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Adding the notion of spatial locality to the susceptible-infected-removed (or SIR) model, allows to capture local satu-
ration of an epidemic. The resulting minimum model of an epidemic, consisting of five ordinary differential equations
with constant model coefficients, reproduces slowly decaying periodic outbursts, as observed in the COVID-19 or
Spanish flu epidemic. It is shown that if immunity decays, even slowly, the model yields a fully periodic dynamics.

Mathematical models of epidemics remain indispensable in
the fight against diseases such as the COVID-19 crisis. These
models help to take political decisions such as mobility re-
strictions. An example of such a model is the compartmen-
tal SIR1 model, which is the paradigm-model to illustrate the
elementary dynamics of epidemic spreading in a well-mixed
community.

The SIR dynamics describe the exponential increase of in-
fected individuals upto a level where the epidemic saturates
through herd-immunity. After this saturation, the number of
infected individuals declines exponentially towards zero. In
most epidemics, this global immunity is not attained after the
first peak, or wave of infections. Indeed, another feature of
epidemics is quasi-cyclic behavior with several waves of in-
fection spaced by a period of several months. This behav-
ior is for instance observed during the COVID-19 pandemia2,
the 2014 Ebola outbreak in Guinea3 as well as during the in-
fluenza epidemic in the early 20th century4.

The main contribution of the present work is the insight that
these two features (rapid saturation and quasi-cyclic behav-
ior) are caused by the same underlying physical phenomenon:
we propose to model the global effect of local epidemic sat-
uration. To understand how exactly this local herd immunity
leads to epidemic waves, we derive and analyse a novel vari-
ant of the SIR model, introducing the minimum amount of
additional complexity required to obtain successive epidemic
waves.

The SIR model is too simple to describe the dynamics
of a realistic epidemic, in particular since no distinction is
made between susceptible individuals which are in contact,
or on the contrary, far away from contagious individuals.
This well-mixedness assumption can be leveraged in vari-
ous ways. One possible way is to radically change the ap-
proach and consider agent-based descriptions5,6. If one wants
to keep a compartmental approach, diffusion can be added
to the system7,8, memory-effects9, or one can consider SIR-
type models on lattices or using small-world networks10–12.
A minimal refinement was proposed to introduce the notion
of space-dependence in the compartmental approach, dividing
the community into only two groups: individuals close to, and
those far away from the infected13. It is this approach, which
succesfully introduced the effect of local herd-immunity on
the first wave of the epidemics, that we will improve in order
to model successive outbursts.

In the domain of mathematical modeling of epidemics, var-
ious ways are explored to reproduce quasi-cyclic behavior14.

Examples are to adapt predator-prey descriptions15,16 or to in-
troduce time-dependent model constants17–19. This latter ap-
proach needs to arbitrarily set the period and the beginning
of the pandemic. However, the emergence of pandemics is
in general not correlated to typical seasons, and can occur at
any time20. What is new here is that we do not explicitly try
to model the quasi-cyclic behavior; instead we demonstrate
that it is a direct consequence of the spatial dynamics of an
epidemic. The present investigation suggests that saturation
is attained well before global collective immunity is reached,
due to local collective immunity in clusters, and that after a
phase of decline, the epidemic revives when local outbreaks
have decayed sufficiently to become mathematically equiva-
lent to new small-size clusters.

a. SBIGR, the global dynamics of an epidemic in a non-
fully-mixed community. The SBIGR approach can be under-
stood as follows. The total population consists of N individ-
uals. Within well-defined clusters the local dynamics is given
by a SIR like approach. Indeed, we define a sub-ensemble
N∗ of individuals within local clusters around the infected.
These individuals are either susceptible B, infected I or re-
covered/removed G. For the individuals far away from the
infected, we have in our desciption two types: susceptibles S
and removed R. It is important to understand that this sub-
ensemble, further named the blob, represents multiple inde-
pendent clusters with little or no connectivity, that will share
similar constant physiological and social parameters, leading
to similar dynamical equations.

Within the blob, corresponding to the ensemble of clusters,
we have a SIR type of dynamics,

dB
dt

= −β
BI
N∗ +φSB (1)

dI
dt

= β
BI
N∗ − γI (2)

dG
dt

= γI −φGR (3)

(4)

with N∗ =B+I+G. For a fixed total population size, we have
then

dS
dt

= −φSB +χR (5)

dR
dt

= φGR −χR (6)

(7)
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FIG. 1. Representation of the SBIGR model. The susceptible part of
the population is subdivided into individuals B inside the blob, and
S, outside the blob. The recovered or removed are also subdivided
into individuals inside R and individuals outside Q the blob. The
blob population is constituted by N∗ = B+ I+R. Model coefficients
with an asterisk are normalized by N∗, e.g. κ∗ ≡ κ/N∗. The dashed
arrow from the R to the S compartment reflects the decrease of natural
immunity.
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FIG. 2. Graphical representation of the evolution of an (a) accelera-
tion, or (b) deceleration epidemic. The "blob" around the infected I
represents all people that are in close contact with contagious indi-
viduals. The blob expands when the local concentration of I is large.
The blob will shrink if little infected are present. S and B are suscep-
tibles, G,R are removed/recovered. Change in surface, δA during a
time-intercal is indicated as a shaded area.

where we have added an exchange term χR from the R to
the S compartment. This term represents the decrease of im-
munity after infection, that we will consider null (χ = 0) for
the moment. Without the fluxes φSB and φGR we have a local
SIR system, with B,G taking the place of S,R, respectively.
Schematically, the compartments are shown in Fig. 1, where
the fluxes φSB and φGR are indicated by arrows in both direc-
tions, corresponding to a growing or shrinking epidemic. The
novelty of the SBIGR model is to estimate these fluxes with a
physical model for the spatial evolution of the clusters, intro-
ducing a diffusion approach for the blob evolution21.

In Fig. 2 we have represented a visual representation of the
model. We now consider that the blob evolves but that the
individuals remain fixed in space and that they are uniformly
spaced. The surface of the blob is A∗ and the total surface
containing all individuals N is denoted A. We have then that
N∗/N = A∗/A.

On the left of Fig. 2 we illustrate the blob expansion, gov-
erned by the proximity of infected people (inside the blob,
close to the border) with susceptibles (outside the blob). In a
time-interval δ t, it is observed that the number of susceptible
individuals which were outside the blob but who will become
part of it is given by

[δB]+ = δA+ S
A
, (8)

where S/A is the average concentration of susceptibles outside
the blob. In the schematic, δA+ corresponds to the increase
of surface of the blob. This increase of surface should be, at
least dimensionally, proportional to δA+ ∼ κ̃δ t, where κ̃ is
a diffusion coefficient. The unknown at this point is how κ̃

depends on the other parameters of the problem. What we do
know is that the blob will expand when the concentration of
infected individuals is large enough. We should therefore have
a dependency on the local proportion of infected in the blob,
I/N∗, and we have therefore in the simplest form κ̃ = κI/N∗

and thereby

φ
+
SB ≈

[
δB
δ t

]+
=

κ

A
SI
N∗ . (9)

Let us now consider the case when the blob shrinks. Simi-
larly, the amount of individuals that were in the blob, but will
find themselves outside it, are given by the decrease of sur-
face, multiplied by the local concentration of the B. We have
therefore, if the blob shrinks, that

[δS]+ = δA− B
A∗ . (10)

If we now model the shrinking by a negative diffusion process,
independent of the presence or not of infected people, and
we introduce ζ the diffusion coefficient associated with this
process, we have

φ
−
SB ≈

[
δS
δ t

]+
= ζ

B
A∗ =

ζ

A
BN
N∗ . (11)

Thereby we have modeled both the positive and the negative
contributions to the flux between S and B,

φSB =
κ

A
IS
N∗ −

ζ

A
BN
N∗ . (12)

Exactly the same derivation, considering now the G,R indi-
viduals, leads to the expression

φGR =−κ

A
IR
N∗ +

ζ

A
GN
N∗ . (13)

In order to obtain these expressions we assumed that N ≫ N∗,
which is an assumption which is well satisfied in most appli-
cations. In the following, since A is fixed, we will replace the
quantities κ/A and ζ/A by κ and ζ so that κ−1 and ζ−1 can
be associated with the typical timescales of diffusion during
expansion and shrinking, respectively.
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FIG. 3. (a) Numerical integration of the SBIGR model [Eqs. (14)].
The figure shows a stackplot of the quantities B, I,G. Slowly decay-
ing oscillations are observed for this set of parameters. In the inset it
is illustrated that the time-interval T between two peaks of the num-
ber of infected individuals (indicated by dots in the main plot) is set
by the parameter κ/ζ .

In the present description all terms are expressed as dimen-
sional quantities. In order to simplify the analysis, we in-
troduce dimensionless variables, where all compartments are
normalized by N. For instance we note S̃ = S/N, and intro-
duce the same normalization for B, I,G,R. This naturally im-
plies Ñ∗ = N∗/N. Omitting in the following the tildes, since
we will only use normalized quantities, we have

dS
dt

= −κ
∗SI +ζ

∗B+χR

dB
dt

= −β
∗BI +κ

∗SI −ζ
∗B

dI
dt

= β
∗BI − γI (14)

dG
dt

= γI +κ
∗IR−ζ

∗G

dR
dt

= −κ
∗IR+ζ

∗G−χR,

where we introduced for the coefficients β , κ and ζ the nota-
tion x∗ ≡ x/N∗ = x/(B+ I +G).

Before numerically integrating the model, we first interpret
the physical meaning of the 5 model-parameters.

The value of γ−1 represents the typical duration of the con-
tagious period of an individual and β will determine the con-
tagiousness, i.e., the rate at which an infected individual con-
taminates susceptible individuals. These two quantities de-
termine to a large extent the initial, exponential phase of an
epidemic. In particular, their ratio β/γ determines the repro-
duction number in the beginning of an epidemic. This number
β/γ = R0(0) ≈ 2, at least in the beginning of the COVID19
pandemic22. The new quantities in the SBIGR model are the
growing and shrinking time-scales 1/κ and 1/ζ , as well as
1/χ , if decrease of immunity is taken into account.

The κ parameter, associated with the expansion of the blob
sets the height of the first epidemic peak. Indeed, the SBIGR

dynamics allow to reproduce the saturation of an outbreak be-
fore the total population has attained herd-immunity. It is pos-
sible to estimate the peak-value of the number of infected in-
dividuals analytically (see appendix). The peak is given by

Imax ≈
κ

γ

(
β − γ

β

)2

S. (15)

The parameter ζ does not appear in this expression, which
governs the short-time behavior of the epidemic wave, but is
key in determining the long-time dynamics. Indeed, the blob
deflates after local herd immunity has been attained, and we
show in the appendix that at long times the blob evolves as

dN∗

dt
≈−ζ , (16)

which allows to show that for given β and γ the typical decay
time scales like T ∼ κ/(ζ γ).

These ideas are further assessed by numerical integration
of the model. Thereto we need the definition of initial con-
ditions and values for the control parameters. For the initial
conditions we consider the case of the very beginning of an
epidemic where B(0) = G(0) = R(0) = 0, I(0) = I0 ≪ 1, and
S(0) = 1− I0. The parameters β and γ are determined such
that β/γ = 2. We take γ = 0.18 which gives an order of mag-
nitude of the infectious period of approximately 1 week (72%
of the individuals have been cured or removed from the I com-
partment after 7 days). We set for the moment χ = 0 (persis-
tent immunity).

We illustrate the model with κ = 0.002 and ζ = 0.00015 in
Fig. 3. The most salient feature of this stackplot is the cyclic
nature of the epidemic: even in the absence of decay of im-
munity (χ = 0), the SBIGR model, representing the epidemic
as an inflating and deflating blob, exhibits well-defined waves,
characteristic for pandemics such as COVID19.

In order to understand the influence of the parameters on
the period of the waves, we have systematically varied ζ for
different values of κ (keeping κ > ζ ). It is shown in the inset
of Fig. 3, as demonstrated in the supplementary materials, that
the effective period between successive local maxima of the
number of infected is proportional to κ/ζ .

A standing question is obviously whether this very simple
model shows more than qualitative agreement with a realistic
pandemic. However, quantitative comparison over long time-
periods is not straightforward. Clearly, in the current pan-
demic, different countries have used different control strate-
gies such as strict lockdowns. These would to some extent
influence the parameters β and κ of the model, and possibly
ζ , so that these parameters cannot be chosen strictly constant
anymore. This will possibly influence the periodic charac-
ter of the pandemic, and more certainly modify the relative
heights of successive peaks.

Varying the model parameters as a function of time is a
common way to reproduce a posteriori the evolution of an
epidemic23. This will however severely complicate the anal-
ysis of the model. It is already remarkable that the present
model with constant coefficients reproduces saturation of the
first wave followed by a close to periodic slowly decaying
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FIG. 4. (a) Comparison of the results of the SBIGR model [Eqs. (14)]
with data of newly reported cases for South Africa. Results for dif-
ferent values of κ are shown for a fixed value of κ/ζ .
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FIG. 5. Phase-space plot of the SBIGR model [Eqs. (14)] with de-
crease of immunity, χ > 0. For the current parameters, the value
χ > 0.0007, corresponding to a typical immunity decrease time
t1/2 ≈ 1000days leads to a limit cycle, representing a non-vanishing
periodic epidemic. For χ < 0.0007, the amplitude of the peaks de-
creases in time.

dynamics. We have investigated different countries and have
observed that some countries show a more periodic behavior
than others. One of the countries where the data of the number
of daily new infected cases is most periodic is South-Africa.
We keep β = 0.36, γ = 0.18 and the linear relation in the inset
of Fig. 3 allows to determine the value for κ/ζ . Subsequently
results for different values of κ are shown in Fig. 4.

The most important observation is that the SBIGR model
allows to reproduce, for these model-parameters, the correct
period of the waves and a good estimate of the order of mag-
nitude of the number of infected individuals. Indeed the ex-
act number is most probably underestimated significantly in
the beginning of the epidemic since tests were less available.
Furthermore, what our model does obviously not take into ac-
count in its simplest form, is the genetic evolution of the virus
leading to variants which have different properties, thereby
affecting the values of β ,γ . Nevertheless, even without tak-
ing these effects into account, the results are strikingly simi-
lar, and we hope that more sophisticated models based on this
framework, beyond the scope of the present work, will signif-

icantly improve our understanding of the epidemics.
b. The existence of a limit-cycle. The epidemic waves

in Fig. 4 are very pronounced. Their amplitude decays and
clearly the number of individuals will eventually tend to zero
and stay there. Indeed, since the population-size N is fixed and
lasting immunity is obtained, the epidemic will eventually die
out. If we model, as in Fig. 1 the transfer from the R to the S
compartment by a linear transfer term ±χR, the natural decay
of immunity can be taken into account. This can correspond
both to genetic evolution of the virus, or to the evolution of
the immune-system of the individuals in the R-compartment.
We have added, for the same parameters as used to model
the evolution of the COVID19 pandemic in South-Africa, the
transfer term and we have varied the value of χ .

We illustrate using a phase-space plot in BIG space in Fig. 5
that the dynamics of our model tends to a limit-cycle for
χ > 7 ·10−4, corresponding to a t1/2 ≈ 103, the time at which
the immunity has decayed for an isolated person to 50%. This
value of t1/2 is an order of magnitude larger than estimated for
the COVID19 disease, where t1/2 = O(102)24. Considering
that in the current pandemic the natural immunity acquired af-
ter infection decays with a typical timescale approximately 3
months, we can conclude that, within the scope of our model,
the Covid19 virus will evolve on such a limit-cycle.

Discussion & Conclusion. The main conclusion that can
be drawn from the current work is that epidemic waves can
be caused by the spatial nature of the spreading of the disease
which will, at long times, often be slower than the local satura-
tion. This saturation allows to decrease the local concentration
of infected so that the spread slows down. However, this satu-
ration does not, by any means indicate the end of an epidemic,
since the deflation of the blob, representing the ensemble of
clusters around infected individuals will eventually lead to a
situation where a new spread of the disease is possible. The
resulting epidemic waves can therefore not be eradicated by
a lock-down which is shorter than at least several times ζ−1.
Obviously, the model needs to be refined before precise quan-
titative predictions can be formulated. The power of our ap-
proach is that, to reproduce the main features (saturation and
cyclic dynamics), the SBIGR model does not need to model
the effect of social-distancing, finite incubation time, demo-
graphic evolution, lock-down, seasonal fluctuations, vaccina-
tion, evolution of the virus etc. The complexity of the model
remains therefore limited to 5 quantities, evolving according
to 5 ODEs with constant parameters, opening a way to effi-
ciently construct more complex models to assess the influence
of different factors on epidemic waves.

Data Availability Statements The data that support the
findings of this study are openly available from the Johns Hop-
kins University data-base2.
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of immunity.

APPENDIX

Short time behavior: height of the first peak. In order to
better understand the influence of the different parameters, we
analytically estimate the influence of the peak as a function
of κ assuming ζ = 0. The resulting equation for B becomes
then,

dB
dt

=−β
∗BI +κ

∗SI. (17)

A maximum for B is obtained by setting the time-derivative to
zero leading to the solution for the maximum of B at time τ ,

B(τ) =
κ

β
S(τ). (18)

In order to estimate the height of the first peak, we assume
exponential increase of both I and G in this phase. The expo-
nential of I is determined by the exponent β − γ and G will
increase with the same exponential time-dependence. Indeed,
during this phase, we have

dG
dt

≈ γI, (19)

so that, if I ∼ exp(β − γ)∼ G, we have

G =
γ

β − γ
I (20)

and we assume that this approximation holds until the number
of infected individuals peaks. We now set the time-derivative
in the equation for I equal zero to obtain at this peak,

γI(B+ I +G) = βBI (21)

since I > 0, and using Eqs. (20) and (18), we have at t = τ ,

I(τ) =
(β − γ)2

γβ
B(τ) =

(β − γ)2

γβ

κ

β
S(τ). (22)

If, finally, we assume that the number of infected peaks ap-
proximately at the same time as B, and that S(τ) ≈ S(0) = 1,
we obtain that the first peak of the number of infected is given
by

Imax =
(β − γ)2

β 2
κ

γ
. (23)

This expression shows thus that the height of the first peak of
the epidemic is directly proportional to the value of κ .

Time-scale of the epidemic waves. An estimate of the pe-
riod of the waves can be obtained by considering the dynamics
of the blob. The blob is defined as N∗ = B+ I +G. Summing
the equations for B, I,G yields

dN∗

dt
= κI

S+R
N∗ −ζ

B+G
N∗ . (24)

We can assess the long-time evolution of an epidemic wave,
when I ↓ 0. In this limit, the second term becomes dominant,
and N∗ ≈ B+G. We obtain then the expression,

dN∗

dt
≈−ζ . (25)

The decay of the blob is therefore linear, to that we can esti-
mate the order of magnitude of the time T from the peak of a
wave to the beginning of the next wave by

T ≈ N∗
max

ζ
. (26)

In order to estimate the maximum blob size, we combine the
expressions for the maximum of I,G and B (relations (20),
(18) and (22)) to find the expression,

N∗
max ≈

κ

γ
S, (27)

so that the typical decay-time can be estimated, to be

T ≈ κ

ζ γ
. (28)

This expression is thus an order of magnitude estimate of the
typical decay-time of an epidemic wave.
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