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Abstract 

Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and premature mortality 

but requires skilled examination with Doppler imaging. We hypothesized that self-supervised 

learning of 2-dimensional parasternal long axis (PLAX) videos from transthoracic 

echocardiography (TTE) without Doppler imaging could extract discriminative features to 

identify severe AS suitable for point-of-care ultrasonography. In a training set of 5,311 studies 

(17,601 videos) from 2016-2020, we performed self-supervised pretraining based on contrastive 

learning of PLAX videos, then used those learned weights to initialize a convolutional neural 

network to predict severe AS in an external set of 2,040 studies from 2021. Our model achieved 

an AUC of 0.97 (95% CI: 0.96-0.99) for detecting severe AS with 95.8% sensitivity and 90% 

specificity. The models were interpretable with saliency maps identifying the aortic valve as the 

predictive region. Among non-severe AS cases, predicted probabilities were associated with 

worse quantitative metrics of AS suggesting association with AS severity. We propose an 

automated approach for severe AS detection using single-view 2D echocardiography, with 

implications for point-of-care screening.
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INTRODUCTION 

Aortic stenosis (AS) is a chronic, progressive disease, and associated with premature morbidity 

and mortality.1,2 With advances in both surgical and transcatheter aortic valve replacement,3 

there has been an increasing focus on early detection and management.4,5,6 The non-invasive 

diagnosis of AS can be done with hemodynamic measurements using Doppler 

echocardiography,2,7,8 but it requires dedicated equipment and skilled acquisition and 

interpretation. On the other hand, even though two-dimensional (2D) cardiac ultrasonography is 

increasingly available with handheld devices that can visualize the heart,9 it cannot yet be used 

for efficient and accurate screening of AS presence and severity. With an estimated prevalence 

of 5% among individuals aged 65 years or older,8 there is a growing need for user-friendly 

screening tools which can be used in everyday practice by people with minimal training. 

 Machine learning offers opportunities to standardize the acquisition and interpretation of 

medical images.10 Deep learning algorithms have successfully been applied in echocardiograms, 

where they have shown promise in detecting left ventricular dysfunction,11 and left ventricular 

hypertrophy.12 With the expanded use of point-of-care ultrasonography,9 developing user-

friendly screening algorithms relying on single 2D echocardiographic views would provide an 

opportunity to improve AS screening. This is however limited by the lack of carefully curated, 

labelled datasets, as well as efficient ways to utilize the often noisy real-world data for model 

development.13 

 In the current study, we hypothesized that a deep learning model trained on 2D 

echocardiographic views of parasternal long axis (PLAX) videos can reliably predict the 

presence of severe AS without requiring Doppler input. The approach leverages self-supervised 

learning of PLAX videos along with two other neural network initialization methods to form a 
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diverse ensemble model capable of identifying severe AS from raw 2D echocardiograms. The 

model is trained based on a carefully curated dataset from different operators and machines, and 

its discriminatory performance for severe AS is then tested in a retrospective cohort of 

echocardiographic studies performed at a later chronological date. Combined with automated 

view classification, our approach serves as an end-to-end automated solution for deep learning 

applications in the field of echocardiography. 

 

RESULTS 

Study Population 

This study included individuals who underwent transthoracic echocardiograms (TTE) between 

2016 and 2021 across the Yale-New Haven Health System. From the studies performed between 

2016 and 2020 (n=257,829), a stratified weighted sample of 10,000 studies was drawn that 

overweighted studies with AS (sampling probability weights of 1 for no AS, 5 for non-severe 

AS, 50 for severe AS). After removing 3,378 studies with no pixel data, de-identifying video 

frames, and using an automated view classifier to determine the PLAX view, our final derivation 

set (training and validation) consisted of 6,021 studies with 22,912 videos (1,269,764 frames) 

(mean age 70.2 ± 15.7 years, n=2950 (49.0%) women), with mild, moderate, and severe AS in 

12.4% (n=747), 8.4% (n=503), and 22.3% (n=1,344) of studies, respectively. A held-out, 

randomly selected, sample of 1,063 studies from the same period was used for (internal) testing, 

whereas 2,040 randomly selected scans with a total of 6,530 videos performed between January 

1st 2021 and December 15th 2021 (mean age 65.7 ± 16.4 years, n=997 (48.9%) women) were 

used for external testing. The external test was not oversampled, with mild, moderate, and severe 
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AS estimated in 4.1% (n=83), 2.9% (n=59), and 1.0% (n=20) of the studies, respectively (Figure 

1). Further information on patient characteristics is presented in the Methods and Table 1. 

 

Self-supervised, contrastive learning 

To learn transferable representations of PLAX echocardiogram videos for downstream severe 

AS identification, we performed self-supervised pretraining on all training set videos. This 

pretraining step critically enables the model to learn representations of echocardiograms that are 

robust to standard variations in video acquisition, thus better generalizing when later fine-tuned 

on a specific downstream task. We have previously demonstrated that a more appropriate 

initialization for data-efficient classification tasks could be achieved by “in-domain” pretraining 

on echocardiograms,17 as opposed to other standard approaches such as random initialization of 

weights and transfer learning.11,15,16 To this end, we have designed a novel self-supervised 

learning algorithm specifically catered to echocardiogram videos. 

For this, we selected different PLAX videos from the same patient as “positive samples” 

for multi-instance contrastive learning (Figure 2). While contrastive learning frameworks such 

as SimCLR18 rely on image augmentation to create two synthetic “views” of the same image for 

contrastive learning, we instead leverage the fact that patients often already have multiple PLAX 

videos to form challenging positive pairs between authentically distinct views of the patient. This 

critically removed the need for heavy augmentation strategies that would adversely affect 

valuable signal. To enforce temporal coherence, we additionally used a frame re-ordering pretext 

task during self-supervised pretraining, where we randomly shuffled the frames of an 

echocardiographic video, then trained the model to predict the original order of frames. 
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We pretrained a 3D-ResNet1819 model with this joint contrastive and frame re-ordering 

objective on all 30,008 unique pairs of distinct PLAX videos from the same patient for 300 

epochs. We then used these learned weights to initialize a 3D-ResNet18 to predict severe AS, 

producing a model that achieved 0.934 AUROC (95% CI: 0.920, 0.947) and 86.0% specificity at 

90% sensitivity (95% CI: 79.7%, 88.4%) on the internal testing set (Table 2, Figure 3). 

 

Ensemble learning for severe AS identification 

We formed an ensemble of three models trained to detect severe AS, with diversity injected by 

the dramatically different methods used to initialize each model’s weights before training. 

Ensembling is known to improve predictive performance by aggregating the outputs of multiple 

independently trained models20. Moreover, statistical21–23 and deep learning24–26 studies have 

shown that ensembles of diverse constituent models are most effective.  

To do this, we first independently trained three models to predict severe AS: a randomly 

initialized model, a model initialized with weights from the human action classification dataset 

Kinetics-40027 (representing a standard transfer learning approach), and an SSL-initialized model 

using the pretraining method described above. The outputs of these three models were then 

averaged to produce a powerful and diverse ensemble model, reaching 0.945 AUROC (95% CI: 

0.933, 0.956) and 88.0% sensitivity at 90% specificity (95% CI: 84.3%, 90.1%) on the internal 

testing set and 0.974 AUROC (95% CI: 0.957, 0.989) and 95.8% sensitivity at 90% specificity 

(95% CI: 83.2%, 97.3%) on the external testing set (Table 2, Figure 3). Additionally, if multiple 

PLAX videos were present in a study, the predictions from each video were ensembled to form a 

single study-level AS prediction. Internal test results stratified by number of PLAX videos used 
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to form “per-study ensembles” can be found in Extended Data Table 1, and results without 

averaging predictions from multiple videos in the same study appear in Extended Data Table 2.  

 

Explainable predictions through saliency maps 

To increase explainability of our models, we used Gradient-weighted Class Activation Mapping 

(Grad-CAM) to identify the regions in each video frame that contributed the most to the 

predicted label.28 These spatial attention maps were visualized based on the randomly initialized, 

Kinetics-400-pretrained, and SSL-pretrained AS models for five true positives, a true negative, 

and a false positive. In the examples shown in Figure 4, the first five columns represent the five 

most confident severe AS predictions, the sixth column represents the most confident “normal” 

(no severe AS) prediction, and the seventh column represents the most confident incorrect severe 

AS prediction. The saliency maps from our SSL approach demonstrated overall consistent and 

specific localization of the activation signal in the pixels corresponding to the aortic valve and 

annulus (bottom row). Relative to the saliency maps generated by the randomly initialized and 

Kinetics-400-pretrained models, the SSL attention maps more finely localized clinically relevant 

regions for AS detection. 

 

Model identification of features of AS severity 

Finally, we explored whether our model learned features of AS severity that could describe 

earlier stages of the disease’s natural history. We observed that the predictions of the ensemble 

model correlated with continuous metrics of AS severity, including the peak aortic valve velocity 

(r=0.60, P<0.001), trans-valvular mean gradient (r=0.69, P<0.001) and the mean aortic valve 

area (r=-0.51, P<0.001). On the other hand, the model predictions were independent of the left 
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ventricular ejection fraction (LVEF), a negative control. In further sensitivity analysis, we 

stratified cases without AS or mild/moderate AS based on the predictions of our model as true 

negatives (TN) or false positives (FP). Compared to true negatives, false positive cases had 

significantly higher peak aortic velocities (FP: 3.4 [25th-75th percentile: 2.6-3.6] m/sec; TN: 1.4 

[1.2-1.7] m/sec, P<0.001), trans-valvular mean gradients (FP: 27.0 [25th-75th percentile: 18.0-

30.5] mmHg; TN: 5.0 [3.8-9.8] m/sec, P<0.001), and mean aortic valve area (FP: 0.94 [25th-75th 

percentile: 0.75-1.62] cm2; TN: 1.97 [1.47-2.66] cm2, P=0.001), but no significant difference in 

the LVEF (FP: 65.6% [52.3%-68.2%]; TN: 60.0% [55.0-65.1%], P=0.36) (Figure 5). 

 

DISCUSSION 

We have developed and validated an automated algorithm that can efficiently screen for and 

detect the presence of severe AS based on a single-view two-dimensional transthoracic 

echocardiographic video. The algorithm demonstrates excellent performance (0.974 AUROC), 

with high sensitivity (95.8%) and specificity (90%) confirmed in an external cohort of patients 

temporally distinct from the training set. We also present a novel self-supervised step leveraging 

multi-instance contrastive learning, which allowed our algorithm to learn key representations that 

define each patient’s unique phenotype, independent of the expected technical variation in image 

acquisition, including differences in probe orientation, beam angulation and depth. Visualization 

of saliency maps introduces explainability to our algorithms and confirms the key areas of the 

PLAX view, including the aortic valve and annulus, that contributed the most to our predictions. 

Furthermore, features learned by the model generalize to lower severity cases, highlighting the 

potential value of our model in longitudinal monitoring of AS, a disease with a well-defined, 

progressive course.2 Our approach has the potential to expand the use of echocardiographic 
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screening for suspected AS, shifting the burden away from dedicated echocardiographic 

laboratories to point-of-care screening in primary care offices, or low-resource settings. It may 

also enable operators with minimal echocardiographic experience to screen for the condition by 

obtaining simple two-dimension PLAX views without the need for comprehensive Doppler 

assessment, which can then be reserved for confirmatory assessment.  

In the recent years a number of artificial intelligence applications have been described in 

the field of echocardiography,29 ranging from automated classification of echocardiographic 

views,30 video-based beat-to-beat assessment of left ventricular systolic dysfunction,11 detection 

of left ventricular hypertrophy and its various subtypes,12 diastolic dysfunction,31 to expert-level 

prenatal detection of complex congenital heart disease.32 Of note, machine learning methods 

further enable individuals without prior ultrasonography experience to obtain diagnostic TTE 

studies for limited diagnostic use.33  Despite this and even though the diagnosis and grading of 

AS remains dependent on echocardiography,2,34 most artificial intelligence solutions for timely 

AS screening have focused on alternative data types, such as audio files of cardiac auscultation,35 

12-lead electrocardiograms,36–38 cardio-mechanical signals using non-invasive wearable inertial 

sensors,39 as well as chest radiographs.40  For 12-lead electrocardiograms, AUC were consistently 

<0.90,36–38 whereas for alternative data types, analyses were limited to small datasets without 

external validation.35,39 Other studies have explored the value of structured data derived from 

comprehensive TTE studies in defining phenotypes with varying disease trajectories.41 However, 

the value of AI-assisted AS detection through automated TTE interpretation has not been fully 

explored. In a recent study, investigators employed a form of self-supervised learning to 

automate the detection of AS, with their method however discarding temporal information by 

only including the first frame of each video loop, while also relying on the acquisition of images 
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from several different views.42 The approach that relies on ultrasonography is also safer than the 

alternative screening strategies, such as those using chest computed tomography and aortic valve 

calcium scoring,40,42 which expose patients to radiation. 

 In this context, our work represents an advance both in the clinical and methodological 

space. First, we describe a method that can efficiently screen for a condition associated with 

significant morbidity and mortality,2,7 with increasing prevalence in the setting of an aging 

population.43 Our method has the potential to shift the initial burden away from trained 

echocardiographers and specialized core laboratories, as part of a more cost-effective screening 

and diagnostic cascade.9,33 In this regard, major strengths of our model include its reliance on a 

single echocardiographic view that can be obtained by individuals with limited experience and 

minimal training,33 and its ability to process temporal information through analysis of videos 

rather than isolated frames. The overarching goal is to develop screening tools that can be 

deployed in a cost-effective manner, gatekeeping access to comprehensive TTE assessment, 

which can be used as a confirmatory test to establish the suspected diagnosis.   

 Second, our work describes an end-to-end framework to boost artificial intelligence 

applications in echocardiography. We present an algorithm that automatically detects 

echocardiographic views, then performs self-supervised representation learning of PLAX videos 

with a multi-instance, contrastive learning approach. This novel approach further enables our 

algorithm to learn key representations of a patient’s cardiac phenotype that generalize and 

remain consistent across different clips and variations of the same echocardiographic views. By 

optimizing the detection of an echocardiographic fingerprint for each patient, this important 

pretraining step has the potential to boost AI-based echocardiographic assessment across a range 

of conditions. Furthermore, unlike previous approaches,42 our method benefits from multi-
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instance contrastive learning, which learns key representations using different videos from the 

same patient, a method that has been shown to improve predictive performance in the 

classification of dermatology images.44 

 Further to detecting severe AS, our algorithm learns features of aortic valvular pathology 

that generalize across different stages of the condition. Saliency maps demonstrate that the model 

focuses on the aortic valve area, possibly learning to detect aortic valve calcification and 

restricted mobility.34 When restricting our analysis to patients without severe AS, the model’s 

predictions strongly correlated with Doppler-derived, quantitative features of stenosis severity. 

This is in accordance with the known natural history of AS, a progressive, degenerative 

condition, the hallmarks of which are aortic valve calcification, restricted mobility, functional 

stenosis and eventual ventricular decompensation.2,7 As such, our algorithm’s predictions also 

carry significant value as quantitative predictors of the stage of AV severity and could 

theoretically be used to monitor the rate of AS progression. 

Limitations of our study include the lack of prospective validation of our findings. To this 

end, we are working on deploying this method in a prospective cohort of patients referred for 

routine TTE assessment to understand its real-world implications as a screening tool. Second, 

even though our training set included a range of vendors, several different hospitals, and studies 

chronologically separated from the ones used for testing purposes, further external validation is 

needed to better understand the generalizability of our observations across healthcare systems. 

Third, our model is limited to the use of PLAX views, which often represent the first step of TTE 

or POCUS protocols in cardiovascular assessment. Though there is no technical restriction to 

expanding these methods to alternative views, increasing the complexity of the screening 

protocol is likely to negatively impact its adoption in busy clinical settings.    
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In summary, we propose an efficient method to screen for severe AS using single-view 

(PLAX) TTE videos without the need for Doppler signals. More importantly, we describe an 

end-to-end approach for the deployment of artificial intelligence solutions in echocardiography, 

starting from automated view classification to self-supervised representation learning to accurate 

and explainable detection of severe AS. Our findings have significant implications for point-of-

care ultrasound screening of AS as part of routine clinic visits and in limited resource settings 

and for individuals with minimal training. 

 

METHODS 

The study was reviewed by the Yale Institutional Review Board, which approved the study 

protocol and waived the need for informed consent as the study represents secondary analysis of 

existing data. 

 

Echocardiogram interpretation 

All studies were performed by trained echocardiographers or cardiologists and reported by 

board-certified cardiologists with specific training cardiac echocardiography. These reports were 

a part of routine clinical care, in accordance with the recommendations of the American Society 

of Echocardiography (ASE).33,45 The presence of AS severity was adjudicated based on the 

original echocardiographic report. Doppler assessment was interpreted based on the parameters 

recommended by the ASE, which included peak aortic valve (stenosis) jet velocity, mean 

transaortic/trans-valvular gradient, and mean valve area, as assess by continuity equation. 

According to the guidelines, cut-offs of >4 m/sec, >40 mm Hg and less than <1.0 cm2, 

respectively, were consistent with severe AS.34 The left ventricular ejection fraction (LVEF) was 
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reported based on three-dimensional (3D) echocardiography, and in the absence of that, based on 

the Simpson’s biplane method. In the absence of these measurements, we reported the lower end 

of the visually estimated LVEF. 

 

Study cohort 

Dataset Preparation. For this work, 12,500 studies were queried from the set of all complete 

TTE exams performed between 2016 and 2021 at the Yale New Haven Health System (Figure 

1). For internal model development and evaluation, 10,000 studies from 2016-2020 were 

randomly queried with AS oversampled to mitigate class imbalance during model training. 

Specifically, this query sampled normal studies uniformly (including “no AS” and “sclerosis 

without stenosis”), oversampled non-severe AS studies 5-fold (including “mild AS”, “mild-

moderate AS”, “moderate-severe AS”, “low gradient AS”, and “paradoxical AS”), and 

oversampled severe AS 50-fold. The 10,000 studies would later be split into an internal training, 

validation, and test set for deep learning model development. The remaining 2,500 studies of the 

query were all conducted a year later in 2021 with no oversampling to serve as a more 

challenging and clinically realistic “external” validation set, where severe AS only occurs under 

1% of the time. All studies would undergo de-identification, view classification, and 

preprocessing (as described below) to curate a dataset of PLAX videos for deep-learned severe 

AS prediction. 

 

View classification. After excluding studies that were not properly extracted from the database, 

10,865 studies first underwent de-identification. After loading the pixel data for each video with 

the pydicom library (https://pydicom.github.io/), pixels in the periphery of each video frame 
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were masked out to remove identifying information, and videos were converted to the Audio 

Video Interleave (AVI) format to enable fast loading for later preprocessing steps. The resulting 

447,653 videos from 9,710 studies then underwent view classification. Using the pretrained TTE 

view classifier from Zhang et al.,46 ten frames from each de-identified video were randomly 

selected, downsampled to 224 x 224 resolution, and fed through the pretrained VGG19 

convolutional neural network. Video-level view predictions were then obtained by averaging 

each video’s 10 frame-wise view probabilities, and videos that were most confidently predicted 

as PLAX were kept for further preprocessing. While the pretrained view classifier was capable 

of discriminating variants of the standard PLAX view such as “PLAX”, “PLAX – remote,” 

“PLAX – zoom of left atrium,” and “PLAX – centered over left atrium,” we elected to only 

proceed with videos most confidently classified as “PLAX.” 

 

Data preprocessing. After view classification, the 30,136 videos from 9,173 studies were 

prepared for deep learning model development. Given differences in AS severity measures 

across different domains, we excluded echocardiograms with low-flow, low-gradient & 

paradoxical aortic stenosis leaving 29,978 PLAX videos from 9,122 studies. Since severe AS 

detection was formulated as a binary classification task, all AS designations other than “severe 

AS” were binned into the “not severe AS” category. The 2,040 studies from 2021 were set aside 

for external validation, while the remaining 7,082 studies (with AS oversampled as described 

above) were then randomly split into derivation (training & validation) and test sets according to 

a 75%/10%/15% split (Table 1). All videos underwent a more thorough cleaning and de-

identification process that involved binarizing each video frame with a fixed threshold, then 

masking out all pixels outside the convex hull of the largest contour in order to remove all 
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information outside the central image content. Finally, each video clip was spatially 

downsampled to 112 x 112 and saved to AVI format for fast loading during model training. 

 

 

Self-supervised contrastive learning 

Self-supervised representation learning was performed on the training set videos with a novel 

combination of (i) a multi-instance contrastive learning task and (ii) a frame re-ordering pretext 

task. We adopted the SimCLR framework18 for contrastive learning, which traditionally 

generates two “views” of an input ! by sending two copies of the input through a pipeline of 

random image augmentations, producing view !"! and !"". An encoder #() is then used to learn 

representations of each view, ℎ! = #(!"!) and ℎ" = #(!""), which are then projected to a lower 

dimensionality with a projector ((). The resulting learned embeddings of each view, )! =

((#(!"!))and )" = ((#*!""+) are then “contrasted” via the temperature-normalized cross-entropy 

(NT-Xent) loss, which encourages the model to learn similar representations of views from the 

same original image (so-called “positive pairs”) and dissimilar representations of views from all 

other images (“negative pairs”) in a given minibatch.  

While SimCLR has proven very successful for 2D natural images as well as in medical 

applications such as radiography and dermatological images, there are several barriers to its 

successful adaptation to echocardiogram videos. First, SimCLR requires extremely heavy image 

augmentation for effective representation learning, which would destroy valuable signal encoded 

in the brittle, noisy ultrasound images produced by echocardiography. Second, SimCLR was 

designed for 2D images, which would completely ignore the temporal dimension of 

echocardiography. To address the first issue, we utilized “multi-instance” contrastive learning – 
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borrowing language and key insights from Azizi et al.44 – whereby we form positive pairs 

between different videos from the same patient. This critically removes the need to synthetically 

create two different “views” of a patient by heavily augmenting their echo video, instead 

leveraging the fact that almost all studies contain multiple distinct PLAX videos of a patient.  

To address the second issue, we additionally included a frame re-ordering “pretext” task 

to our self-supervised learning method, where we randomly permuted the frames of each input 

echo, then trained the model to predict the original order of frames. Similar to the approach of 

Jiao et al.,47 this frame re-ordering task is treated as a classification problem and was 

implemented with a simple fully-connected layer that minimizes the cross-entropy between the 

known and predicted original frame order; specifically, if an input echo clip has , frames, then 

the ,! possible permutations of frames served as the targets for classification. Then the loss 

function of our self-supervised learning method is simply the sum of the contrastive NT-Xent 

objective and the pretext frame re-ordering cross-entropy objective.  

Self-supervised pretraining was performed on randomly sampled video clips of 4 

consecutive frames from each of the training set echocardiogram videos. The encoder #() was a 

randomly initialized 3D-ResNet18,19 and the projector (() projected each 512-dimensional 

learned representation down to a 128-dimensional representation with a hidden layer of 256 units 

followed by a ReLU activation, followed by an output layer with 128 units. The model was 

trained for 300 epochs on all unique pairs of different PLAX videos from the same patient with 

the Adam optimizer48 and a learning rate of 0.1, a batch size of 392 (196 per GPU), and NT-Xent 

temperature hyperparameter of 0.5. The following augmentations were applied to each frame in a 

temporally consistent manner (same transformations for each frame of a given video clip): 

random zero padding by up to 8 pixels in each spatial dimension, a random horizontal flip with 
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probability 0.5, and a random rotation within -10 and 10 degrees with probability 0.5. After 

augmentation, each video clip was normalized so that the maximum pixel intensity was mapped 

to 1 and the minimum intensity to 0. The SSL model was trained on two NVIDIA RTX 3090 

GPUs. 

 

Deep neural network training for severe AS prediction 

The same 3D-ResNet18 architecture was used to predict severe AS. Three different methods 

were used to initialize the parameters of this network: an SSL initialization, a Kinetics-400 

initialization, and a random initialization. The SSL initialization directly used the learned 

weights of the encoder from the SSL pretraining step described in detail above. The Kinetics-400 

initialization represents the “standard” transfer learning approach for 3D data, using the weights 

from a 3D-ResNet18 trained in a supervised fashion on the Kinetics-400 dataset, a large corpus 

of over 300,000 natural videos for human action classification; these weights are readily 

available through the torchvision API (https://pytorch.org/vision/stable/index.html) provided by 

PyTorch. The random initialization is the default when initializing a 3D-ResNet18 with 

PyTorch.49 

All fine-tuning models were trained on randomly sampled video clips of 16 consecutive 

frames from training set echocardiograms, optionally padding with empty frames along the 

temporal axis if either the video is too short or the randomly chosen starting point of the clip is 

near the end of the video. The same augmentations were used as in self-supervised pretraining, 

and all video clips were min-max normalized; when fine-tuning from a Kinetics-400 

initialization, video clips were further standardized using the channel-wise means and standard 

deviations from the Kinetics-400 training dataset, a standard preprocessing step when performing 
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transfer learning. All models were trained for a maximum of 30 epochs with early stopping – 

specifically, if the validation AUROC did not improve for 5 consecutive epochs, training was 

terminated and the weights from the epoch with maximum validation AUROC were used for 

final evaluation. Severe AS models were trained on a single NVIDIA RTX 3090 GPU with the 

Adam optimizer, a learning rate of 1 × 10#$ (except the SSL-pretrained model, which used a 

learning rate of 0.1), and a batch size of 88 in order to maximize GPU utilization. Since this 

problem was framed as a binary classification task, these models minimized a sigmoid cross-

entropy loss. We additionally used class weights computed with the method provided by scikit-

learn50 to accommodate class imbalance in addition to label smoothing51,52 with 1=0.1, a method 

to improve model calibration and generalization. Learning curves depicting loss throughout 

training can be found in Extended Data Figure 1. 

 

Ensemble learning 

 Since the fine-tuned severe AS models are trained on 16-frame video clips, yet AS labels 

describe each study, we aggregated clip-level predictions into study-level predictions for 

performance evaluation. When performing inference on an echo video, four evenly spaced clips 

(potentially with overlapping frames) of 16 consecutive frames were extracted and fed into the 

trained AS model. These clip-level predictions were then averaged to obtain a video-level 

prediction of severe AS. After repeating this process for all videos, the severe AS probabilities 

for videos in a given study were averaged to obtain study-level AS predictions that could be used 

to compute evaluation metrics. The final ensemble model is then formed by averaging the output 

probabilities of the SSL-pretrained model, the Kinetics-400-pretrained model, and the randomly 

initialized model after fine-tuning each ensemble member to classify severe AS. 
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These ensemble approaches of integrating information from multiple clips of a video and 

integrating information from multiple videos in a study are not required, but useful for improving 

predictive performance of study-level AS labels. See Extended Data Table 1 for an examination 

of results by number of PLAX videos used to form per-study ensembles and Extended Data 

Table 2 for results without averaging predictions from multiple videos in the same study. In this 

scheme, evaluation is performed at the video level, where all videos in a given study share the 

same label. Since no quality control is applied when selecting PLAX videos for this work, 

averaging results over multiple videos in the same study has a stabilizing effect that boosts 

predictive performance. 

 

Internal and external validation 

After fine-tuning the model to detect severe AS from TTE videos, the model checkpoint from the 

epoch with maximum AUROC on the validation set was used for evaluation on both the internal 

and external test sets. To evaluate the model’s performance, we primarily use area under the 

receiver operating characteristic curve (AUROC) and area under the precision-recall curve 

(AUPR). These both measure a binary classifier’s overall predictive performance across all 

possible decision thresholds, with AUPR included since it may be more informative when class 

imbalance is present.53 In addition to ROC curve and precision-recall curve analysis, we use 

metrics that assess severe AS predictive performance at a specific decision thresholds such as F1 

score, positive predictive value (PPV), specificity at 90% sensitivity, and PPV at 90% sensitivity. 

For these metrics, we proceed with the threshold that maximizes F1 score, the harmonic mean of 

precision and recall, on the given evaluation set. The latter two metrics – specificity and PPV at 

90% sensitivity – were included to give a clinically realistic assessment of the model’s 
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performance at a highly sensitive operating point that would be required for real-world clinical 

deployment. 

 

Model explainability 

Saliency maps were generated by leveraging the Grad-CAM method28 for obtaining visual 

explanations from deep neural networks. Specifically, the heatmaps presented in Figure 4 were 

generated by applying Grad-CAM to a clip of the first 32 frames of an echo, using the last 

convolution block of the 3D ResNet18 to generate a 7 x 7 x 4 (height x width x time) heatmap 

displaying roughly where the model is attending to over the spatial and temporal dimensions. 

The Grad-CAM output was interpolated to the original input dimension of 112 x 112 x 32 with 

the scipy “zoom” function; this process produces a frame-by-frame “visual explanation” of 

where the model is focusing frame by frame in order to make its prediction. However, to 

generate a single 2D heatmap for a given echo clip as seen in Figure 4, the pixelwise maximum 

along the temporal axis was taken to capture the most salient regions for severe AS predictions 

across all timepoints. 

 

Statistical analysis 

All 95% confidence intervals for model performance metrics were computed by bootstrapping. 

Specifically, 10,000 bootstrap samples (samples with replacement having equal sample size to 

the original evaluation set) of the given evaluation set were drawn, metrics were computed on 

this set of studies, and nonparametric confidence intervals were constructed with the percentile 

method. Bootstrapping was performed at the study level since the severe AS labels are provided 

at the study level. For analysis of correlation between model outputs and quantitative measures 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

21 
 

of AS, categorical variables were summarised as numbers (percentages), whereas continuous 

variables are reported as mean values with standard deviation and visualized using violin plots. 

Continuous variables between two groups were compared using the Student’s t-test. Pearson’s r 

was used to assess the pairwise correlation between continuous variables. All statistical tests 

were two-sided with a significance level of 0.05, unless specified otherwise. Analyses were 

performed using Python (version 3.8.5).  
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DISPLAY ITEMS 
 
Table 1 | Table of baseline demographic and echocardiographic characteristics. 
 

  Missing Overall 1. Derivation (training & validation) 2. Internal testing 3. External testing 

n   9124 6021 1063 2040 

Year of study, n (%) 

2016 

0 

1134 (12.4) 969 (16.1) 165 (15.5)  
2017 1143 (12.5) 961 (16.0) 182 (17.1)  
2018 1368 (15.0) 1167 (19.4) 201 (18.9)  
2019 1894 (20.8) 1615 (26.8) 279 (26.2)  
2020 1545 (16.9) 1309 (21.7) 236 (22.2)  
2021 2040 (22.4)   2040 (100.0) 

Age (years), mean (SD)  6 69.1 (16.0) 70.2 (15.7) 69.8 (15.8) 65.7 (16.4) 

Gender, n (%) 
Female 0 4468 (49.0) 2950 (49.0) 521 (49.0) 997 (48.9) 

Male  4656 (51.0) 3071 (51.0) 542 (51.0) 1043 (51.1) 

Race, n (%) 

Asian 6799 32 (1.4) 20 (1.2) 3 (1.1) 9 (2.0) 
Black  268 (11.5) 177 (11.0) 27 (10.2) 64 (14.2) 

Hispanic  118 (5.1) 79 (4.9) 15 (5.7) 24 (5.3) 
Other  37 (1.6) 28 (1.7) 3 (1.1) 6 (1.3) 

Unknown  18 (0.8) 14 (0.9)  4 (0.9) 
White  1852 (79.7) 1291 (80.2) 216 (81.8) 345 (76.3) 

BMI (kg/m2), mean (SD)  45 29.5 (16.3) 29.5 (19.3) 29.4 (8.2) 29.4 (7.3) 
BP Systolic (mm Hg), mean (SD)  1054 132.0 (138.9) 133.0 (168.7) 130.6 (20.6) 129.8 (19.6) 
BP Diastolic (mm Hg), mean (SD)  1062 73.6 (24.7) 73.5 (27.6) 73.1 (23.9) 74.4 (11.7) 
LVIDd Index (cm/m2), mean (SD)  1114 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 

LA Vol Indexed. (cm2/m2), mean (SD)  1092 36.1 (16.5) 37.1 (16.8) 37.5 (17.6) 32.3 (14.3) 
RVSP (mmHg), mean (SD)  2512 32.3 (13.5) 32.9 (13.7) 33.0 (13.9) 29.8 (12.0) 

EF (%), mean (SD)  108 59.4 (10.8) 59.5 (10.9) 59.0 (11.1) 59.1 (10.2) 
AV continuity VTI (cm), mean (SD)  4718 1.4 (0.8) 1.3 (0.8) 1.3 (0.8) 2.1 (0.9) 

AV mean gradient (mmHg), mean (SD)  3652 20.6 (17.8) 22.8 (18.2) 22.3 (18.1) 9.0 (9.4) 
AV peak velocity (m/s), mean (SD)  443 2.2 (1.2) 2.4 (1.3) 2.4 (1.3) 1.6 (0.6) 
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Table 2 | Internal and external performance of an automated algorithm for detection of 
aortic stenosis. 
 

 SSL Kinetics-400 Random Ensemble 
Internal testing set 
AUROC 0.934 (0.920, 0.947) 0.938 (0.926, 0.950) 0.925 (0.912, 0.938) 0.945 (0.933, 0.956) 
AUPR 0.818 (0.779, 0.854) 0.816 (0.774, 0.855) 0.749 (0.699, 0.799) 0.827 (0.786, 0.864) 
F1 Score 0.764 (0.737, 0.799) 0.765 (0.740, 0.804) 0.742 (0.715, 0.781) 0.785 (0.758, 0.819) 
PPV 0.674 (0.635, 0.749) 0.712 (0.661, 0.808) 0.643 (0.620, 0.730) 0.702 (0.664, 0.766) 
Sensitivity 0.882 (0.797, 0.928) 0.825 (0.741, 0.899) 0.878 (0.782, 0.902) 0.890 (0.828, 0.930) 
Specificity at 
90% Sensitivity 0.860 (0.797, 0.884) 0.835 (0.777, 0.879) 0.814 (0.780, 0.862) 0.880 (0.843, 0.901) 

PPV at 90% 
Sensitivity 0.661 (0.571, 0.709) 0.622 (0.543, 0.699) 0.594 (0.544, 0.670) 0.694 (0.627, 0.741) 

External testing set 
AUROC 0.947 (0.884, 0.988) 0.954 (0.919, 0.984) 0.976 (0.966, 0.984) 0.974 (0.957, 0.989) 
AUPR 0.337 (0.189, 0.559) 0.340 (0.171, 0.535) 0.238 (0.132, 0.407) 0.365 (0.198, 0.563) 
F1 Score 0.458 (0.343, 0.640) 0.386 (0.299, 0.571) 0.377 (0.264, 0.538) 0.439 (0.327, 0.615) 
PPV 0.393 (0.286, 0.875) 0.297 (0.217, 1.000) 0.303 (0.188, 0.714) 0.429 (0.250, 0.750) 
Sensitivity 0.550 (0.304, 0.720) 0.550 (0.263, 0.773) 0.500 (0.263, 0.750) 0.450 (0.316, 0.760) 
Specificity at 
90% Sensitivity 0.947 (0.312, 0.973) 0.910 (0.674, 0.970) 0.948 (0.914, 0.962) 0.958 (0.832, 0.973) 

PPV at 90% 
Sensitivity 0.143 (0.012, 0.247) 0.090 (0.024, 0.222) 0.146 (0.089, 0.218) 0.175 (0.048, 0.273) 

Results come from a 3D-ResNet18 when initialized with the proposed self-supervised learning (SSL) 
initialization, a standard transfer learning approach (Kinetics-400), and a random weight initialization. 
“Ensemble” denotes an ensemble of the three individual models described above. Values in parentheses 
represent 95% confidence intervals determined by bootstrapping. AUROC = area under the receiver operating 
characteristic curve; AUPR = area under the precision-recall curve; PPV = positive predictive value. 
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Figure 1 | Inclusion-exclusion flowchart for study population. Exclusion criteria for 

transthoracic echocardiogram (TTE) studies and videos included in this study. Studies with valid 

pixel data were de-identified frame by frame, and the parasternal long axis (PLAX) view was 

determined by an automated view classifier. A sample of 10,000 studies from 2016-2020 (with 

AS oversampled) were used for model development and internal testing, while a sample of 2,500 

studies from 2021 (with no oversampling) were used as an “external” test set.
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Figure 2 | Overview of proposed approach. We first perform self-supervised pretraining on 

parasternal long axis (PLAX) echocardiogram videos, selecting different PLAX videos from the 

same patient as “positive samples” for contrastive learning. After this representation learning 

step, we then use these learned weights as the initialization for a model that is fine-tuned to 

predict severe aortic stenosis (AS) in a supervised fashion.
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Figure 3 | Model performance in the internal testing set. Receiver operating characteristic (a) 

and precision-recall (b) curves for the proposed self-supervised learning approach, the standard 

transfer learning approach, and a model trained from scratch. AUC = area under the curve.
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Figure 4 | Saliency map visualization. Spatial attention maps for the randomly initialized model 

(top row), Kinetics-pretrained model (middle row) and self-supervised learning (SSL) approach 

(bottom row) for five true positives (first five columns), a true negative (sixth column), and a 

false positive (last column). As determined by the Kinetics-pretrained model, the first five 

columns represent the five most confident severe AS predictions, the sixth column represents the 

most confident “normal” (no severe AS) prediction, and the seventh column represents the most 

confident incorrect severe AS prediction. Saliency maps were computed with the GradCAM 

method and reduced to a single 2D heatmap by maximum intensity projection along the temporal 

axis.
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Figure 5 | Comparison between model predictions and echocardiographic left ventricular 

and aortic valve assessment among patients without severe aortic stenosis. Violin plots 

demonstrating the distribution of LVEF (left ventricular ejection fraction, A) peak aortic valve 

velocity (B), mean aortic valve gradient (C) and mean aortic valve area (D) for patients without 

severe AS, stratified based on the predicted class based on the final ensemble model. 
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