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STRUCTURED ABSTRACT

INTRODUCTION:

The ketogenic diet (KD) is an intriguing candidate for neuroprotection in Alzheimer’s disease
(AD) given its protective effects against metabolic dysregulation and seizures. The diet’s
neuroprotective effects have been shown to be gut microbiome-dependent in mice; thus we
examined KD-induced changes in the gut microbiome and metabolome in patients at-risk for
AD.

METHODS:

We compared the low-carbohydrate modified Mediterranean Ketogenic Diet (MMKD) to the
low-fat American Heart Association Diet (AHAD) in adults with mild cognitive impairment (MCI)
and control participants. We collected stool samples for shotgun metagenomics and untargeted
metabolomics at five timepoints to interrogate the microbiome and metabolome.

RESULTS:

Individuals with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp.
CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila.

DISCUSSION:

We hypothesize that MMKD protects individuals with MCI in part via influencing on GABA levels
and gut-transit time.

KEY WORDS

Alzheimer’s disease; mild cognitive impairment; ketogenic diet; microbiome; metabolome;
Low-Fat American Heart Association Diet (AHAD)
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BACKGROUND

Despite decades of research, the pathophysiologic events that result in cognitive impairment are
not fully understood, delaying the development of effective therapeutic options for
neurodegenerative diseases such as Alzheimer’s disease (AD) (1, 2). However, it is now
appreciated that a variety of systemic changes occur throughout the course of AD, including
metabolic dysregulation (3, 4), mitochondrial dysfunction (5, 6), inflammation (7), and body
compositional changes (8, 9).

AD-related metabolic dysregulation has been interrogated by comparing AD metabolomic
profiles to those of unaffected individuals. However, identifying metabolites universally
associated with AD or cognitive decline is not straightforward. Both the Alzheimer’s Disease
Neuroimaging Initiative’s (ADNI) studies (10, 11) and mouse models (12) have demonstrated
that metabolic signatures for AD are sex and APOE genotype-dependent. Though study of the
UK Biobank cohort showed that AD incidence was correlated with metabolites including the
ketone body β-hydroxybutyrate, acetone, and valine, these metabolites were also associated
with age and APOE genotype, complicating interpretation (13). Triglycerides (particularly
polyunsaturated serum triglycerides) are also broadly associated with mild cognitive impairment
(MCI) and AD onset (14, 15). In terms of symptom-specific associations, both short- and
medium/long-chain acylcarnitines were associated with episodic memory scores and AD
severity in the ADNI cohort (16), while C3 (propionylcarnitine) was associated with decreased
amyloid-β accumulation and higher memory scores (17). These observations have provided
new directions for AD therapeutics.

Separately, research into the gut-microbiota brain axis has spearheaded investigation into an
altered gut microbiome in AD (18). It is hypothesized that gut microbiome disruptions may lead
to local gastrointestinal inflammation or disturbance of the intestinal mucosal barrier, resulting in
dysregulation of the signaling pathways between the gut and brain (19). Another hypothesis for
the gut microbiome in AD comes from the connection between cholesterol, bile acids, and the
gut microbiota. Cholesterol metabolism is consistently reported to be dysregulated in AD and
AD-related diseases (20-22). Cholesterol accumulation in the brain contributes to hepatic
encephalopathy, a chronic liver disease that leads to neuron loss and increased risk for AD,
through bile acid mediated effects on the farnesoid X receptor (23). This observation is
significant because bile acids, the main source of cholesterol elimination in the brain, are
transformed by the gut microbiota (24). One preliminary study into this link showed that bile
acids in serum were associated with "A/T/N'' AD biomarkers, while another demonstrated that
AD-related cognitive impairment is tied to higher levels of bacterially-modified secondary bile
acids and lower levels of primary bile acids (25, 26). Similarly, another group reported that
among the metabolites and metabolic pathways most differential between MCI and cognitively
normal (CN) groups included the deoxycholate/cholate (DCA/CA) ratio and primary bile acid
synthesis (27).
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A significant factor uniting the gut microbiome, inflammation, and neurocognitive status with
metabolic disorders is their relationship with diet (28-31). The ketogenic diet (KD) is a candidate
therapeutic for AD because of its ability to improve mitochondrial function and cerebral
bioenergetics, enhance autophagy, and reduce oxidative stress (30, 31). It also reduces
neuronal hyperexcitability and leads to improved amyloid and tau regulation, substantiating its
potential use for cognitive impairment (32).

We previously performed a pilot trial of a low carbohydrate modified Mediterranean ketogenic
diet (MMKD) in patients at-risk for AD. We found that the MMKD increased levels of Aβ42 and
decreased levels of tau in the cerebral spinal fluid (CSF) as well as improved peripheral lipid
and glucose metabolism (i.e. reduction of Hb1Ac, insulin, triglyceride levels) in patients with mild
cognitive impairment (MCI) (32). Patients on the MMKD also showed increased cerebral ketone
body uptake and cerebral perfusion, important metrics of brain function (32). Microbially, the
MMKD was associated with increased relative abundances of the Enterobacteriaceae,
Akkermansia, Slackia, Christensenellaceae, and Erysipelotrichaceae taxa and decreases in the
relative abundances of Bifidobacterium and Lachnobacterium (33). Metabolically, the MMKD
was associated with increased propionate and butyrate and decreased lactate and acetate in
stool (33). Interrogation into the mycobiome, or fungal microbiome, demonstrated that MMKD
increased the relative abundance of Agaricus and Mrakia and decreased the relative abundance
of Saccharomyces and Claviceps in patients with MCI (34).

Although thought-provoking, previous analyses relied on amplicon sequencing (of the 16S
ribosomal RNA gene and internal transcribed spacer regions). In the present study, we sought
to further characterize the complex relationship between diet, cognitive status, and the human
microbiome and metabolome using shotgun metagenomic sequencing and untargeted
metabolomics on the same samples. Furthermore, we employed a novel reference data-driven
tool to empirically and retrospectively read out dietary metabolites from our samples (35). By
updating our methods and integrating multiple data types, we identified key modulations to the
gut microbiome and metabolome related to diet alone, cognitive status alone, or both.
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METHODS

Participant Information:
Participants were deemed at risk for AD based on their systemic metabolic dysfunction and
cognitive dysfunction or subjective/objective memory complaints at study onset. Exclusion
criteria included statin use and neurological conditions other than MCI. See Methods
Supplement for full inclusion and exclusion criteria for this study. The protocol was approved by
the Wake Forest Institutional Review Board (ClinicalTrials.gov Identifier: NCT02984540), and
written informed consent was obtained from all participants and/or their study partners.
Participants were medically supervised by clinicians, with safety monitoring overseen by the
Wake Forest Institutional Data and Safety Monitoring Committee.

Procedure:
The primary pilot trial was a randomized crossover design in which participants consumed either
a Modified Mediterranean-Ketogenic Diet (MMKD) or the control American Heart Association
Diet (AHAD) for 6 weeks, followed by a 6-week washout with their pre-study diet, after which the
second diet was consumed for 6 weeks (Figure S1). For further information on diet information
and education, see the Methods Supplement.

Data Collection and Processing:
Stool samples were collected from participants at five study timepoints: at the beginning and
end of each diet intervention, and 6 weeks after washout of the second diet (Figure S1).
Methods for collection were adapted from the Manual of Procedures for the Human Microbiome
Project (NIH, Version Number 12.0). We extracted DNA for metagenomic sequencing and
metabolites for untargeted MS/MS analysis. For more information on metagenomics,
metabolomics, and food-omics data processing and analysis, see the Methods Supplement.

Data Availability:
Metagenomic sequencing data are available in Qiita under study ID 13662 (36). Mass
spectrometry data (.mzXML format) are available in MassIVE under ID MSV000087087. The
classical molecular networking job is available in GNPS at the following link:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=90f1ba6e1e4d4d89b75b9017a0631983 (37).
The feature-based molecular networking job is available in GNPS at the following link:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=16e7c66221ce4ae9ae6678ec276d8343
(38). The code utilized for these analyses are available at
https://github.com/ahdilmore/BEAM_MultiOmics.
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RESULTS

Twenty-three adults were enrolled in the study and twenty completed the full intervention.
Participant characteristics by AD risk group may be found in Table 1.

Dimensionality Reduction of Microbiome, Food-omics, and Metabolome datasets:
To visualize relationships between samples, we performed dimensionality reduction with Robust
Aitchison Principal Component Analysis (RPCA) on each -omic dataset (39; Figure 1A). We
found that the metabolomics data separates most strongly by individual subject, though
separation by Cognition Group and Dietary Sequence are also statistically significant (F=29.684,
p=4.33e-6; F=23.562, p=3.25e-5; F=20.987, p=6.58e-5) while metagenomics and food-omics
data separate most strongly by Cognition Group, though not significantly (F=3.896, p=0.196;
F=4.114, p=0.213). However, RPCA did not account for the longitudinal nature of the dataset.
Controlling for repeated measures with compositional tensor factorization (CTF) revealed
consistent dietary-related patterns in PCA space regardless of diet order (40; Figure 1B).
Results from all ANOVAs performed on CTF Aitchison beta-diversity distances from baseline
are available in Table S1.

Relative Abundance Analyses:
We identified microbial, food, and metabolite features that were associated with cognition and
diet using a Negative Binomial Linear Mixed Effect model. We identified features that were
associated with diet but not cognitive status, cognitive status but not diet, and both diet and
cognitive status.

Microbial Features Associated with Cognitive Status and Dietary Intervention
The top ten microbial features associated with normal cognition or mild cognitive impairment are
displayed in Figure 2A. Notably, Ruminococcus sp. CAG:330 is associated with MCI while
Bacteroides fragilis and Dialister invisus are associated with CN independently of diet or
timepoint (Figure 2D; p=0.016, p=0.028 respectively). The top ten microbial features associated
with the ketogenic diet or a low-fat diet are displayed in Figure 3A. We observed higher
abundances of Akkermansia muciniphila in the ketogenic diet, and higher abundances of
Veillonella sp. ACP1 in low-fat diets (Figure 3D). To identify OGUs that were highly associated
with both cognitive status and diet, we plotted the log ratios for CN to MCI against the log ratios
for MMKD over AHAD and examined features that fell in each corner of the plot (Figure 4A).
We found that the ratio of Alistipes sp. CAG:514 to Bifidobacterium adolescentis was
significantly different between MCI and CN individuals only after consuming the low-fat AHAD
(Figure 4B; t=3.78, p=0.00082).

Food Features Associated with Cognitive Status and Dietary Intervention
The top food microbial features associated with normal cognition or MCI are displayed in Figure
2B and the top food microbial features associated with the MMKD or AHAD are displayed in
Figure 3B. Interestingly, cognitively normal individuals had higher levels of dietary metabolites
that matched to cheddar cheese, goat cheese, and almonds - all foods that one might consume
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on a ketogenic diet - while individuals with MCI had relatively higher loads of dietary metabolites
that matched to turkey and smelt (Figure 2B). As one might expect, those on the MMKD had
higher relative abundances of dietary metabolites found in dairy products including cheddar
cheese, low-sugar fruits like cherries, and low-sugar vegetables including broccoli (Figure 3B).
Those on the AHAD diet had higher relative abundances of dietary metabolites that matched to
foods including parsley, oregano, and shrimp (Figure 3B). However, the log ratios of the sum of
the top 10 most MMKD-associated to the sum of top 10 AHAD-associated dietary metabolites
were not significantly different over the course of the study (Figure 3E-F).

Metabolites Associated with Cognitive Status and Dietary Intervention
The top metabolite Feature IDs associated with normal cognition or MCI are displayed in Figure
2C, while the top metabolite Feature IDs associated with the MMKD or AHAD are displayed in
Figure 3C. We found that the log ratio of the sum of the top 5 metabolites associated with the
ketogenic diet to the sum of the top 5 metabolites associated with the low-fat diet was not
significantly different throughout the intervention (Figure 3F). Furthermore, none of the top
metabolites mapped to an exact reference through FBMN. However, metabolite 10007, which is
associated with both the ketogenic diet and cognitive normality, was suspected to be related to
curcumol through a nearest neighbor suspect spectral library (41). It is interesting that curcumol
is associated with the ketogenic diet and normal cognition since another Curcuma metabolite,
curcumin, has been associated with decreased gut motility through increased both gallbladder
contraction and luminal bile acid levels (42). For this reason, in tandem with the fact that
cognitive impairment in AD is tied to higher levels of bacterially-modified secondary bile acids
and lower levels of primary bile acids, we decided to monitor bile acid levels in this population
(24). We plotted the log ratios for cognitive normal to mild cognitive impairment against the log
ratios for MMKD over AHAD and examined annotated bile acids as well as other molecules
related to curcumin (Figure 4C). We found that the log ratio of two plant-derived metabolites to
Diarylheptanoids, the class of molecules curcumin is a part of, was much lower in individuals
with MCI only after consuming the AHAD (Figure 4D; t=-2.33, p=0.0326).This indicates that
curcumin may be selectively enriched in people with cognitive impairment when they eat a
low-fat diet.

Multi-omics Analyses:
We were particularly interested in monitoring the relative levels of primary and secondary bile
acids in individuals with MCI and those with normal cognition due to their associations with AD.
Bile salt hydrolase (BSH) promotes the production of secondary bile acids, so we sought to
examine the relationship between abundance of BSH-containing microbes and bile acid levels
(42, 26). We used MMvec to identify bile acids that are associated with particular microbes and
to cluster these relationships by diet (43). We found that Bifidobacterium adolescentis,
Akkermansia muciniphila, and Akkermansia muciniphila CAG:154 were associated with
12-ketodeoxycholic acid, taurocholic acid, cholic acid, and hyocholic acid in the MMKD while
Alistipes sp. CAG:514 and Clostridium sp. CAG:568 were associated with demethoxycurcumin,
deoxycholic acid, cholic acid, and leucine-conjugated chenodeoxycholic acid in the AHAD
(Figure 5A). We were also interested in examining the relationship between the metabolite
demethoxycurcumin and levels of BSH-containing microbes as well as the ratio of unconjugated
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to conjugated bile acids, since turmeric increases luminal bile acid levels (42). Interestingly, we
found that individuals with MCI had lower relative abundances of BSH-encoding microbes when
their metabolome contained curcumin, while no difference was found in cognitively normal
individuals (Figure 5B; t=2.9, p=0.0089; t=0.5, p=0.6308). On the other hand, cognitively normal
individuals had a higher ratio of unconjugated bile acids to conjugated bile acids when their
metabolome contained curcumin, while there was no significant difference in individuals with
MCI (Figure 5C; t=-2.3, p=0.0328; t=-0.6, p=0.5681).
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DISCUSSION

The gut microbiome, metabolism, and neurocognition are all significantly influenced by diet. In
this work, we have demonstrated the effect of two dietary interventions for mild cognitive
impairment on the gut microbiome, dietary metabolites, and general metabolome.

Notably, we showed that the microbiome and food-ome were not significantly associated with
cognitive status or diet without explicitly accounting for the longitudinal nature of the data. Upon
doing so, we found that the metagenome, food-ome, and metabolome were significantly
associated with diet. The metagenome and metabolome were not significantly impacted by
dietary order, while the food-ome was. Although there was noise due to factors such as
inter-individual variation, dietary sequence, and cognitive status, there were consistent
diet-related variations in the microbiome. This pattern corresponds to previous observations that
dietary-induced changes to the microbiome can overwhelm inter-individual differences, even
when dietary changes are short-term (28).

We also identified the top microbial, metabolic, and food features that were associated with diet
independent of cognition and cognition independent of diet. Microbially, we found that
Ruminococcus sp. CAG:330 is associated with MCI while Bacteroides fragilis and Dialister
invisus are associated with cognitive normality. Furthermore, Akkermansia muciniphila is highly
associated with the MMKD, while Veillonella sp. ACP1 is related to the AHAD. The Akkermansia
muciniphila observation matches previous reports that its relative abundance increases
significantly in mice when they are fed a ketogenic diet (44). This same study demonstrated that
microbe Akkermansia muciniphila is essential for the ketogenic diet’s ability to protect against
seizures in mice since it limits gut bacterial GABA production (44). Interestingly, we found that
Alistipes sp. CAG:514, is enriched in individuals with MCI on the low-fat AHAD (Figure 4B).
This finding is significant because microbial strains that are similar to Alistipes sp. CAG:514 are
known to produce GABA (45). This led us to re-investigate the relative relationship between
Akkermansia muciniphila and Alistipes sp. CAG:514 and levels of the GABA metabolite in our
population. We found that the ratio of Alistipes sp. CAG:514 to Akkermansia muciniphila is
elevated in individuals with MCI relative to normal individuals only on the low-fat AHAD (Figure
S3A). Furthermore, GABA levels are higher in the stool of cognitively-impaired individuals on
the AHAD than on the MMKD, but there is no dietary-related difference in cognitively-normal
individuals (Figure S3B). This trend was consistent in a separate dataset examining
cerebrospinal fluid metabolites of the same individuals (Fig S3B). These observations led us to
hypothesize that low-fat AHAD modulates key neurotransmitters, such as promoting GABA
production, in individuals with cognitive impairment. This dysregulation may be related to
increases in GABA-producing microbes such as Alistipes sp. CAG:514, while dietary
interventions such as the MMKD may decrease GABA levels in the opposite direction through
its associated increases in GABA-regulating microbes such as Akkermansia muciniphila.

We found that one of the top metabolites associated with both the ketogenic diet and cognitive
normality was related to curcumol through a nearest-neighbor suspect library (41). Another
compound produced by the same plant, curcumin, was instead elevated in participants with MCI
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who ate the low-fat AHAD diet (Figure 4F). Consumption of turmeric, which contains curcumin
and curcumol, is known to stimulate gallbladder contraction which results in higher luminal bile
acid levels (42). Bile acids were also of interest because the cognitive impairment observed in
AD is tied to higher levels of bacterially-modified secondary bile acids and lower levels of
primary bile acids (24). Therefore, we hypothesized that cognitively normal people may have
higher relative levels of primary bile acids when curcumin is found in their metabolome. Indeed,
we found that cognitively normal individuals had a significantly higher ratio of unconjugated bile
acids to conjugated bile acids when their metabolome contained curcumin, while there was no
significant difference in individuals with MCI (i.e. individuals with MCI had relatively higher load
of conjugated bile acids, Figure 5C). We hypothesized that the difference in relative levels of
unconjugated to conjugated bile acids may be due to the levels of BSH (26). Cognitively normal
individuals retained similar levels of BSH-containing microbes regardless of diet or
curcumin-presence, while individuals with cognitive impairment had significantly lower levels of
BSH-containing microbes when curcumin was present in their diet (Figure 5B). It appears,
therefore, that the low-fat AHAD decreases the levels of BSH-containing microbes as well as
Akkermansia muciniphila in individuals with MCI, leading to alterations of key metabolites
including the neurotransmitter GABA. These individuals also have higher relative levels of
unconjugated bile acids to conjugated bile acids than cognitively normal individuals, leading us
to hypothesize that they may have decreased gut-transit time. We have outlined the details of
our overall model in Figure S4.

Limitations & Further Work:
Our study is limited by a small sample size, and relatively brief intervention period. A significant
methodological limitation of our study was that our untargeted metabolomics experiments left
many of the key metabolites that were highly related to cognition and diet unannotated. For this
reason, much of our metabolomics analyses relied on metabolites that have previously been
described in the Alzheimer’s disease and dietary metabolite literature. Furthermore, since we
did not run bile acid or neurotransmitter standards in these experiments, our annotations are
Level II or Level III by the Metabolomics Standards Initiative (46). Since we know that bile acid
metabolites and neurotransmitters such as GABA are interesting, in the future we may choose
to perform targeted metabolomics or at a minimum, run these compounds as standards in the
same mass spectrometry run to increase our annotation rigor.

Similarly, while our food-omics tool provides a handy reverse method to readout food counts, it
is not perfect in reproducing exact dietary features. Although it reproduces dietary patterns that
are consistent with the ketogenic diet or a low-fat diet, the tool cannot be used to distinguish
exact dietary conditions. As more reference foods are added to the FoodOmics database and
the tool grows in power, its power will grow. In the future, we may also choose to utilize patient
dietary logs to identify foods that are highly associated with changes in cognition.

An additional technical limitation is that the untargeted metabolomics platform does not provide
the level of characterization of lipid metabolism and mitochondrial function that is available on
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targeted platforms. The current results should be interpreted as a snapshot of metabolism with
more detailed analysis of lipid metabolism, ketogenesis, and other processes known both to be
affected by diet and important for AD to come in future studies.

Despite these technical challenges, we performed a well-controlled, longitudinal trial and used
statistical techniques that controlled for various challenging aspects of our data (sparsity,
compositionality, and longitudinality). These statistical analyses allowed us to identify microbial
and metabolite features that were specifically associated with both diet and cognitive status.
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FIGURES

Figure 1. Microbiome (left column), food-omics (middle column), and metabolome (right
column), separate by subject and by diet across time. Robust Aitchison Principal
Component Analysis (RPCA) PC1 (x-axis) and PC2 (y-axis) colored by subject identification
with marker shape by diet across study, clusters by subject. Compositional tensor factorization,
method accounting from repeated measures across time (x-axis) PC1 (y-axis) colored by diet
types, follows crossover study design in each data modality.
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Figure 2. Microbial strains (left), foods (middle), and metabolites (right) related to
cognition, but not necessarily diet type. The differential abundances for the top 10 and
bottom 10 with mean (bar) and model 95% confidence interval (error bars) associated with
cognitive normal (more positive, blue) and mild cognitive impairment (more negative, red) (A, B,
C). The log-ratio (y-axis) of the top and bottom bacterial strains (D&E) plotted across time
(x-axis) and colored by cognition phenotype. Presented cognition p-values in log-ratio plots are
determined from linear mixed effects models with fixed effects of diet, cognition, period, and diet
sequences with random effect of subject.
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Figure 3. Microbial strains (left), foods (middle), and metabolites (right) related to diet
type, but not necessarily cognition. The differential abundances for the top 10 and bottom 10
with mean (bar) and model 95% confidence interval (error bars) associated with cognitive
Ketogenic (more positive, green) and low-fat / american heart association diets (more negative,
blue) (A, B, C). The log-ratio (y-axis) of the top and bottom bacterial strains (D), and sum of the
top and bottom 10 foods (E) or metabolites (F) plotted across time (x-axis) and colored by diet.
Presented diet stage p-values in log-ratio plots are determined from linear mixed effects models
with fixed effects of diet, cognition, period, and diet sequences with random effect of subject.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279087doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Microbial strains (left), foods (middle), and metabolites (right) related to both
cognition and diet. Scatter plot of log ratios of differential abundances by diet (x-axes) and
cognition (y-axes) for microbes, with the ten most differential microbes and metabolites in both
axes colored (A). Violin plot of the log-ratio of Alistepes sp. CAG: 514 to Bifidobacterium
adolescentis at four different timepoints in the study (B). Scatter plot of log ratios of differential
abundances by diet (x-axes) and cognition (y-axes) for microbes, with the ten most differential
microbes and metabolites in both axes colored (C). Violin plot of the log-ratio of plant
metabolites to Diarylheptanoids at four different timepoints in the study (D). In the scatterplots
shown in (A) and (C), each corner corresponds to a different subpopulation: the top right corner
represents microbes/metabolites associated with the MMKD and normal cognition, the top left
corner contains the microbes/metabolites correlated with the AHAD and normal cognition, the
bottom left corner shows microbes/metabolites associated with the AHAD and mild cognitive
impairment, and the bottom right corner corresponds to microbes/metabolites correlated with the
MMKD and MCI. These analyses allowed us to examine microbial and metabolite changes that
were modulated by both diet and cognitive status.
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Figure 5. Strongest diet and cognition linked differential abundances and co-occurrences
linked to bile salt hydrolase (BSH) containing bacterial species, diarylheptanoids, and
bile acids (BA). The MMvec log cooccurrence probabilities (red-blue colors, colorbar) between
differentially abundant and annotated metabolites (y-axis) and microbes (x-axis) colored by their
association to diet (color bar top of x-axis, color legend) (A). The log-ratio of BSH containing
microbes vs. those without BSH (y-axis) across diets and diarylheptanoids consumption (x-axis)
(B). The log-ratio of unconjugated to conjugated BAs (y-axis) across diets and diarylheptanoids
consumption (x-axis) (C). The annotations are Level II or Level III according to the
Metabolomics Standards Initiative (46). Significance was evaluated by a two-sided t-test.
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Variable All (n=20) CN (n=11) MCI (n=9)

Age, years 64.3 (6.3) 64.9 (7.9) 63.4 (4.0)

Female sex 15 (75%) 9 (81.8%) 6 (66.7%)

Black race 7 (35%) 2 (18.2%) 5 (55.6%)

APOE4-positive 6 (31.6%) 2 (20%)^ 4 (44.4%)

Education, years 16.1 (2.5) 16.5 (2.3) 15.7 (2.9)

BMI, kg/m2 28.4 (5.7) 26.9 (6.2) 30.3 (4.7)

MMSE 28.7 (1.1) 28.9 (1.0) 28.3 (1.2)

Glucose, mg/dL 97.6 (18.3) 93.9 (11.4) 102.1 (24.4)

BHB, mmol/L 0.23 (0.27) 0.35 (0.31)+ 0.1 (0.14)+

Insulin, μIU/mL 8.3 (6.1) 5.2 (3.4)+ 12.0 (6.8)+

HbA1c, % 5.9 (0.3) 5.9 (0.2) 6.1 (0.4)

Total Chol, mg/dL 215.2 (43.7) 200.5 (42.1) 233.2 (40.6)

HDL Chol, mg/dL 67.4 (25.8) 69.5 (25.8) 64.8 (27.1)

VLDL Chol, mg/dL 20.0 (11.1) 15.2 (6.2)+ 25.8 (13.2)+

LDL Chol, mg/dL 121.5 (41.2) 104.1 (45.6)+ 142.7 (24.2)+

Triglycerides, mg/dL 99.8 (55.7) 75.5 (30.5)+ 129.4 (66.4)+

Table 1. Participant characteristics for full sample and by AD risk group at study
baseline. Table values are mean (SD) or N (%). +Denotes a difference between CN and MCI,
p<0.05, using t-test for continuous and Fisher’s exact test for categorical variables. ^APOE
genotype information unavailable for one participant.
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