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Abstract 22 

The application of AI to medical image interpretation tasks has largely been limited to the 23 
identification of a handful of individual pathologies. In contrast, the generation of complete 24 
narrative radiology reports more closely matches how radiologists communicate diagnostic 25 
information in clinical workflows. Recent progress in artificial intelligence (AI) on vision-language 26 
tasks has enabled the possibility of generating high-quality radiology reports from medical 27 
images. Automated metrics to evaluate the quality of generated reports attempt to capture 28 
overlap in the language or clinical entities between a machine-generated report and a 29 
radiologist-generated report. In this study, we quantitatively examine the correlation between 30 
automated metrics and the scoring of reports by radiologists. We analyze failure modes of the 31 
metrics, namely the types of information the metrics do not capture, to understand when to 32 
choose particular metrics and how to interpret metric scores. We propose a composite metric, 33 
called RadCliQ, that we find is able to rank the quality of reports similarly to radiologists and 34 
better than existing metrics. Lastly, we measure the performance of state-of-the-art report 35 
generation approaches using the investigated metrics. We expect that our work can guide both 36 
the evaluation and the development of report generation systems that can generate reports from 37 
medical images approaching the level of radiologists.  38 
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Introduction 39 

Artificial Intelligence (AI) has been making great strides in tasks that require expert knowledge, 40 
such as playing Go1–4, writing code5,6, and driving vehicles7,8. In the medical domain, AI has 41 
reached similar exciting milestones9, including the effective prediction of 3D protein 42 
structures10,11. Enabled by the rapidly evolving imaging and computer vision technologies, AI 43 
also has made formidable progress on image interpretation tasks, including chest X-ray 44 
interpretation. However, the application of AI to image interpretation tasks has often been 45 
limited to the identification of a handful of individual pathologies12–14, representing an over-46 
simplification of the image interpretation task. In contrast, the generation of complete narrative 47 
radiology reports15–20 moves past that simplification and matches up to how radiologists 48 
communicate diagnostic information: the narrative report allows for highly diverse and nuanced 49 
findings, including association of findings with anatomic location, and expressions of 50 
uncertainty. Although the generation of radiology reports in their full complexity would signify a 51 
tremendous achievement for AI, the task remains far from solved. Our work aims to tackle one 52 
of the most important bottlenecks for progress: the limited ability to meaningfully measure 53 
progress on the report generation task. 54 

Automatically measuring the quality of generated radiology reports is challenging. Most prior 55 
works have relied on a set of automated metrics inspired by similar setups in natural language 56 
generation, where radiology report text is treated as generic text21. However, unlike generic text, 57 
radiology reports involve complex, domain-specific knowledge and critically depend on factual 58 
correctness. Even metrics that were designed to evaluate the correctness of radiology 59 
information by capturing domain-specific concepts do not align with radiologists22. Therefore, 60 
improvement on existing metrics may not produce clinically meaningful progress or indicate the 61 
direction for further progress. This fundamental bottleneck hinders understanding of the quality 62 
of report generation methods thereby impeding work toward improvement of existing methods. 63 
We seek to remove this bottleneck by developing meaningful measures of progress in radiology 64 
report generation. The answer to this question is imperative to understanding which metrics can 65 
guide us towards generating reports that are clinically indistinguishable from those generated by 66 
radiologists. 67 

In this study, we quantitatively examine the correlation between automated metrics and the 68 
scoring of reports by radiologists. We propose a new automatic metric which computes the 69 
overlap in clinical entities and relations between a machine-generated report and a radiologist-70 
generated report, called RadGraph23 F1. We develop a methodology to predict a radiologist-71 
determined error score from a combination of automated metrics, called RadCliQ. We analyze 72 
failure modes of the metrics, namely the types of information the metrics do not capture, to 73 
understand when to choose particular metrics and how to interpret metric scores. Lastly, we 74 
measure the performance of state-of-the-art report generation models using the investigated 75 
metrics. The result is a quantitative understanding of radiology report generation metrics and 76 
clear guidance for metric selection to guide future research on automated chest X-ray 77 
interpretation. This work is also broadly applicable to medical imaging interpretation and 78 
narrative report generation in other domains. 79 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279318doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279318
http://creativecommons.org/licenses/by/4.0/


 

Page 3 

Results 80 

 81 
Fig. 1: a, Experimental design for selecting radiology reports and comparing metrics and radiologists in evaluating 82 
reports. b, Given a test report, selecting the report with the highest metric score from the training report corpus with 83 
respect to the test report and a particular metric. c, Conducting radiologist evaluation on the high metric score report 84 
relative to the test report, where radiologists identify the number of clinically significant and insignificant errors in the 85 
high metric score report across six error categories. d, Determining the alignment between metric scores and 86 
radiologist scores assigned to the same reports using the Kendall rank correlation coefficient. 87 
 88 

Quantitative investigation of alignment between automated metrics and radiologists. We 89 
study whether there is high alignment between automated metric and radiologist scores 90 
assigned to radiology reports. Given a test report from the MIMIC-CXR24–26 test set, we select a 91 
series of candidate reports from the MIMIC-CXR train set that score highly according to various 92 
metrics. We choose this set of reasonably accurate reports so we can study their quality with 93 
more precision. Next, we have radiologists score how well the candidates match the test report. 94 
We can then analyze the alignment between radiologist and metric scores and determine how 95 
correlated different metrics are with radiologists. We select a candidate report by finding the test 96 
report’s metric-oracle: the highest-scoring report from the MIMIC-CXR training set with respect 97 
to a particular metric. Since the metric-oracle reports are the best possible retrievals according 98 
to a metric, they represent the theoretical best performance achievable by methods that retrieve 99 
reports from the training corpus to describe input X-ray images. Although the metric-oracle 100 
approach is not a viable clinical method for reporting, it is useful as part of a framework to study 101 
report metrics. 102 

Metric-oracle reports. We constructed metric-oracle reports for four metrics. These include 103 
BLEU27, BERTScore28, CheXbert vector similarity (s_emb)13 and a novel metric RadGraph23 F1. 104 
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BLUE and BERTScore are general natural language metrics for measuring the similarity 105 
between machine-generated and human-generated texts. BLEU computes n-gram overlap and 106 
is representative for the family of text overlap based natural language generation metrics such 107 
as CIDEr29, METEOR30 and ROUGE31. BERTScore has been proposed for capturing contextual 108 
similarity beyond exact textual matches. CheXbert vector similarity and RadGraph F1 are 109 
metrics designed to measure the correctness of clinical information. CheXbert vector similarity 110 
computes the cosine similarity between the indicator vectors of 14 pathologies that the 111 
CheXbert automatic labeler extracts from machine-generated and human-generated radiology 112 
reports. It is designed to evaluate radiology specific information but its evaluation is limited to 14 113 
pathologies. To address this limitation, we propose the use of the knowledge graph of the report 114 
to represent arbitrarily diverse radiology specific information. We design a novel metric, 115 
RadGraph F1, that computes the overlap in clinical entities and relations that RadGraph extracts 116 
from machine- and human-generated reports. The four metrics are detailed in the Methods 117 
section. 118 

For every test report, we generated the matching metric-oracle report by selecting the highest 119 
scoring report, according to each of the four investigated metrics, from the training set. We 120 
specifically used the impression section of the report. As an example of our setup, for the test 121 
report of “No acute cardiopulmonary process. Bilateral low lung volumes with crowding of 122 
bronchovascular markings and bibasilar atelectasis,” the metric-oracle retrieved with respect to 123 
BERTScore was: “No acute cardiopulmonary process. Low lung volumes and bibasilar 124 
atelectasis,” while the metric-oracle retrieved with respect to RadGraph F1 was: “No acute 125 
cardiopulmonary process. Bilateral low lung volumes,” as shown in Fig. 2(a). 126 

Radiologist evaluation study design. In our experimental study design, six board certified 127 
radiologists scored the number of errors that various metric-oracle reports make compared to 128 
the test report. Radiologists categorized errors as significant or insignificant. Radiologists 129 
subtyped every error into the following six categories: 1) false prediction of finding (i.e., false 130 
positive) 2) omission of finding (i.e., false negative) 3) incorrect location/position of finding 4) 131 
incorrect severity of finding 5) mention of comparison that is not present in the reference 132 
impression, and 6) omission of comparison describing a change from a previous study. We 133 
sampled 50 studies randomly from the MIMIC-CXR test set. The ordering of metrics that the 134 
metric-oracle reports correspond to was shuffled for every study. The error types and error 135 
categories are summarized in Fig. 2(b). The instructions and interface presented to radiologists 136 
can be seen in Supplementary Fig. 1. 137 
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 138 
Fig. 2: a, Example study of a test report and four metric-oracle reports corresponding to BLEU, BERTScore, 139 
CheXbert vector similarity and RadGraph F1 that radiologists evaluate to identify errors. b, Two error types and six 140 
error categories that radiologists identify for each pair of test report and metric-oracle report. 141 

 142 

Alignment between automated metrics and radiologists: We first quantify metric-radiologist 143 
alignment using the Kendall rank correlation coefficient (tau-b) between metric scores and 144 
number of radiologist-reported errors in the reports. We determine the metric-radiologist 145 
alignment from metric-oracle generations from 50 chosen studies on both a total error and 146 
significant error level. We find that BERTScore and RadGraph F1 are the metrics with the two 147 
highest alignments with radiologists. Specifically, BERTScore has a tau value of 0.500 [95% CI 148 
0.497 0.503] for total number of errors and 0.496 [95% CI 0.493 0.498] for significant errors. 149 
RadGraph has a tau value of 0.463 [95% CI 0.460 0.465] for total number of errors and 0.459 150 
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[95% CI 0.456 0.461] for significant errors. We find that BLEU is the third best metric under this 151 
evaluation with a 0.459 [95% CI 0.456 0.462] tau value for total number of errors and 0.445 152 
[95% CI 0.442 0.448] for significant errors. Lastly, CheXbert vector similarity has the worst 153 
alignment with a tau value of 0.457 [95% CI 0.454 0.459] for total errors and 0.418 [95% CI 154 
0.416 0.421] for significant errors. From these results, we see that BERTScore, RadGraph, and 155 
BLEU are the metrics with closest alignment to radiologists. CheXbert has alignment with 156 
radiologists but is less concordant than the previously mentioned metrics. The metric-radiologist 157 
alignment graphs are shown in Fig. 3. 158 

 159 
Fig. 3: Scatter plots and correlations between metric scores and radiologist scores of four metric-oracle generations 160 
from 50 studies, where radiologist scores are represented by the total number of errors (top row) and number of 161 
clinically significant errors (bottom row) identified by the radiologists. 162 

 163 

Failure modes of metrics. In addition to evaluating the clinical relevance of metrics in terms of 164 
the total number of clinically significant and insignificant errors, we also examine the particular 165 
error categories of metric-oracles to develop a granular understanding of the failure modes of 166 
different metrics, as shown in Fig. 4. We use the following six error categories as described 167 
earlier: 168 

1. False prediction of finding 169 
2. Omission of finding 170 
3. Incorrect location/position of finding 171 
4. Incorrect severity of finding 172 
5. Mention of comparison that is not present in the reference impression 173 
6. Omission of comparison describing a change from a previous study 174 

and analyze the total number of errors and the number of clinically significant errors within each 175 
error category. 176 

BLEU exhibits a prominent failure mode in identifying false predictions of finding in reports. 177 
Metric-oracle reports with respect to BLEU produce more false predictions of finding than 178 
BERTScore and RadGraph in terms of both the total number of errors (0.807 average number 179 
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of errors per report versus 0.477 and 0.427 for BERTScore and RadGraph) and the number of 180 
clinically significant errors (0.607 average number of errors per report versus 0.363 and 0.300 181 
for BERTScore and RadGraph). BLEU exhibits a less prominent failure mode in identifying 182 
incorrect locations/positions of finding compared with CheXbert vector similarity. Metric-oracle 183 
reports with respect to BLEU have fewer incorrect locations/positions of finding than CheXbert 184 
in terms of both the total number of errors (0.113 average number of errors per report versus 185 
0.227 for CheXbert) and the number of clinically significant errors (0.087 average number of 186 
errors per report versus 0.193 for CheXbert). These differences are statistically significant after 187 
accounting for multiple-hypothesis testing. Metric-oracle reports of the four metrics exhibit 188 
similar behavior in the other error categories, as the differences in number of errors are not 189 
statistically significant. The raw error counts and the statistics testing results for two-sample t 190 
tests and the Benjamini-Hochberg Procedure for accounting for multiple-hypothesis testing are 191 
shown in Supplementary Table 2 and Supplementary Table 3. 192 

 193 
Fig. 4: Distribution of errors across six error categories for metric-oracle reports corresponding to BERTScore, BLEU, 194 
CheXbert vector similarity and RadGraph F1, in terms of the number of clinically significant errors (left) and the total 195 
number of errors (right). 196 

 197 

Measuring progress of prior methods in report generation. Using the four individual metrics, 198 
we evaluated the following state-of-the-art radiology report generation methods: M2 Trans15, 199 
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R2Gen16, CXR-RePaiR17, WCL18, and CvT2DistilGPT219. As a baseline, we also implemented a 200 
random radiology report generation model, which retrieves a random report from the training set 201 
for each test report. We measured the performances of metric-oracle selection models and prior 202 
models relative to the baseline in terms of percentage change in metric scores, as shown in Fig. 203 
5(a)-(d). The performances of prior methods with respect to all metrics are statistically 204 
significantly lower than those of metric-oracle methods. With respect to BLEU, the metric-oracle 205 
selection model achieves an average score of 0.566 [95% CI 0.566 0.566], while the best prior 206 
model, M2 Trans, achieves 0.087 [95% CI 0.087 0.087]. With respect to RadGraph F1, the metric-207 
oracle selection model achieves an average score of 0.677 [95% CI 0.677 0.678], while the best 208 
prior model, M2 Trans, achieves 0.110 [95% CI 0.110 0.111]. We also note that BLEU and 209 
RadGraph correctly rank all prior models above the random retrieval baseline, while BERTScore 210 
and CheXbert vector similarity do not. This suggests that BLEU and RadGraph work sensibly 211 
with generations of real-world report generation models that only have access to input X-ray 212 
images, while the other two metrics do not. 213 
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 214 
Fig. 5: a-d, The percentage change in metric scores of the corresponding metric-oracle model and state-of-the-art 215 
report generation models relative to the baseline random model, for BLEU, BERTScore, CheXbert vector similarity 216 
and RadGraph F1. A higher value indicates better performance as evaluated by the metric. The raw results can be 217 
found in Supplementary Table 4. e, The percentage decrease in the predicted total number of errors relative to the 218 
baseline random model according to the composite metric RadCliQ. A higher value indicates better performance as 219 
evaluated by the metric. The raw results can be found in Supplementary Table 5. 220 
 221 

Composite metric “RadCliQ” (Radiology Report Clinical Quality). To improve upon 222 
individual metrics, we propose a novel composite metric RadCliQ (Radiology Report Clinical 223 
Quality). Given that BLEU and RadGraph F1 correctly assigned higher scores to generations of 224 
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prior state-of-the-art models than randomly retrieved reports, we combined BLEU and 225 
RadGraph F1 to build a composite metric. We trained a linear regression model to predict the 226 
total number of errors that radiologists would assign to a report. The model input consisted of 227 
the two metric scores computed for each report, with the scores corresponding to each metric 228 
independently normalized to have a mean of 0 and standard deviation of 1. Prediction of the 229 
trained model therefore combines evaluations of BLEU and RadGraph F1. The model was 230 
trained on the same set of 200 metric-oracle reports which were evaluated by radiologists, 231 
containing 50 metric-oracle reports corresponding to each of the four investigated metrics. The 232 
regression produced an R2 correlation coefficient of 0.423. The coefficients were -0.559 for 233 
BLEU and -0.526 for RadGraph F1. The intercept value for the regression model was 1.642, 234 
indicating the number of errors for a report with an average score across metrics. For each 235 
individual metric, a higher metric score indicates better report generation. Since the linear 236 
regression model was trained to predict the total number of errors in a report, the two metrics 237 
both had a negative correlation with the predicted number of errors. 238 

As an additional statistical test, the composite metric RadCliQ had a Kendall-tau b correlation 239 
coefficient of 0.522 [95% CI 0.520 0.525] (p-value < 0.01) for the total number of errors. This 240 
indicates a statistically significant correlation between the predicted number of errors and the 241 
true number of errors in the generated reports, suggesting that the composite metric aligns with 242 
radiologists. Furthermore, RadCliQ has a stronger alignment with radiologists than any 243 
individual metric. 244 

Using RadCliQ, we measured the performance of prior models relative to the baseline in terms 245 
of the percentage decrease in the predicted total number of errors, as shown in Fig. 5(e), where 246 
a more positive value translates to better performance. M2 Trans yields an 5.5% improvement 247 
over the baseline and has the best performance; CXR-RePaiR yields an 2.6% improvement and 248 
has the second best performance; CvT2DistilGPT2 yields an 2.3% improvement and has the 249 
third best performance. Here, we normalize the individual metric scores using training time 250 
statistics before computing RadCliQ.  251 
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Discussion 252 

The purpose of this study was to investigate how to meaningfully measure progress in radiology 253 
report generation. We studied popular existing automated metrics and also designed novel 254 
metrics, the RadGraph graph overlap metric and the composite metric RadCliQ, for report 255 
evaluation. We quantitatively determined the alignment of metrics with clinical radiologists and 256 
the reliability of metrics against specific failure modes, clarifying whether metrics meaningfully 257 
evaluate radiology reports and therefore can guide future research in report generation. We also 258 
showed that selecting the best-match report from a large corpus performs better on most 259 
metrics that the current state-of-the-art radiology report generation methods. Although the best-260 
match method is unlikely to be clinically viable, it served as a useful tool to derive the RadCliQ 261 
composite metric developed in this study and could serve as a useful benchmark against which 262 
to evaluate report generation algorithms developed in the future. 263 

The design of automated evaluation metrics that are aligned with manual expert evaluation has 264 
been a challenge for research in radiology report generation as well as medical report 265 
generation as a whole. Prior works have used metrics designed to improve upon n-gram 266 
matching27–31 or include clinical awareness12,13,15,23,17, such as with BLEU27 and CheXpert 267 
labels12. However, these evaluations nevertheless poorly approximate radiologists’ evaluation of 268 
reports. The expressivity of prior metrics is often restricted to a curated set of medical 269 
conditions. Therefore, the quantitative investigation of metric-radiologist alignment conducted in 270 
this study is necessary for understanding whether these metrics meaningfully evaluate reports. 271 
Prior works have investigated the alignment between metrics and human judgment22,32. 272 
However, to the best of our knowledge, these works pose one of two limitations for radiology 273 
report evaluation: (1) they study metric alignment with humans for general image captioning, 274 
which does not involve radiology specific terminology, a high prevalence of negation, or expert 275 
human evaluators, and (2) they do not create a leveled comparison between metrics and 276 
radiologists, where metrics and radiologists assign scores to reports in identical experimental 277 
settings, or a granular understanding of metric behavior beyond the overall metric score. Our 278 
work builds a fair comparison between general natural language and clinically aware metrics 279 
and radiologists by providing them with the same set of information that is the reports and goes 280 
beyond metric scores to examine six granular failure modes of each metric. Additionally, our 281 
work proposes a novel composite metric, RadCliQ, that aligns more strongly than any individual 282 
metric. We also show that current radiology report generation algorithms exhibit relatively low 283 
performance by all of these metrics. 284 

To study metric-radiologist alignment, we designed metric-oracles: the reports selected from a 285 
large corpus with the highest metric score with respect to test reports. We had metrics and 286 
radiologists assign scores to the metric-oracles based on how well the metric-oracles match 287 
their respective test reports, and computed the alignment between metric and radiologist scores 288 
on the same reports. Pairing metric-oracles with test reports produces a narrower distribution of 289 
scores than using random reports. However, metric oracles are necessary for obtaining reliable 290 
scores from the radiologist experiment because comparisons will be sensitive to small 291 
differences in report quality. If a random report, rather than a high-scoring report, was paired 292 
with the test report, the two reports could diverge to the extent that they were difficult to 293 
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compare directly. In contrast, metric oracles are comparable with test reports and therefore 294 
allow a meaningful evaluation of errors. 295 

To generate metric-oracles, any report generation model is theoretically feasible. There are 296 
three main categories: the first generates free text based on semantics extracted from input 297 
chest X-ray images20,33,34; the second retrieves existing text that best matches input images 298 
from a report corpus17,35; and the third selects curated templates corresponding to a predefined 299 
set of abnormalities14,36. We chose to use retrieval-based models to generate metric-oracles 300 
because retrieval from a training report corpus produces a controlled output space, instead of 301 
an unpredictable one produced by models that generate free text. Retrieval-based models also 302 
improve upon templating-based models in terms of flexibility and generalizability because the 303 
report corpus better captures real-world occurring conditions, combinations of conditions, and 304 
uncertainty. Furthermore, retrieval-based metric-oracle models outperformed existing report 305 
generation methods by a large margin. 306 

By investigating the different categories of errors that radiologists identified in metric-oracle 307 
reports, we also uncovered specific metric failure modes which valuably inform the choice of 308 
metrics and interpretation of metric scores for evaluating generated reports. We find that BLEU 309 
performs worse than BERTScore and RadGraph in evaluating false prediction of finding. Yet, 310 
BLEU performs better than CheXbert vector similarity in evaluating incorrect position/location of 311 
finding. Therefore, BERTScore and RadGraph, which offer the strongest radiologist-alignment, 312 
also have better overall reliability against failure modes. 313 

Using the individual metrics and RadCliQ, we also measured the progress of prior state-of-the-314 
art models. We identify M2 Trans as the best model with respect to all individual metrics and 315 
RadCliQ except CheXbert. We also find a statistically significant performance gap between prior 316 
models and metric-oracle models, which represent the theoretical performance ceiling of 317 
retrieval-based methods on MIMIC-CXR. This gap suggests that prior models in report 318 
generation still have significant room for improvement in creating high-quality reports that are 319 
useful to radiologists. 320 

In addition, we observed that BLEU and RadGraph correctly rank prior models above random 321 
retrieval while BERTScore and CheXbert do not, even though BERTScore has the strongest 322 
alignment with radiologists in evaluating metric-oracle reports. This discrepancy may be 323 
attributed to two factors. First, there is a shift in report quality from metric-oracles to real 324 
generations, and metrics may exhibit different behaviors with reports of lower quality. Second, 325 
the real-world models generated reports based on only the X-ray images. The images may 326 
contain different semantics than that described in the corresponding test reports. For expressing 327 
the same semantics, the models also have numerous ways to formulate a report. These 328 
variations can explain BERTScore’s suboptimal performance in evaluating prior model 329 
generations. Overall, RadGraph is the best individual metric to use for its strong alignment with 330 
radiologists, reliability across failure modes and meaningful empirical performance with real 331 
generations. 332 

This study has several important limitations. A main limitation is the inter-observer variability in 333 
radiologist evaluation. Although the evaluation scheme–the separation of clinically significant 334 
and insignificant errors, and the six error categories–was designed to be objective and 335 
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consistent across radiologist evaluation, the same report often received varying scores between 336 
radiologists, a common occurrence in experiments that employ subjective ratings from 337 
clinicians. This suggests a potential limitation of the evaluation scheme used, but may also 338 
present an intrinsic problem with objective evaluation of radiology reports. Another limitation is 339 
the coverage of metrics. Although a variety of general and clinical natural language metrics are 340 
investigated, there exist other metrics in these two categories that may have different behaviors 341 
than the four investigated metrics. For instance, other text overlap based metrics are commonly 342 
used in natural language generation beyond BLEU, such as CIDEr29, METEOR30 and ROUGE31, 343 
which may have better or worse radiologist-alignment and reliability than BLEU in report 344 
generation. 345 

In this study, we determined that the novel metrics RadGraph F1 and RadCliQ meaningfully 346 
measure progress in radiology report generation and hence can guide future report generation 347 
models in becoming clinically indistinguishable from radiologists. We have open-sourced the 348 
code for computing the individual metrics and RadCliQ on reports in the hope of facilitating 349 
future research in radiology report generation.  350 
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Online Methods 351 

Datasets. We used the MIMIC-CXR dataset to conduct our study. The MIMIC-CXR dataset24–26 is a de-352 
identified and publicly available dataset containing chest X-ray images and semi-structured radiology 353 
reports from the Beth Israel Deaconess Medical Center Emergency Department. There are 227,835 354 
studies with 177,110 images conducted on 65,379 patients. We used the impression section of the 355 
reports. We used the recommended train/validation/test split. We pooled the train and validation splits as 356 
the training report corpus from which metric-oracles are retrieved and used the test split as the set of 357 
ground-truth reports. The training report corpus contains 185,538 studies and 371,951 images; the test 358 
set contains 2,192 studies and 5,159 images. We preprocessed the reports by filtering nan reports and 359 
extracting the impression section of reports, which contains key observations and conclusions drawn by 360 
radiologists. Throughout the study, we refer to the impression section when discussing reports. 361 

Advantages of metric-oracles: Using metric-oracles as the candidate reports as opposed to using other 362 
strategies such as randomly sampling reports offers two primary advantages: (1) metric-oracles are 363 
sufficiently accurate for radiologists to pinpoint specific errors and not be bogged down by candidate 364 
reports that aren’t remotely similar to the test reports; (2) metric-oracles allow us to analyze where certain 365 
metrics fail since the reports are the hypothetical top retrievals. 366 

Radiologist scoring criteria: In this work, we develop a scoring system for radiologists to evaluate the 367 
quality of candidate reports. The goals of our scoring system are to be objective, limit radiologist bias, and 368 
change linearly with report quality. To this end, scores are determined by counting the number of errors 369 
that candidate reports make where types of errors are broken down into six different categories. By 370 
explicitly defining each error category, we clarify what should be classified as an error. Following ACR’s 371 
RADPEER37 program for peer review, we differentiate between clinically significant and clinically 372 
insignificant errors. The detailed scoring criteria allows us to analyze report quality based on the accuracy 373 
of its findings and the clinical impact of its mistakes. 374 

Textual based and natural language generation performance metrics. In this study we make use of 375 
two natural language generation metrics: BLEU and BERTScore. The BLEU scores were computed as 376 
BLEU-2 bigrams with the fast_bleu library for parallel scoring. BERTScore uses the contextual 377 
embeddings from a BERT model to compute similarity of two text sequences. We used the bert_score 378 
library directly and used the baseline-scaled, “distilroberta-base” version of the model. 379 

Clinically aware performance metrics. In addition to traditional natural language generation metrics, we 380 
also investigated metrics that were designed to capture clinical information in radiology reports. Since 381 
radiology reports are a special form of structured text that communicates diagnostics information, their 382 
quality depends highly on the correctness of clinical objects and descriptions, which is not a focus of 383 
traditional natural language metrics. To address this gap, the CheXbert labeler (which is improved from 384 
the CheXpert labeler)12,13 and RadGraph23, were developed to parse radiology reports. We investigated 385 
whether they could be used as clinically aware metrics. We defined a metric as the similarity between 386 
CheXbert labeled vectors of the generated report and test report, which contain 14 labels corresponding 387 
to 13 common medical conditions and the no-finding observation. We used the implementation here: 388 
https://github.com/stanfordmlgroup/CheXbert. We proposed a novel metric as the overlap in parsed 389 
RadGraph graph structures: the RadGraph entity and relation F1 score. RadGraph is an approach for 390 
parsing radiology reports into knowledge graphs containing entities (nodes) and relations (edges), which 391 
can capture radiology concept dependencies and semantic meaning. We used the model checkpoint as 392 
provided here: https://physionet.org/content/radgraph/1.0.0/26 and inference code as provided here: 393 
https://github.com/dwadden/dygiepp38 to generate RadGraph entities and relations on generated and test 394 
reports. 395 
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Retrieval-based metric-oracle models. To generate metric-oracle reports, the most immediate attempt 396 
is to adopt methods akin to those for multi-label classification tasks. Namely, we can curate a set of 397 
medical conditions and obtain radiologist annotations for each condition over a training set of reports. 398 
Then, we can train a classifier that outputs the likelihood of having each condition given an X-ray image, 399 
and proceed to select the corresponding report templates for conditions with high likelihood14. Some more 400 
nuanced approaches paraphrase the curated templates after selection36. The attempt at templating for 401 
report generation is well-grounded in abundant experience in multi-label image classification as well as its 402 
highly controlled output space. However, its flaw is also prominent, in that it is restricted to a manually 403 
curated predefined set of medical conditions and report templates. It does not generalize to unseen or 404 
complex conditions, express combinations of conditions, or capture uncertainty in diagnoses. The 405 
CheXbert labeler, for instance, can classify 13 conditions and the no-finding observation13. This set is 406 
representative of common medical observations but not comprehensive. Therefore, while we may define 407 
a larger set of conditions with the help of radiologists, manual curation and templating are nevertheless 408 
too inflexible for optimizing with respect to automated metrics. To generate reports of higher quality, we 409 
consider matching reports more closely onto test reports. We can do so by either generating new text 410 
from scratch or retrieving free text from an existing corpus of reports written by radiologists, given an X-411 
ray image33,35. Out of the two approaches, retrieval-based methods have the advantage of a controlled 412 
output space that is the set of training report corpus, instead of an unpredictable output space produced 413 
by generation from scratch. Retrieval-based methods also improve upon templating, because the report 414 
corpus may capture the full set of real-world occurring conditions, combinations of conditions and 415 
uncertainty, if the training report corpus is representative of future reports to be written. Therefore, in this 416 
study, we use retrieval-based methods to generate metric-oracle reports. 417 

Statistical analysis:  418 

Metric-radiologist alignment. The alignment of metrics with radiologists’ scoring was determined using the 419 
Kendall tau-b correlation coefficient. We construct bootstrap confidence intervals by creating 1,000 420 
resamples with replacement where each resample size is the number of studies (50). In this calculation, 421 
the number of errors is the mean number across all raters. Based on the presence/lack of overlap of the 422 
95% bootstrap confidence intervals, we assert whether differences in Kendall tau values are statistically 423 
significant. 424 

Metric failure modes. We conduct one-sided two-sample t tests on pairs of metrics’ error counts for total 425 
errors and clinically significant errors within each of the six error categories. We assume equal population 426 
variances for the t tests. We take the error count of one radiologist and one study as one data point. 427 
Because there are six radiologists and 50 studies, we have 300 data points per metric for either total 428 
errors or clinically significant errors and for one error category. With 4 metrics, there are 12 unique pairs 429 
of two different metrics for one-sided two-sample t tests with (300 + 300 - 2 = 598) degrees of freedom. 430 
We use the Benjamini-Hochberg Procedure with a False Discovery Rate (FDR) of 1% to account for 431 
multiple-hypothesis testing on 12 tests within an error type and an error category, and determine the 432 
significance of a metric having a more/less prominent failure mode compared with other metrics. 433 

Prior models evaluation. To evaluate performance of metric-oracle models and prior state-of-the-art 434 
models, we construct bootstrap confidence intervals by taking 5,000 resamples with replacement of 435 
metric scores assigned to generated reports. Based on the presence/lack of overlap of the 95% bootstrap 436 
confidence intervals, we assert whether a model’s performance is statistically significantly better than 437 
another’s. 438 

Composite metric RadCliQ. The linear regression model used to predict the total number of errors was 439 
evaluated using the Kendall-tau b statistical test. This test produces a tau-value correlation coefficient and 440 
a corresponding p-value which was used to determine the significance of the result (p-value < 0.01). 441 
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The analyses were performed using statsmodels, scikit-learn and SciPy packages in Python. 442 

RadGraph metric-oracle model entities and relations match. The RadGraph F1 metric-oracle model 443 
retrieves reports with the highest F1 score match in terms of entities and relations. Specifically, we treat 444 
two entities as matched, if their tokens (words in the original report) and labels (entity type) match. We 445 
treat two relations as matched, if their start and end entities match and the relation type matches. These 446 
criteria are consistent with what the RadGraph authors have done. For combining entities and relations, 447 
we take the average of F1 score of entity match and relation match respectively. We generated 448 
RadGraph entities and relations for each report in the training and test corpora. We implemented the 449 
metric-oracle model by finding, for each report in the test set, which report in the training set is the best 450 
match based on the average of entity and relation F1 scores. For reports without nonzero F1 score 451 
matches, we used the most frequent report in the training set, “No acute cardiopulmonary process,” as 452 
the metric-oracle report in the radiologist experiment. 453 

Implementation of prior report generation methods. We used the following implementations of prior 454 
methods in radiology report generation: M2 Trans: https://github.com/ysmiura/ifcc15,38. R2Gen: 455 
https://github.com/cuhksz-nlp/R2Gen16. CXR-RePaiR: https://github.com/rajpurkarlab/CXR-RePaiR17. 456 
WCL: https://github.com/zzxslp/WCL18. CvT2DistilGPT2: https://github.com/aehrc/cvt2distilgpt219. For 457 
each study ID, if the model generated multiple reports corresponding to different X-ray images for the 458 
same study, we used the generated report corresponding to the anterior-posterior (AP) or posterior-459 
anterior (PA) view if any was present. If both were present, we randomly chose a report out of the two. If 460 
neither was present, we randomly chose a report out of the available reports corresponding to other 461 
views. Among variations of CXR-RePaiR, we chose CXR-RePaiR-2 to be consistent with their original 462 
study17. 463 

 464 

Data Availability 465 

The data used in the study is available with credentialed access at: 466 
https://physionet.org/content/mimic-cxr-jpg/2.0.0/. Credentialed access can be obtained via an 467 
application to PhysioNet. 468 

 469 

Code Availability 470 

The code for computing the composite metric RadCliQ and individual metrics is made publicly 471 
available at: https://drive.google.com/drive/folders/1Fe81n9IMZpc4y99K-472 
7c5aGxPNdiij7NS?usp=sharing.  473 
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 625 
Supplementary Fig. 1(b). 626 
Supplementary Fig. 1: Radiologist survey interface and example question. a, Radiologist evaluation survey 627 
instructions and interface on Qualtrics. b, Interface for evaluating a pair of a test report (denoted as “Reference 628 
Impression”) and a metric-oracle report (denoted as “Candidate 1”). The survey asks radiologists to input the number 629 
of clinically significant and insignificant errors for six error categories. 630 
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631 
Supplementary Fig. 2: Dotplot of the radiologist total error scores on the 50 studies and corresponding intraclass 632 
correlation. Candidate scores are split up by metric-oracle method. Each dot represents a single radiologist’s score 633 
for a candidate report. 634 
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 635 
Supplementary Table 1: Per-radiologist Kendall rank correlation coefficient (tau-b) values quantifying metric-636 
radiologist alignment. 637 

 Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4 Radiologist 5 Radiologist 6 

BERTScore 
total errors 

0.439 [95% CI 
0.436 0.442] 

0.461 [95% CI 
0.458 0.464] 

0.482 [95% CI 
0.480 0.485] 

0.446 [95% CI 
0.443 0.449] 

0.469 [95% CI 
0.466 0.471] 

0.476 [95% CI 
0.473 0.479] 

BERTScore 
sig. errors 

0.370 [95% CI 
0.367 0.373] 

0.346 [95% CI 
0.343 0.348] 

0.495 [95% CI 
0.492 0.497] 

0.468 [95% CI 
0.465 0.471] 

0.414 [95% CI 
0.411 0.417] 

0.458 [95% CI 
0.455 0.460] 

RadGraph total 
errors 

0.423 [95% CI 
0.420 0.426] 

0.443 [95% CI 
0.441 0.446] 

0.476 [95% CI 
0.474 0.479] 

0.440 [95% CI 
0.438 0.443] 

0.462 [95% CI 
0.459 0.464] 

0.413 [95% CI 
0.410 0.415] 

RadGraph sig. 
errors 

0.406 [95% CI 
0.403 0.408] 

0.319 [95% CI 
0.316 0.322] 

0.479 [95% CI 
0.477 0.481] 

0.448 [95% CI 
0.445 0.450] 

0.432 [95% CI 
0.429 0.434] 

0.375 [95% CI 
0.373 0.378] 

BLEU total 
errors 

0.409 [95% CI 
0.406 0.412] 

0.425 [95% CI 
0.423 0.428] 

0.461 [95% CI 
0.458 0.464] 

0.402 [95% CI 
0.399 0.405] 

0.427 [95% CI 
0.424 0.430] 

0.435 [95% CI 
0.432 0.438] 

BLEU sig. 
errors 

0.352 [95% CI 
0.349 0.355] 

0.271 [95% CI 
0.268 0.273] 

0.447 [95% CI 
0.444 0.450] 

0.433 [95% CI 
0.430 0.436] 

0.375 [95% CI 
0.372 0.378] 

0.409 [95% CI 
0.407 0.412] 

CheXbert total 
errors 

0.407 [95% CI 
0.404 0.410] 

0.363 [95% CI 
0.360 0.366] 

0.459 [95% CI 
0.457 0.462] 

0.446 [95% CI 
0.443 0.448] 

0.424 [95% CI 
0.421 0.427] 

0.430 [95% CI 
0.427 0.433] 

CheXbert sig. 
errors 

0.367 [95% CI 
0.364 0.370] 

0.231 [95% CI 
0.228 0.234] 

0.438 [95% CI 
0.435 0.440] 

0.376 [95% CI 
0.373 0.379] 

0.374 [95% CI 
0.371 0.377] 

0.376 [95% CI 
0.373 0.379] 

 638 

Supplementary Table 2(a): Radiologist evaluation of metric-oracles in terms of total number of errors in six error 639 
categories, averaged over 6 radiologists and 50 studies. 640 

 Error 1 Error 2 Error 3 Error 4 Error 5 Error 6 Total 

BLEU 0.807 0.550 0.113 0.133 0.140 0.097 1.840 

CheXbert 0.597 0.443 0.227 0.197 0.150 0.093 1.707 

BERTScore 0.477 0.523 0.183 0.153 0.077 0.113 1.527 

RadGraph 0.427 0.573 0.147 0.160 0.077 0.110 1.493 

 641 
Supplementary Table 2(b): Radiologist evaluation of metric-oracles in terms of number of clinically significant errors 642 
in six error categories, averaged over 6 radiologists and 50 studies. 643 

 Error 1 Error 2 Error 3 Error 4 Error 5 Error 6 Total 

BLEU 0.607 0.353 0.087 0.093 0.107 0.077 1.323 

CheXbert 0.430 0.263 0.193 0.176 0.107 0.077 1.247 

BERTScore 0.363 0.310 0.147 0.117 0.053 0.083 1.073 

RadGraph 0.300 0.343 0.133 0.143 0.053 0.070 1.043 

 644 
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Supplementary Table 3(a): Significance of BLEU having a more prominent failure mode than BERTScore and 645 
RadGraph F1 in terms of total errors in false prediction of finding, as determined by the Benjamini-Hochberg 646 
Procedure with False Discovery Rate (FDR) of 1%.  647 

 One-sided two-sample t test 
p-value 

Benjamini-Hochberg 
Procedure critical value with 
False Discovery Rate (FDR) 
of 1% 

Whether result is significant 

BLEU > CheXbert 3.79e-3 2.50e-3 N 

BLEU > BERTScore 9.50e-6 1.67e-3 Y 

BLEU > RadGraph 1.07e-7 8.33e-4 Y 

CheXbert > BLEU 9.96e-1 8.33e-3 N 

CheXbert > BERTScore 7.65e-2 4.17e-3 N 

CheXbert > RadGraph 6.39e-3 3.33e-3 N 

BERTScore > BLEU 1.00e0 9.17e-3 N 

BERTScore > CheXbert 9.51e-1 6.67e-3 N 

BERTScore > RadGraph 2.24e-1 5.00e-3 N 

RadGraph > BLEU 1.00e0 1.00e-2 N 

RadGraph > CheXbert 9.94e-1 7.50e-3 N 

RadGraph > BERTScore 7.76e-1 5.83e-3 N 

 648 

Supplementary Table 3(b): Significance of BLEU having a more prominent failure mode than BERTScore and 649 
RadGraph F1 in terms of clinically significant errors in false prediction of finding, as determined by the Benjamini-650 
Hochberg Procedure with False Discovery Rate (FDR) of 1%. 651 

 One-sided two-sample t test 
p-value 

Benjamini-Hochberg 
Procedure critical value with 
False Discovery Rate (FDR) 
of 1% 

Whether result is significant 

BLEU > CheXbert 3.68e-3 2.50e-3 N 

BLEU > BERTScore 1.48e-4 1.67e-3 Y 

BLEU > RadGraph 6.44e-7 8.33e-4 Y 

CheXbert > BLEU 9.96e-1 8.33e-3 N 

CheXbert > BERTScore 1.34e-1 5.00e-3 N 

CheXbert > RadGraph 9.77e-3 3.33e-3 N 

BERTScore > BLEU 1.00e0 9.17e-3 N 

BERTScore > CheXbert 8.66e-1 5.83e-3 N 

BERTScore > RadGraph 1.33e-1 4.17e-3 N 
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RadGraph > BLEU 1.00e0 1.00e-2 N 

RadGraph > CheXbert 9.90e-1 7.50e-3 N 

RadGraph > BERTScore 8.67e-1 6.67e-3 N 

 652 
Supplementary Table 3(c): Significance of BLEU having a less prominent failure mode than CheXbert vector 653 
similarity in terms of total errors in incorrect location/position of finding, as determined by the Benjamini-Hochberg 654 
Procedure with False Discovery Rate (FDR) of 1%. 655 

 One-sided two-sample t test 
p-value 

Benjamini-Hochberg 
Procedure critical value with 
False Discovery Rate (FDR) 
of 1% 

Whether result is significant 

BLEU <  CheXbert 4.83e-4 8.33e-4 Y 

BLEU < BERTScore 1.60e-2 2.50e-3 N 

BLEU < RadGraph 1.51e-1 5.00e-3 N 

CheXbert < BLEU 1.00e0 1.00e-2 N 

CheXbert < BERTScore 8.90e-1 7.50e-3 N 

CheXbert < RadGraph 9.89e-1 9.17e-3 N 

BERTScore < BLEU 9.84e-1 8.33e-3 N 

BERTScore < CheXbert 1.10e-1 3.33e-3 N 

BERTScore < RadGraph 8.63e-1 6.67e-3 N 

RadGraph < BLEU 8.49e-1 5.83e-3 N 

RadGraph < CheXbert 1.14e-2 1.67e-3 N 

RadGraph < BERTScore 1.37e-1 4.17e-3 N 

 656 

Supplementary Table 3(d): Significance of BLEU having a less prominent failure mode than CheXbert vector 657 
similarity in terms of clinically significant errors in incorrect location/position of finding, as determined by the 658 
Benjamini-Hochberg Procedure with False Discovery Rate (FDR) of 1%. 659 

 One-sided two-sample t test 
p-value 

Benjamini-Hochberg 
Procedure critical value with 
False Discovery Rate (FDR) 
of 1% 

Whether result is significant 

BLEU <  CheXbert 2.74e-4 8.33e-4 Y 

BLEU < BERTScore 2.07e-2 1.67e-3 N 

BLEU < RadGraph 5.75e-2 3.33e-3 N 

CheXbert < BLEU 1.00e0 1.00e-2 N 

CheXbert < BERTScore 9.25e-1 6.67e-3 N 
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CheXbert < RadGraph 9.67e-1 8.33e-3 N 

BERTScore < BLEU 9.79e-1 9.17e-3 N 

BERTScore < CheXbert 7.53e-2 4.17e-3 N 

BERTScore < RadGraph 6.65e-1 5.83e-3 N 

RadGraph < BLEU 9.42e-1 7.50e-3 N 

RadGraph < CheXbert 3.32e-2 2.50e-3 N 

RadGraph < BERTScore 3.35e-1 5.00e-3 N 

 660 

Supplementary Table 4: Average metric scores of metric-oracle models and prior models, as the average, lower-661 
bound, and upper-bound of the 95% confidence interval. 662 

 Avg BLEU Avg BERTScore Avg CheXbert Avg RadGraph 

Metric-oracle model 0.566 [95% CI 0.566 0.566] 0.729 [95% CI 0.729 0.729] 0.956 [95% CI 0.956 0.956] 0.677 [95% CI 0.677 0.678] 

Random 0.048 [95% CI 0.048 0.049] 0.214 [95% CI 0.214 0.214] 0.280 [95% CI 0.280 0.280] 0.049 [95% CI 0.049 0.049] 

M2 Trans 0.087 [95% CI 0.087 0.087] 0.227 [95% CI 0.227 0.227] 0.268 [95% CI 0.268 0.268] 0.110 [95% CI 0.110 0.111] 

R2Gen 0.059 [95% CI 0.059 0.059] 0.186 [95% CI 0.186 0.186] 0.204 [95% CI 0.203 0.204] 0.057 [95% CI 0.057 0.057] 

CXR-RePaiR 0.055 [95% CI 0.055 0.055] 0.191 [95% CI 0.191 0.191] 0.379 [95% CI 0.379 0.379] 0.091 [95% CI 0.090 0.091] 

WCL 0.064 [95% CI 0.064 0.064] 0.188 [95% CI 0.188 0.189] 0.218 [95% CI 0.218 0.218] 0.068 [95% CI 0.068 0.068] 

CvT2DistilGPT2 0.066 [95% CI 0.066 0.066] 0.192 [95% CI 0.192 0.193] 0.264 [95% CI 0.264 0.264] 0.073 [95% CI 0.073 0.073] 

 663 

Supplementary Table 5: Predicted total number of errors of prior models, as the average, lower-bound, and upper-664 
bound of the 95% confidence interval. 665 

 Predicted Number of Errors 

Random 3.266 [95% CI 3.265 3.266] 

M2 Trans 3.088 [95% CI 3.087 3.088] 

R2Gen 3.233 [95% CI 3.232 3.233] 

CXR-RePaiR 3.181 [95% CI 3.181 3.181] 

WCL 3.205 [95% CI 3.204 3.205] 

CvT2DistilGPT2 3.191 [95% CI 3.191 3.192] 

 666 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279318doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279318
http://creativecommons.org/licenses/by/4.0/

