical insurance claims database using the Unified Medical Language System405

(UMLS) crosswalk [26]. Positive phenotype terms are sampled with probabilities proportional to406

their prevalence in corresponding age-stratified populations (i.e., infants are defined as 0-1 years,407

children are 2-11 years, adolescents are 12-18 years, adults are 19-64 years, and seniors are 65+408

years), and negative phenotype terms are sampled from the same corresponding age-stratified pop-409
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ulations at random.410

3 Distractor Gene Modules411

In order to mimic the typical diagnostic process where numerous potentially disease-causal genes412

must be manually reviewed by a clinical team, we generate a set of 1 + NG highly plausible, yet413

ultimately non-causal, genes for each patient, where NG is drawn from a Poisson distribution pa-414

rameterized by λ. In our implementation, the tunable parameter λ is set to the mean number of415

candidate genes considered in real-world patients with undiagnosed genetic conditions (see Meth-416

ods “Preprocessing Real Patient Data” below). These NG genes are generated from the following417

six distractor gene modules with probabilities 0.33, 0.42, 0.05, 0.09, 0.08, and 0.03 respectively,418

which we set in our implementation based on the approximate frequency of each distractor gene419

type in real-world patients with undiagnosed diseases; these parameters can be customized by the420

user. Each distractor gene module contributes one gene to the simulated patient’s candidate gene421

list, and three distractor gene modules simultaneously add phenotype terms related to the added422

gene.423

1. Phenotypically-similar disease genes. First, we identify genes causing “distractor” Mendelian424

diseases in Orphanet that have overlapping phenotype terms with the patient’s true disease (Figure425

2b, dark green). We categorize the phenotype terms associated with the distractor disease as “ob-426

ligate”, “strong”, “weak”, or “excluded” if their prevalence in patients with that disease is 100%,427

80-99%, 1-29% or 0% respectively. We require that all distractor diseases have at least one obli-428

gate phenotype term and/or at least one excluded phenotype term, or that all phenotype terms that429

overlap with the true disease of interest are weak. We add the causal gene for the distractor disease430

to the simulated patient’s set of candidate genes and add phenotype terms that overlap between the431

distractor and true disease to the simulated patient’s positive phenotype set. To ensure that these432

genes are challenging distractors but definitively non-causal, we add some excluded phenotypes433

to the simulated patient’s set of positive phenotypes and some obligate phenotypes to the simu-434

lated patient’s set of negative phenotypes. For distractor diseases with no associated obligate or435

excluded phenotypes and only weak overlapping phenotypes with the true disease, we instead add436

some strong, non-overlapping phenotypes to the simulated patient’s negative phenotypes. At each437

of these steps, 1 + NP phenotype terms are added to the simulated patient’s positive or negative438

phenotype sets, where NP is drawn from a Poisson distribution parameterized by λ. In our imple-439
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mentation, we set λ such that simulated patients and real-world patients with undiagnosed diseases440

have approximately the same number of annotated phenotype terms on average (see Figure 3 and441

Methods “Preprocessing Real Patient Data” below).442

2. Phenotypically-distinct disease genes. Since any variants in known disease genes tend to be443

investigated during the diagnostic process, we also add genes causing Mendelian diseases that do444

not have any phenotypic overlap with the patient’s true disease (Figure 2b, yellow) [27].445

3. Insufficiently explanatory genes. Genes that are not yet known to be disease-causing but are446

associated with a subset of the patient’s disease-relevant phenotypes are also strong candidates447

for further diagnostic investigation. To generate such insufficiently explanatory genes, we first448

curate a set of non-disease genes as the set of all genes from DisGeNET [28] (accessed April 16,449

2019, https://www.disgenet.org/downloads/all gene disease associations.tsv) and excluding450

any genes causally associated with a disease in Orphanet or in HPO Annotation [29, 30] (accessed451

February 12, 2019, http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/ALL SOU452

RCES ALL FREQUENCIES diseases to genes to phenotypes.txt). We add non-disease genes453

that are associated with a strict subset of low prevalence phenotypes from the simulated patient’s454

true disease (Figure 2b, light orange). We then add 1 + NP of the gene’s phenotype terms to the455

simulated patient’s positive phenotype set if none are already present, with NP defined as above.456

4. Genes associated with incidental phenotypes. Naturally occurring phenotypic variance present457

across healthy individuals can be incorrectly considered to be relevant to a patient’s disease during458

diagnostic evaluations. To include genes causing these nonsyndromic phenotypes, we add non-459

disease genes associated only with phenotypes that do not overlap with the simulated patient’s460

true disease (Figure 2b, purple). We add some of the gene’s phenotypes to the simulated patient’s461

positive phenotype set as before.462

5. Similarly expressed genes. We also add genes with similar tissue expression as the patient’s463

causal disease gene (Figure 2b, dark orange), as a candidate gene’s expression in relevant tissues464

is considered as supporting experimental evidence for a gene-disease association in clinical eval-465

uations [31]. For each gene, we compute its average tissue expression in transcripts per million466

in each of 54 tissue types profiled in GTEx [32] (accessed October 29, 2019, https://gtexportal467

.org/home/datasets/GTEx Analysis 2017-06-05 v8 RNASeQCv1.1.9 gene median tpm.tsv).468

For each tissue type, we linearly 0,1-normalize the per-gene expression values such that the gene469

with the lowest expression in that tissue type is assigned a value of 0 and the gene with the high-470
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est expression in that tissue type is assigned a value of 1. We compare each gene’s normalized471

tissue expression vector to the simulated patient’s causal gene’s tissue expression vector using co-472

sine similarity. We select one of the top 100 most similar genes with probability proportional to473

its tissue expression similarity, excluding known disease genes with phenotypic overlap with the474

simulated patient’s true disease.475

6. Common false positive genes. Finally, we add genes from the FrequentLy mutAted GeneS476

(FLAGS) database [33] with probabilities proportional to the number of rare functional variants477

affecting these genes in general populations, as computational pipelines tend to frequently priori-478

tize these genes due to their length and variational excess.479

4 Preprocessing Real Patient Data480

We selected all patients from the Undiagnosed Diseases Network (UDN) with a molecular diagno-481

sis as of March 19, 2020. Each patient is annotated with a set of positive and negative HPO pheno-482

type terms and a set of strong candidate genes that were considered by clinical teams who handled483

each case. For each of the 362 diagnosed patients who received genomic sequencing through the484

UDN, we augment their candidate gene lists with disease-associated and other clinically-relevant485

genes listed on their clinical sequencing reports [27]. Where possible, patients’ gene lists were486

further augmented with genes prioritized by the Brigham Genomic Medicine pipeline [34]. We487

map all genes to Ensembl identifiers, discard prenatal phenotype terms related to the mother’s488

pregnancy, and exclude patients with fewer than five candidate genes. The final cohort includes489

248 patients.490

The Undiagnosed Diseases Network study is approved by the National Institutes of Health in-491

stitutional review board (IRB), which serves as the central IRB for the study (Protocol 15HG0130).492

All patients accepted to the UDN provide written informed consent to share their data across the493

UDN as part of a network-wide informed consent process.494

5 Comparing Simulated Patients to Real Patients495

Of the 248 diagnosed UDN patients that we consider, only 121 patients were diagnosed with a496

disease in Orphanet that we were able to model (see Section 1 above). We construct a disease-497

matched cohort of 2,420 simulated patients by selecting, for each of these 121 UDN patients, 20498

simulated patients with the same disease. We first visualize positive phenotype term similarities499

between real and simulated patients using non-linear dimension reduction via a Uniform Manifold500
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Approximation and Projection (UMAP) plot [35]. We also compare each real patient to all sim-501

ulated patients in the disease-matched cohort by computing pairwise Jaccard similarities ranging502

from 0 to 1 inclusively between the positive phenotype terms annotated to each real patient and the503

positive phenotype terms annotated to each simulated patient. For each real patient, we then rank504

all simulated patients from highest to lowest Jaccard similarity and analyze those simulated pa-505

tients’ corresponding diseases to assess whether simulated patients are as phenotypically specific506

to each disease as real patients are. Finally, we evaluate the average Jaccard similarity between the507

query real-world patient and the top 10 retrieved simulated patients with the same disease com-508

pared to the average Jaccard similarity between the query and the top 10 real-world patients with509

a different disease using a one-sided Wilcoxon signed-rank test implemented in the SciPy Stats510

library. We perform the Shapiro-Wilk test from the SciPy Stats library to test for normality.511

6 Evaluating Gene Prioritization Tools on Novel Diseases512

To model novel genetic conditions in our simulated patients, we leverage a knowledge-graph513

(KG) of gene–gene, gene–disease, gene–phenotype, and phenotype–disease annotations from Phe-514

nolyzer [11] that is time-stamped to February 2015 (obtained from github.com/WGLab/phenoly515

zer/tree/ecec7410729276859b9023a00f20e75c2ce58862) and the HPO-A ontology [30] time516

stamped to January 2015 (obtained from github.com/drseb/HPO-archive/tree/master/hpo.annot517

ations.monthly/2015-01-28 14-15-03/archive/annotation and github.com/drseb/HPO-archive518

/tree/master/2014-2015/2015 week 4/annotations/artefacts). Phenotype-phenotype annotations519

are from the 2019 HPO ontology. All gene names are mapped to Ensembl IDs, and older pheno-520

type terms are updated to the 2019 HPO ontology. We also manually time-stamp each disease and521

disease–gene association in Orphanet according to the date of the Pubmed article that reported the522

discovery; discoveries after February 2015 are considered novel with respect to our KG. Note that523

the KG time-stamped to February 2015 may not reflect all new information contained in the most524

recent publications from PubMed, as would be expected for any curated database. We categorize525

each novel discovery as in Figure 1b. We apply the same process to manually annotate the novelty526

of disease-gene associations in the real-world UDN cohort.527

We reimplement four well-known gene prioritization tools using our 2015 time-stamped528

KG. We use publicly-available code from https://bitbucket.org/bejerano/phrank and https:529

//github.com/WGLab/phenolyzer to run Phrank [10] and Phenolyzer [11] respectively. We530

reimplement Phenomizer [12] as described in their paper, as open-source code is not available.531
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Although the original implementation of Phenomizer randomly samples phenotype terms 100,000532

times to generate p-values for each patient–disease similarity score, we use 10,000 random sam-533

plings instead, as this was substantially faster, and varying the number of samplings did not impact534

overall gene rankings. We define a patient–gene match score for Phenomizer as the highest pa-535

tient–disease match score across all diseases caused by that gene. We report how well each of536

these tools—both versions of Phrank, Phenolyzer, and Phenomizer—ranked the causal gene for537

each simulated patient for each different category of novel disorders as outlined in Figure 1b.538
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