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Adding the notion of spatial locality to the susceptible-infected-recovered (or SIR) model, allows to capture local satu-
ration of an epidemic. The resulting minimum model of an epidemic, consisting of five ordinary differential equations
with constant model coefficients, reproduces slowly decaying periodic outbursts, as observed in the COVID-19 or
Spanish flu epidemic. It is shown that if immunity decays, even slowly, the model yields a fully periodic dynamics.

Mathematical models of epidemics remain indispensable in
the fight against diseases such as the COVID-19 crisis. These
models help to take political decisions such as mobility re-
strictions. An example of such a model is the compartmen-
tal SIR1 model, which is the paradigm-model to illustrate the
elementary dynamics of epidemic spreading in a well-mixed
community.

The SIR dynamics describe the exponential increase of in-
fected individuals upto a level where the epidemic saturates
through herd-immunity. After this saturation, the number of
infected individuals declines exponentially towards zero. In
most epidemics, this global immunity is not attained after the
first peak, or wave of infections. Indeed, another feature of
epidemics is quasi-cyclic behavior with several waves of in-
fection spaced by a period of several months. This behav-
ior is for instance observed during the COVID-19 pandemia2,
the 2014 Ebola outbreak in Guinea3 as well as during the in-
fluenza epidemic in the early 20th century4.

The main contribution of the present work is the insight that
these two features (rapid saturation and quasi-cyclic behavior)
are caused by the same underlying physical phenomenon. We
propose a novel modeling of the global effect of local epi-
demic saturation. To this end, we introduce the concept of
local herd immunity, which means that, in the population di-
rectly in contact with the infected individuals (or clusters), a
sufficient amount of individuals is immune, so that spreading
slows down or even stops5. This does in general not imply that
(global) herd-immunity is attained by the total population. To
understand how exactly this local herd immunity leads to epi-
demic waves, we derive and analyse a novel variant of the SIR
model, introducing the minimum amount of additional com-
plexity required to obtain successive epidemic waves.

The SIR model is too simple to describe the dynamics of
a realistic epidemic, in particular since no distinction is made
between susceptible individuals which are in contact, or on
the contrary, far away from contagious individuals. This well-
mixedness assumption can be leveraged in various ways. One
possible way is to radically change the approach and consider
agent-based descriptions6–8. If one wants to keep a compart-
mental approach, diffusion can be added to the system9,10,
memory-effects11, or one can consider SIR-type models on
lattices or using small-world networks12–14. We recently pro-
posed a minimal refinement to introduce the notion of space-
dependence in the compartmental approach, dividing the com-
munity into only two groups: individuals close to, and those
far away from the infected5. It is this approach, which succes-

fully introduced the effect of local herd-immunity on the first
wave of the epidemics, that we will improve in order to model
successive outbursts.

In the domain of mathematical modeling of epidemics, var-
ious ways are explored to reproduce quasi-cyclic behavior15.
Examples are to adapt predator-prey descriptions16,17 or to in-
troduce time-dependent model constants18–20. This latter ap-
proach needs to arbitrarily set the period and the beginning
of the pandemic. However, the emergence of pandemics is
in general not correlated to typical seasons, and can occur at
any time21. What is new here is that we do not explicitly try
to model the quasi-cyclic behavior; instead we demonstrate
that it is a direct consequence of the spatial dynamics of an
epidemic. The present investigation suggests that saturation
is attained well before global collective immunity is reached,
due to local collective immunity in clusters, and that after a
phase of decline, the epidemic revives when local outbreaks
have decayed sufficiently to become mathematically equiva-
lent to new small-size clusters.

a. SBIGR, the global dynamics of an epidemic in a non-
fully-mixed community. In the following we introduce the
SBIGR approach, which is a compartmental model. The
acronym comes from the names of the five compartments that
we will introduce, as usual in compartmental modeling. In
addition to the classical S, I,R susceptible, infected, recov-
ered (or removed) compartments, there are two new compart-
ments B,G, which introduce the notion of spatial locality in
the model. We now explain this further.

The total population consists of N individuals. Within well-
defined clusters the local dynamics is given by a SIR like ap-
proach. We define a sub-ensemble N∗ of individuals within lo-
cal clusters around the infected. These individuals are either
(local) susceptible B, infected I or (local) recovered G. For
the individuals far away from the infected, we have in our de-
sciption two types: susceptibles S and recovered R. Both the
ensembles S and B indicate therefore susceptibles, far away
from, or close to the infected, respectively. Similarly R and G
both indicate recovered individuals. It is important to under-
stand that the sub-ensemble N∗, in the following named the
blob, represents multiple independent clusters with little or
no connectivity, that will share similar constant physiological
and social parameters, leading to similar dynamical equations.
Both N and N∗ are thus macroscopic quantities. The 5 types
of individuals are represented as compartments in Fig. 1.

Within the blob, corresponding to the ensemble of clusters,
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FIG. 1. Representation of the SBIGR model. The susceptible part of
the population is subdivided into individuals B inside the blob, and S,
outside the blob. The recovered are also subdivided into individuals
G inside and individuals R outside the blob. The blob population is
constituted by N∗ = B+ I +G. The dashed arrow from the R to the
S compartment reflects the temporal decrease of immunity.

we have a SIR type of dynamics,

dB
dt

= −β
BI
N∗ +φSB (1)

dI
dt

= β
BI
N∗ − γI (2)

dG
dt

= γI −φGR (3)

with N∗ =B+I+G. For a fixed total population size, we have
then

dS
dt

= −φSB +χR (4)

dR
dt

= φGR −χR (5)

where we have added an exchange term χR from the R to the S
compartment. This term represents the decrease of immunity
after infection, that we will consider null (χ = 0) for the mo-
ment. Without the fluxes φSB and φGR we have a local SIR sys-
tem, with B,G taking the place of S,R, respectively. Schemat-
ically, the compartments are shown in Fig. 1, where the fluxes
φSB and φGR are indicated by arrows in both directions. The
novelty of the SBIGR model is to estimate these fluxes with a
physical model for the spatial evolution of the clusters, intro-
ducing a diffusion approach for the blob evolution22.

In Fig. 2 we propose a visual representation of the model.
We insist here that this is not a spatial representation of clus-
ters and moving individuals, but a schematic where the en-
semble of clusters is regrouped in one single blob. We can
then consider that the size of the blob evolves but that the in-
dividuals remain fixed in space. The collective effect of the
movement of individuals within the blob, resulting in contam-
ination by contact, is embodied by the value of β . The effect
of interactions between individuals which are inside and out-
side a cluster determines the values of κ and ζ 5.

S
B
I
G
R

t

t+δt

δA+ δA-

FIG. 2. Graphical representation of the evolution of an (a) acceler-
ating, or (b) decelerating epidemic. The "blob" around the infected
I represents all people that are in close contact with contagious in-
dividuals. The blob expands when the local concentration of I is
large. The blob will shrink if little infected are present. S and B
are susceptibles, G,R are recovered. Change in surface, δA during a
time-interval δ t is indicated as a shaded area.

This approach allows a geometrical interpretation of the
present compartmental model without introducing an agent-
based description. In this framework, we do not resolve the
movement of individuals explicitly, but describe the evolution
of the fictive surface of the blob. We call this surface A∗ and
the total surface containing all individuals N is denoted A. We
have then that N∗/N = A∗/A.

On the left of Fig. 2 we illustrate the blob expansion, gov-
erned by the proximity of infected people (inside the blob,
close to the border) with susceptibles (outside the blob). In a
time-interval δ t, it is observed that the number of susceptible
individuals, which were outside the blob but who will become
part of it, is given by

[δB]+ = δA+ S
A
, (6)

where S/A is the average concentration of susceptibles outside
the blob. In the schematic, δA+ corresponds to the increase
of surface of the blob. This increase of surface should be, at
least dimensionally, proportional to δA+ ∼ κ̃δ t, where κ̃ is
a diffusion coefficient. The unknown at this point is how κ̃

depends on the other parameters of the problem. What we do
know is that the blob will expand when the concentration of
infected individuals is large enough. We should therefore have
a dependency on the local proportion of infected in the blob,
I/N∗, and we have therefore in the simplest form κ̃ = κI/N∗

and thereby

φ
+
SB ≈

[
δB
δ t

]+
=

κ

A
SI
N∗ . (7)

Let us now consider the case where the blob shrinks. Simi-
larly, the amount of individuals that were in the blob, but will
find themselves outside it, are given by the decrease of sur-
face, multiplied by the local concentration of the B. We have
therefore, if the blob shrinks, that

[δS]+ = δA− B
A∗ . (8)

If we now model the shrinking by a negative diffusion process,
independent of the presence or not of infected people, and

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.08.31.22279430doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.31.22279430
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

we introduce ζ the diffusion coefficient associated with this
process, we have

φ
−
SB ≈

[
δS
δ t

]+
= ζ

B
A∗ =

ζ

A
BN
N∗ . (9)

Thereby we have modeled both the positive and the negative
contributions to the flux between S and B,

φSB =
κ

A
SI
N∗ −

ζ

A
BN
N∗ . (10)

Exactly the same derivation, considering now the G,R indi-
viduals, leads to the expression

φGR =−κ

A
RI
N∗ +

ζ

A
GN
N∗ . (11)

In order to obtain these expressions we assumed that N ≫ N∗,
which is a well satisfied assumption in most applications. In
the following, since A is fixed, we will replace the quanti-
ties κ/A and ζ/A by κ and ζ so that κ−1 and ζ−1 can be
associated with the typical timescales of diffusion during ex-
pansion and shrinking, respectively. In more sophisticated de-
scriptions the influence of the uncertainty of these parameters
can be investigated23, or its values can be changed drastically
to mimic mobility restrictions5.

In the present description all terms are expressed as dimen-
sional quantities. In order to simplify the analysis, we in-
troduce dimensionless variables, where all compartments are
normalized by N. For instance we note S̃ = S/N, and intro-
duce the same normalization for B, I,G,R. This naturally im-
plies Ñ∗ = N∗/N. Omitting in the following the tildes, since
we will only use normalized quantities, we have

dS
dt

= − κ

N∗ SI +
ζ

N∗ B+χR

dB
dt

= − β

N∗ BI +
κ

N∗ SI − ζ

N∗ B

dI
dt

=
β

N∗ BI − γI (12)

dG
dt

= γI +
κ

N∗ RI − ζ

N∗ G

dR
dt

= − κ

N∗ RI +
ζ

N∗ G−χR

N∗ = B+ I +R,

where the division by N∗, a quantity which varies in time as
the epidemic evolves, is a very important feature of the SBIGR
model. By identifying the ratios ζ

N∗ , β

N∗ and κ

N∗ to normalized
coefficients of the differential system, this introduces without
any ad-hoc or external forcing a time dependence of the oth-
erwise constant coefficients ζ , β and κ .

Before numerically integrating the model, we first interpret
the physical meaning of the 5 model-parameters.

The value of γ−1 represents the typical duration of the con-
tagious period of an individual and β will determine the con-
tagiousness, i.e., the rate at which an infected individual con-
taminates susceptible individuals. These two quantities de-
termine to a large extent the initial, exponential phase of an
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FIG. 3. (a) Numerical integration of the SBIGR model [Eqs. (12)].
The figure shows a stackplot of the quantities B, I,G. Slowly decay-
ing oscillations are observed for this set of parameters. In the inset it
is illustrated that the time-interval T between two peaks of the num-
ber of infected individuals (indicated by dots in the main plot) is set
by the parameter κ/ζ .

epidemic. In particular, their ratio β/γ determines the repro-
duction number in the beginning of an epidemic. This number
β/γ = R0(0)≈ 2, at least in the beginning of the COVID-19
pandemic24. The new quantities in the SBIGR model are the
growing and shrinking time-scales 1/κ and 1/ζ , as well as
1/χ , if decrease of immunity is taken into account.

The κ parameter, associated with the expansion of the blob
sets the height of the first epidemic peak. Indeed, the SBIGR
dynamics allow to reproduce the saturation of an outbreak be-
fore the total population has attained herd-immunity. It is pos-
sible to estimate the peak-value of the number of infected in-
dividuals analytically (see appendix). The peak is given by

Imax ≈
κ

γ

(
β − γ

β

)2

S. (13)

The parameter ζ does not appear in this expression, which
governs the short-time behavior of the epidemic wave, but is
key in determining the long-time dynamics. Indeed, the blob
deflates after local herd immunity has been attained, and we
show in the appendix that at long times the blob evolves as

dN∗

dt
≈−ζ , (14)

which allows to show that for given β and γ the typical decay
time scales like T ∼ κ/(ζ γ).

These ideas are further assessed by numerical integration of
the model. We use the PyGom library developped by Public
Health England25, that makes use of the integrators provided
by the SciPy package. We solve the Initial Value Problem
with a time-step of one day. Thereto we need the definition
of initial conditions and values for the control parameters.
For the initial conditions we consider the case of the very
beginning of an epidemic where B(0) = G(0) = R(0) = 0,
I(0) ≡ I0 = 10−5 ≪ 1, and S(0) = 1 − I0. The parameters
β and γ are determined such that β/γ = 2. We take γ = 0.18
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FIG. 4. (a) Comparison of the results of the SBIGR model [Eqs. (12)]
with data of newly reported cases for South Africa. Results for dif-
ferent values of κ are shown for a fixed value of κ/ζ .

which gives an order of magnitude of the infectious period
of approximately 1 week (72% of the individuals have been
cured or removed from the I compartment after 7 days). These
values are of the order of magnitude of the first epidemic wave
of the COVID-19 epidemic. We set for the moment χ = 0
(persistent immunity).

We illustrate the model with κ = 0.002 and ζ = 0.00015 in
Fig. 3. The most salient feature of this stackplot is the cyclic
nature of the epidemic: even in the absence of decay of im-
munity (χ = 0), the SBIGR model, representing the epidemic
as an inflating and deflating blob, exhibits well-defined waves,
characteristic for pandemics such as COVID-19.

In order to understand the influence of the parameters on
the period of the waves, we have systematically varied ζ for
different values of κ (keeping κ > ζ ). It is shown in the inset
of Fig. 3, as demonstrated in the supplementary materials, that
the effective period between successive local maxima of the
number of infected is proportional to κ/ζ .

A standing question is obviously whether this very simple
model shows more than qualitative agreement with a realistic
pandemic. However, quantitative comparison over long time-
periods is not straightforward. Clearly, in the current pan-
demic, different countries have used different control strate-
gies such as strict lockdowns. These would to some extent
influence the parameters β and κ of the model, and possibly
ζ , so that these parameters cannot be chosen strictly constant
anymore. This will possibly influence the periodic charac-
ter of the pandemic, and more certainly modify the relative
heights of successive peaks.

Varying the model parameters as a function of time is a
common way to reproduce a posteriori the evolution of an
epidemic26. This would however severely complicate the un-
derstanding of the model. It is remarkable that the present
model with constant coefficients reproduces saturation of the
first wave followed by a close to periodic slowly decaying

BIG
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FIG. 5. Phase-space plot of the SBIGR model [Eqs. (12)] with de-
crease of immunity, χ > 0. For the current parameters, for values
of χ > χcrit = 7.15×10−4, corresponding to a typical immunity de-
crease time t1/2 ≈ 1000 days leads to a limit cycle, representing a
non-vanishing periodic epidemic. For χ < 7.15× 10−4, the system
reaches a stable point.

dynamics. We have investigated different countries and have
observed that some countries show a more periodic behavior
than others. One of the countries where the data of the number
of daily new infected cases is most periodic is South-Africa.
We keep β = 0.36, γ = 0.18 and the linear relation in the inset
of Fig. 3 allows to determine the value for κ/ζ . Subsequently
results for different values of κ are shown in Fig. 4.

The most important observation is that the SBIGR model
allows to reproduce, for these model-parameters, the correct
period of the waves and a good estimate of the order of mag-
nitude of the number of infected individuals. Indeed the ex-
act number is most probably underestimated significantly in
the beginning of the epidemic since tests were less available.
Furthermore, what our model does obviously not take into ac-
count in its simplest form, is the genetic evolution of the virus
leading to variants which have different properties, thereby
affecting the values of β ,γ . Nevertheless, even without tak-
ing these effects into account, the results are strikingly simi-
lar, and we hope that more sophisticated models based on this
framework, beyond the scope of the present work, will signif-
icantly improve our understanding of the epidemics.

b. The existence of a limit-cycle. The epidemic waves
in Fig. 4 are very pronounced. Their amplitude decays and
clearly the number of infected individuals will eventually tend
to zero and stay there. Indeed, since the population-size N
is fixed and lasting immunity is obtained, the epidemic will
eventually die out. If we model, as in Fig. 1 the transfer from
the R to the S compartment by a linear transfer term ±χR, the
natural decay of immunity can be taken into account. This
can correspond both to genetic evolution of the virus, or to
the evolution of the immune-system of the individuals in the
R-compartment. We have added, for the same parameters as
used to model the evolution of the COVID-19 pandemic in
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South-Africa, this transfer term and we have varied the value
of χ . More complicated models could introduce a nonlinear-
ity in this term, or time-variations, mimicking the different
immune decline of variants of a virus.

We illustrate, using a phase-space plot in BIG space in
Fig. 5, that the dynamics of our model tends to a limit-
cycle for χ > χcrit = 7.15× 10−4, corresponding to a value
1/χcrit ∼ t1/2 ≈ 103 days, the time at which the immunity has
decayed for an isolated person to 50%. This value of t1/2 is an
order of magnitude larger than estimated for the COVID-19
disease, where t1/2 = O(102) days27. Considering that in the
current pandemic the natural immunity acquired after infec-
tion decays with a typical timescale approximately 3 months,
we can conclude that, within the scope of our model, the
COVID-19 virus will evolve on such a limit-cycle.

The origin of the limit-cycle can be illustrated analytically
by carrying an analysis of the simplified system where we set
the quantities S and R to 1 and 0, respectively. This allows
to reduce the model to three ODEs which mimic the begin-
ning of the epidemic described by the SBIGR model. For this
reduced system it is straightforward to determine expressions
for the fixed-points of the system, and the eigenvalues asso-
ciated with the linearized system. In the appendix we show
that this analysis yields, for fixed γ and β , values for κ and ζ

which lead to a limit-cycle. As we illustrated in Fig. 5, this
limit-cycle is in the full model (with evolving S,R) damped
for χ < χcrit.

Discussion & Conclusion. The main conclusion that can
be drawn from the current work is that epidemic waves can
be caused by the spatial nature of the spreading of the disease
which will, at long times, often be slower than the local satu-
ration. This saturation allows to decrease the local concentra-
tion of infected so that the spread slows down. However, this
saturation does not, by any means indicate the end of an epi-
demic, since the deflation of the blob, representing the ensem-
ble of clusters around infected individuals will eventually lead
to a situation where a new spread of the disease is possible.
The resulting epidemic waves can therefore not be eradicated
by a lock-down which is shorter than at least several times
ζ−1. Obviously, the model needs to be refined before precise
quantitative predictions can be formulated. Furthermore, even
though compartmental models are powerful tools in the study
of epidemic spreading, uncertainty in coefficients leads to a
large unpredictability at long times23. In our opinion the main
contribution of such models is therefore the understanding of
phenomena and their ability to probe the influence of certain
measures. The power of our approach is that, to reproduce
the main features of the COVID-19 epidemic (saturation and
cyclic dynamics), the SBIGR model does not need to model
the effect of social-distancing, finite incubation time, demo-
graphic evolution, lock-down, seasonal fluctuations, vaccina-
tion, evolution of the virus etc. The complexity of the model
remains therefore limited to 5 quantities, evolving according
to 5 ODEs with constant parameters, opening a way to effi-
ciently construct more complex models to assess the influence
of different factors on epidemic waves.

Data Availability Statements The data that support the
findings of this study are openly available from the Johns Hop-

kins University data-base2.
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APPENDIX

Short time behavior: height of the first peak. In order to
better understand the influence of the different parameters, we
analytically estimate the height of the peak as a function of κ

assuming ζ = 0. The resulting equation for B becomes then,

dB
dt

=− β

N∗ BI +
κ

N∗ SI. (15)

A maximum for B is obtained by setting the time-derivative to
zero leading to the solution for the maximum of B at time τ ,

B(τ) =
κ

β
S(τ). (16)

In order to estimate the height of the first peak, we assume
exponential increase of both I and G in this phase. The expo-
nential of I is determined by the exponent β − γ and G will
increase with the same exponential time-dependence. Indeed,
during this phase, we have

dG
dt

≈ γI, (17)

so that, if I ∼ exp(β − γ)∼ G, we have

G =
γ

β − γ
I (18)

and we assume that this approximation holds until the number
of infected individuals peaks. We now set the time-derivative
in the equation for I equal zero to obtain at this peak,

γI(B+ I +G) = βBI (19)

since I > 0, and using Eqs. (18) and (16), we have at t = τ ,

I(τ) =
(β − γ)2

γβ
B(τ) =

(β − γ)2

γβ

κ

β
S(τ). (20)

If, finally, we assume that the number of infected peaks ap-
proximately at the same time as B, and that S(τ) ≈ S(0) = 1,
we obtain that the first peak of the number of infected is given
by

Imax =
(β − γ)2

β 2
κ

γ
. (21)

This expression shows thus that the height of the first peak of
the epidemic is directly proportional to the value of κ .
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Time-scale of the epidemic waves. An estimate of the pe-
riod of the waves can be obtained by considering the dynamics
of the blob. The blob is defined as N∗ = B+ I +G. Summing
the equations for B, I,G yields

dN∗

dt
=

κ

N∗ (S+R)I − ζ

N∗ (B+G). (22)

We can assess the long-time evolution of an epidemic wave,
when I ↓ 0. In this limit, the second term becomes dominant,
and N∗ ≈ B+G. We obtain then the expression,

dN∗

dt
≈−ζ . (23)

The decay of the blob is therefore linear, to that we can esti-
mate the order of magnitude of the time T from the peak of a
wave to the beginning of the next wave by

T ≈ N∗
max

ζ
. (24)

In order to estimate the maximum blob size, we combine the
expressions for the maximum of I,G and B (relations (18),
(16) and (20)) to find the expression,

N∗
max ≈

κ

γ
S, (25)

so that the typical decay-time can be estimated, to be

T ≈ κ

ζ γ
. (26)

This expression is thus an order of magnitude estimate of the
typical decay-time of an epidemic wave, and determines, in
the periodic regime, the time-interval between two successive
epidemic waves.

Analysis of the limit-cycle In order to pinpoint the origin
of the oscillatory behavior, we set S= 1 and R= 0. This yields
the simplified system,

dB
dt

= − β

N∗ BI +
κ

N∗ I − ζ

N∗ B

dI
dt

=
β

N∗ BI − γI (27)

dG
dt

= γI − ζ

N∗ G.

The fixed point of this system is

(B, I,G) =

(
κβ −κγ − γζ

β 2 ,
(κβ −κγ − γζ )ζ

β (κ +ζ )γ
,
(κβ −κγ − γζ )2

(κ +ζ )γβ 2 ) (28)

The Jacobian of the system shows that for the parameters
used in this study [β = 0.36,γ = 0.18,ζ = 1.25× 10−4,κ =
2 × 10−3] the fixed point has two complex conjugate eigen
values and one real eigenvalue:

λ
(1,2) = a±ib; λ

(3) = c. (29)

We find in day−1 units a = 1.32 × 10−3, b = 0.0357, and
c = −0.0718. This is representative of an unstable point
(a > 0), the trajectory around the point focusing on a plane
orthogonal to the third eigenvector (c < 0) and rotating with a
period 2π/b = 5.8 months, as observed in Fig. 3.
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