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 36 

Abstract 37 

Type 2 diabetes is a complex, multifactorial disease with varying presentation and 38 

underlying pathophysiology. Recent studies using data-driven cluster analysis have led 39 

to a stratification of type 2 diabetes into novel subgroups based on six clinical 40 

measurements. Whether these subgroups truly correspond to the underlying 41 

phenotypic differences is nevertheless unclear. Here, we apply an unsupervised, data-42 

driven clustering method (Similarity Network Fusion) to characterize type 2 diabetes in 43 

two independent cohorts involving 1,134 subjects in total based on integrated plasma 44 

lipidomics and peptidomics data without pre-selection. Logistic regression was then 45 

used to explore clustering based on ≥ 180 circulating lipids and 1,195 protein 46 

biomarkers, alongside clinical signatures. Two subgroups were identified, one of which 47 

associated with elevated C-peptide levels, diabetic complications and more severe 48 

insulin resistance compared to the other. GWAS analysis against 403 type 2 diabetes 49 

risk variants revealed associations of several SNPs with clusters and altered molecular 50 

profiles. We thus demonstrate that heterogeneity in type 2 diabetes can be captured by 51 

circulating omics alone using an unsupervised bottom-up approach. Such multi-omics 52 

signatures could reflect pathological mechanisms underlying type 2 diabetes and thus 53 

may help inform on precision medicine approaches to disease management.  54 

 55 

Introduction 56 

Type 2 diabetes is global problem of increasing proportions and a substantial threat to 57 

human health (1). Recently, Ahlqvist et al. (2) proposed an approach to sub-classifying 58 

patients with type 2 diabetes into four different subgroups by K-means clustering using 59 

six clinical measurements: age at diagnosis, Body Mass Index (BMI), Glutamic acid 60 
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decarboxylase (GAD) autoantibodies (GADA), HOMA2-B (beta-cell function), HOMA2-IR 61 

(insulin resistance) and HbA1c. Since then, we (3) and others (4,5) have applied a 62 

similar clustering method with independent cohorts and obtained similar results. These 63 

studies suggest the new classification system facilitates meaningful sample subgroup 64 

discovery across different populations. However, the value of this stratification 65 

approach has been questioned by some researchers (6,7) in terms of its stability and 66 

utility. Importantly, it is still debatable whether type 2 diabetes patients with different 67 

underlying aetiologies are represented faithfully, by placing them into subsets, based 68 

solely on a limited number of clinical features. Indeed, others (8) have proposed that 69 

positioning individuals within a multi-dimensional, and potentially fluid, continuum of 70 

variables may provide a more useful prognostic strategy. 71 

 72 

An alternative clustering approach, Similarity Network Fusion (SNF) (9) combines 73 

multiple levels of data from the same patients into a similarity network, enabling 74 

exploratory multidimensional data-driven clustering. First, patient similarity networks 75 

are generated for each data level independently then merged into a single global 76 

network through an iterative process. Clustering can then be performed on this network 77 

using a graph-based algorithm. As opposed to clustering patients based on a limited 78 

number of pre-selected clinical features, this unsupervised bottom-up approach can 79 

leverage much larger biological data sets (“omics”), and holds the promise of 80 

uncovering new insights, which may be missed by models based on single data types, 81 

limited clinical features or supervised approaches.  82 

 83 

In the present study, we performed distributed analysis of two independent patient 84 

cohorts to explore the stratification of type 2 diabetes based on combined plasma 85 
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lipidomics and peptidomics using a federated database system. In addition, we explore 86 

the genetic factors predisposing to membership in these groups and the potential 87 

correlations with patient molecular profiles.  88 

 89 

Methods 90 

Study populations 91 

We used data from two type 2 diabetes cohorts: Hoorn Diabetes Care System (DCS) and 92 

Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) .  93 

The DCS cohort recruits almost all type 2 diabetes patients from 103 GPs in the West-94 

Friesland region of the Netherlands. This prospective, regional cohort study started in 95 

1998 and by the time of 2017, it holds 12,673 type 2 diabetes patients with a median of 96 

0.7 years (IQR 0.2-3.7) after diagnosis (10).  97 

  98 

  Between 1996 and 2015, GoDARTS recruited 10149 type 2 diabtes patients from the 99 

Tayside region of Scotland. Patients in the GoDARTS cohort were not necessarily 100 

recruited at the time of diagnosis (11). 101 

   102 

 Lipidomics and peptidomics are available for a subset of type 2 diabetes patients in 103 

both DCS and GoDARTS cohorts. These data were generated as part of the IMI2 104 

RHAPSODY project (3). The sample availability for omics was within 2 years of 105 

diagnosis. Of note, individuals were selected without taking into consideration pre-106 

cluster assignments.  107 

 108 

 109 

 110 
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Measurements 111 

Data from both cohorts were used with informed consent obtained through the relevant 112 

local ethical committees. In DCS, all blood measurements are performed in fasted 113 

individuals. In contrast, all measurements in GoDARTS are performed in the non-fasted 114 

state. In DCS, Haemoglobin A1c was measured based on the turbidimetric inhibition 115 

immunoassay for haemolysed whole EDTA blood (Cobas c501, Roche Diagnostics, 116 

Mannheim, Germany). The levels of triglycerides, total cholesterol and HDL cholesterol 117 

were measured enzymatically (Cobas c501, Roche Diagnostics) (10). In DCS and 118 

GoDARTS, C-peptide was measured on a DiaSorin Liaison (DiaSorin, Saluggia, Italy). 119 

Plasma lipids were determined using a QExactive mass spectrometer (Thermo 120 

Scientific). Plasma protein levels were measured on the SomaLogic SOMAscan platform 121 

(Boulder, Colorado, USA). For more details refer to (3).  122 

 123 

Cluster analysis  124 

A federated database of type 2 diabetes cohorts including DCS and GoDARTS has 125 

previously been set up as part of the RHAPSODY project. This system enables statistical 126 

and machine learning analysis to be performed on cohort data at a distance without any 127 

disclosure of sensitive data. The federated database system was interrogated using the 128 

R statistical programming language (version 4.0.4). In both DCS and GoDARTS cohorts, 129 

patients with complete lipidomics and peptidomics (589 and 545 patients, DCS and 130 

GoDARTS, respectively) were used for clustering and subsequent statistical analysis. 131 

Lipidomics and peptidomics values were centered to a mean value of 0 and an SD of 1 in 132 

each cohort using the scale function in R. Euclidean distances between each pair of 133 

patients were then calculated based on the normalized lipidomics or peptidomics data 134 

by using dist2 function from dssSNF (dsSwissKnifeClient package) (12). Patient similarity 135 
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matrices were generated from the Euclidean distance matrices with parameters of K 136 

(the number of nearest neighbours) equal to 20 and hyperparameter alpha equal to 5. 137 

The patient similarity matrices for lipidomics and peptidomics were then fused using 138 

the SNF function within SNFtool package (13) with T (number of iterations) equal to 20. 139 

In both DCS and GoDARTS, men and women were clustered together without pre-140 

separation. Two-step clustering was then performed, in which the optimal number of 141 

clusters is estimated in the first step using the silhouette method and patient 142 

assignments made in the second step. Silhouette widths of fused cluster patients were 143 

calculated from the similarity matrices using the Silhouette_SimilarityMatrix function 144 

(CancerSubtypes package) (14).  145 

 146 

  SNF models were validated by bootstrapping tests (n=1000 iterations) that compared 147 

model classification to models using randomized Euclidean distance matrices. Euclidean 148 

distance matrices were randomized using the function randomizeMatrix within the 149 

picante package (15). For each simulated model, the same parameters were used and 150 

the number of clusters is set to correspond to the number of clusters in the study model. 151 

The significance of each cluster (P-value <=0.05) was calculated by assessing the 152 

frequency of achieving a model with an equal or greater mean local cluster coefficient 153 

for randomized data. Local cluster coefficient calculation was done with unweighted, 154 

undirected adjacency matrices using the transitivity function in the igraph package (16). 155 

The adjacency matrices were generated from the similarity matrices with the top 5% 156 

similarity values set as 1 and the rest as 0. 157 

 158 

  The possibility of using clinical measurements to replicate our multi-omics clustering 159 

results was assessed in a logistic regression model with pseudo R square as the 160 
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recorded results. One of the common interpretations of pseudo R square is the 161 

indication of the improvement to which the model parameters improve upon the 162 

prediction of the null model. In a logistic regression model, we treated the patient’s 163 

assignment results as the dependent variable (cluster 1:1; cluster 2:0) with six clinical 164 

measurements: age, BMI, C-peptide, LDL cholesterol, HDL cholesterol, Triglycerides act 165 

as univariate or together as covariates. Pseudo R square=1-(deviation/ null deviation).  166 

 167 

Statistical analysis  168 

Logistic regression modelling was performed by using the ds.glm function within the 169 

dsBaseClient package to assess the association level of each molecule (lipidomics and 170 

peptidomics), clinical measurements and type 2 diabetes SNPs (17) with the multi-171 

omics clusters. The cluster classification was treated as a dependent categorical variable 172 

with age, gender and BMI acting as covariates. Subsequently, for lipids, peptides and 173 

clinical measurements, each cluster was subset for the strongly associated (P-value 174 

<=0.05) features and the mean values of each group of features in each cluster were 175 

calculated. Mean values were used since, to protect the patient's identity, individual-176 

level data cannot be downloaded from the federated database system. However, it is 177 

possible to display a mean value if it is derived from 5 or more patients. Several mean 178 

values for each feature from 5 or more patients were calculated based on the default 179 

patients’ order in the remote server for each cluster. The feature values were 180 

normalized. Hierarchical clustering was then performed, and the results were visualized 181 

as heatmaps using the R package gplots (18).  182 

 183 

  For each patient in the database, the clinical cluster assignments were defined 184 

previously, similar to (2), but with five clinical variables: age, BMI, HbA1c, high-density 185 
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lipoprotein (HDL) and C-peptide (3). Our clusters were compared with these clinical 186 

clusters by calculating the hypergeometric overlap p-value (phyper function in R).  187 

 188 

  Cox regression was performed using the dssCoxph function in the dssSwissKnifeClient 189 

package. Time to insulin requirement was defined as the length of time from diagnosis 190 

until an individual started insulin treatment for a period of more than six months, or 191 

alternatively as more than two independent HbA1c measurements greater than 69 192 

mmol/mol (8.5%) at least three months apart and when ≥2 non-insulin glucose-193 

lowering drugs were taken. Hazard ratios for time to insulin treatment requirement 194 

within the clusters were calculated using Cox regression with age, gender and BMI as 195 

covariates. 196 

 197 

  The associations between type 2 diabetes SNPs (17) and multi-omics clusters or 198 

molecules with altered expression profiles were assessed using a linear regression 199 

model with age, BMI and gender as co-independent variables. The routinely used 200 

genome-wide common variant association threshold pQ≤Q5Q×Q10−8 was applied in 201 

this study (19) to assess significance.  202 

 203 

  All analyses were performed using the R statistical programming language (version 204 

4.0.4). The Benjamini-Hochberg procedure was used to determine the false discovery 205 

rate correcting for multiple tests. Figures were produced using gplots (version 3.1.1), 206 

ggplot2 (version 3.3.4) and igraph (version 1.2.6). Figure 1a was generated using 207 

Biorender.  208 

 209 

 210 
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Data availability statement 211 

Information about accessing the Rhapsody federated database can be found at: 212 

https://imi-rhapsody.eu/. Summary statistics of lipidomic and proteomic data will be 213 

available from an interactive Shiny dashboard, available upon publication. 214 

 215 

Results 216 

Unsupervised multi-Omics clustering defines two subgroups in independent 217 

cohorts  218 

Similarity Network Fusion (SNF) was performed using plasma lipidomics and 219 

peptidomics data from a total of 1022 type 2 diabetes patients in two independent 220 

cohorts. 589 and 545 type 2 diabetes patients, respectively, from the DCS and GoDARTS 221 

cohorts with complete cases of plasma lipidomics and peptidomics measurements were 222 

selected. The characteristics of these two cohorts were generally comparable in terms 223 

of average age and BMI, with a majority of males (3). Individuals were clustered using 224 

SNF as described in Methods. Through silhouette analysis, we were able to demonstrate 225 

that clustering integrating both lipidomics and peptidomics outperforms either of the 226 

single -omics in terms of cluster assignment quality (Supplemental Figure 1). Based on a 227 

two-step clustering procedure, the optimal number of clusters was found to be two 228 

(Supplemental Figure 1). The significance of the clustering results was validated by 229 

bootstrapping (n=1000 iterations) against simulated datasets (Supplemental Figure 2). 230 

In the DCS cohort, cluster 1 comprised 46.5% of the patients and was characterized by a 231 

relatively high BMI value compared to cluster 2 (53.5%). In both GoDARTS (cluster 232 

1:40.7%; cluster 2:59.3%) and DCS cohorts, patients have similar age, HbA1c values. 233 

Furthermore, in the DCS cohort, triglycerides, C-peptide and homeostatic model 234 

assessment (HOMA) 2, HOMA2-B and HOMA2-IR, which were calculated based on 235 
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fasting blood glucose and fasting C-peptide concentration, showed a higher 236 

concentration in cluster 1 compared to cluster 2. In contrast, LDL cholesterol, HDL 237 

cholesterol and HOMA2-S show a higher concentration in cluster 2 (Supplemental 238 

Figure 3). Similarly, a higher concentration of LDL cholesterol and HDL cholesterol, and 239 

a lower concentration of triglycerides and C-peptide, were also observed in cluster 2 240 

compared to cluster 1 in the GoDARTS cohort (Figure 2a; Supplemental Figure 3).   241 

  We compared type 2 diabetes progression rates between clusters in both cohorts using 242 

Cox Proportional hazard models . In both cohorts, type 2 diabetes progression rate 243 

showed a nominally significant difference in DCS and GoDARTS, respectively, between 244 

multi-omics cluster 1 and cluster 2 (p=0.0156 (unadjusted), DCS; p=0.0308 245 

(unadjusted), GoDARTS; corrected for gender). Cluster 2 reduces the hazard ratio by 246 

44% or 27% in DCS or GoDARTS, respectively (Figure 2d, left). Results were in the same 247 

direction but were less significant when additionally correcting for age and BMI (figure 248 

2d, right). 249 

  We then investigated whether the multi-omics clusters could be replicated by using 250 

clinical measurements alone. Pseudo R square was used to assess the possibility of 251 

using six clinical features: age, BMI, LDL cholesterol, HDL cholesterol, C-peptide and 252 

triglycerides to predict the multi-omics clustering results in a logistic model for both 253 

cohorts (Supplemental Table 1). The highest pseudo R^2 scores are shown when all 254 

seven clinical measurements act as covariates with 29.9% and 46.9% improvement 255 

over random in DCS and GoDARTS, respectively. These results clearly indicate that the 256 

molecular clusters we observe are not merely reflecting differences in routine clinical 257 

measurements. 258 

In summary, by combining plasma lipidomics and peptidomics data in a data-driven and 259 

unsupervised analysis, we were able to separate type 2 diabetes patients from two 260 
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independent cohorts into two subgroups that appear to differ in diabetes-related 261 

clinical characteristics.  262 

 263 

Similar molecular signatures separate subgroups in both cohorts 264 

We investigated the correlation of each plasma lipidomics or peptidomics feature with 265 

the clustering results using logistic regression models adjusting for gender, BMI and 266 

age. In DCS, out of a total of 1195 different peptides and 180 different lipids that were 267 

used for clustering, 123 proteins and 137 lipids showed significant differences between 268 

clusters. In GoDARTS, out of a total of 1195 different peptides and 199 different lipids 269 

that were used for clustering, 130 proteins and 149 lipids showed significant 270 

differences between clusters. 50 significant common peptides and 109 significant 271 

common lipids are shared between the DCS and GoDARTS cohorts (Figure 2b). 272 

 273 

  A hierarchical clustering of the relative concentration patterns of the cluster-274 

associated features is shown as a heatmap in DCS and GoDARTS (Figure 2b; 275 

Supplemental Figure 5). In DCS, a number of discriminative omics features were 276 

observed when comparing clusters. Phosphatidylcholine, Triacylglycerol, Diacylglycerol 277 

and Ceramide were relatively higher in cluster 1; Phosphatidylcholine O and 278 

Sphingomyelin were relatively higher in cluster 2. These pronounced expression 279 

patterns were also apparent in GoDARTS. For proteins, the difference in the molecular 280 

profiles between cluster 1 and 2 can be observed in both cohorts, but the differences 281 

were more modest compared to lipids.  282 

 283 

 284 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2022. ; https://doi.org/10.1101/2022.09.03.22279563doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.03.22279563
http://creativecommons.org/licenses/by-nc/4.0/


Page 12 of 27 
 

GWAS analysis reveals putative associations between type 2 diabetes molecular 285 

profiles and genetic factors 286 

Finally, in order to investigate possible genetic differences between molecular clusters, 287 

we analysed genetic loci previously associated with type 2 diabetes (17). Multi-omics 288 

clusters in each cohort were compared with type 2 diabetes SNPs using logistic 289 

regression correcting for age, BMI and gender. We did not detect any significant 290 

associations of the type 2 diabetes variants with our clusters in either cohort.  291 

  Since we had identified around 110 proteins and 130 lipids that showed altered levels 292 

between clusters, we then tested the association between the altered molecular profiles 293 

and type 2 diabetes variants. The SNP and molecular profile association was assessed in 294 

a linear regression model with SNP dosages, age, BMI and gender as independent 295 

variables. In DCS, a novel protective type 2 diabetes variant (17), rs146886108, showed 296 

putative association with several molecules such as heat shock protein 90 beta (p 297 

=1.08e-13) and glucose 6 phosphate isomerase (p = 2.04e-15). A consistent association 298 

result between rs505922 and E-selection can also be observed in both DCS (p = 1.23e-299 

15) and GoDARTS (p = 1.40e-16) cohorts.  300 

 301 

Multi-Omics clusters show similarity to known clinical subgroups 302 

  We next compared the multi-omics clusters with clusters based on clinical 303 

measurements (3). Similar to a previous study (2), these clusters can be classified as 304 

severe insulin-deficient diabetes (SIDD); severe insulin-resistant diabetes (SIRD); mild 305 

obesity-related diabetes (MOD); mild diabetes (MD) and mild diabetes with high HDL 306 

(MDH). The overlap of clinical clusters with molecular clusters is shown in figure 3a. In 307 

DCS, multi-omics cluster 1 showed a significant overlap with clinical cluster SIRD and 308 

MOD. On the other hand, multi-omics cluster 2 showed a significant overlap with clinical 309 
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cluster MDH. In GoDARTS, a similar trend was observed, as multi-omics cluster 1 310 

showed a larger overlap with SIRD and MOD, and multi-omics cluster 2 showed an 311 

overlap with MDH (figure 3a).  312 

  Box plots were used to further visualize the differences between multi-omics and 313 

clinical clusters (figure 3b, Supplemental figure 4). In DCS, we observed that multi-314 

omics cluster 1, SIRD and MOD showed similar levels of C-peptide, HOMA-2B, HOMA-315 

2IR, and triglycerides levels. On the other hand, multi-omics cluster 2 and MDH both 316 

showed a low C-peptide and a high HDL cholesterol level (Supplemental figure 4a). A 317 

similar pattern was observed in GoDARTS (Supplemental figure 4b). 318 

   In summary, we conclude that multi-omics cluster 1 shares similar clinical features to 319 

SIRD and MOD clinical subgroups whereas multi-omics cluster 2 shows higher 320 

similarity to the MDH clinical subgroup.   321 

   322 

Discussion 323 

Using an unsupervised, bottom-up approach, we were able to cluster individuals with 324 

diabetes from two large European cohorts into two robust clusters based solely on 325 

plasma-measured multi-omics data. Clinical features such as age and BMI were 326 

excluded as confounding variables driving SNF clustering as they were not significantly 327 

different between cluster 1 and cluster 2. Moreover, using six clinical features to 328 

replicate the multi-omics clustering results was unsuccessful for both cohorts. These 329 

findings suggest that patient stratification using molecular features can reveal novel 330 

insights that are complementary to clinical data.  331 

  In both the DCS and GoDARTS cohorts, patients assigned to multi-omics clusters 1 and 332 

2 showed conserved differences in disease severity markers as measured by HOMA2-B, 333 

-IR, C-peptide and triglyceride levels, which is known to be associated with insulin 334 
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resistance (20). Individuals with type 2 diabetes are at risk of many complications such 335 

as kidney disease and cardiovascular disease. It has been demonstrated that insulin 336 

resistance is associated with hallmarks of kidney damage such as glomerular 337 

hypertension, hyperfiltration and proteinuria (21, 22). We show evidence from Cox 338 

proportional hazards modelling that patients in different clusters have slower disease 339 

progression rates in both cohorts. Therefore, these multi-omics clusters could 340 

potentially define molecular signatures related to disease severity, progression and 341 

complications risk which could be relevant for more precision-based therapy of type 2 342 

diabetes.  343 

    We tested the associations of type 2 diabetes genetic loci with multi-omics clusters 344 

but found no clear evidence to suggest that the multi-omics clusters were associated 345 

with specific type 2 diabetes genetic variants in either cohort. This suggests that known 346 

type 2 diabetes genes are not drivers of molecular differences between clusters. A 347 

similar clustering result can be observed in both cohorts and cluster 1 and cluster 2 348 

show similar HbA1c levels suggesting that our clusters are stable and at least partially 349 

mechanistically distinct. It would be intriguing to see whether similar results can be 350 

obtained from both newly diagnosed patients and long-term diabetes patients could be 351 

performed in the future to support this view.   352 

  In both cohorts, we have identified ~100 proteins and ~130 lipids that showed an 353 

altered expression pattern between multi-omics cluster 1 and cluster 2. Currently, we 354 

cannot fully identify which molecules likely to be the driver molecules, nor we can say 355 

these molecules play an important role in type 2 diabetes development. Nevertheless, 356 

we assessed the association between these molecules and the type 2 diabetes variants. 357 

A novel type 2 diabetes SNP, rs146886108, a missense variant that encodes 358 

p.Arg187Gln in ANKH, which was first identified by Mahajan et a. (17), and showed a 359 
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strong correlation with several measured proteins, including heat shock protein 90 360 

beta, glucose 6 phosphate isomerase. The UK Biobank Mendelian trait GWAS study also 361 

showed a strong association between rs146886108 and random glucose. The fact that 362 

we found a strong association between rs146886108 and glucose 6 phosphate 363 

isomerase could potentially identify a mechanism behind the action of rs146886108 on 364 

glucose regulation. Further investigations may help to evaluate the causal roles of these 365 

type 2 diabetes variants, with their associated molecules and possible mechanisms.  366 

  Using five clinical measurements, age, BMI, HbA1c, c-peptide and HDL, Slieker and 367 

Donnelly et al. (3) have shown that people with type 2 diabetes could be grouped into 368 

five distinct clusters: insulin-deficient (SIDD), insulin-resistant (SIRD),  an obesity 369 

cluster (MOD), mild diabetes (MD) and MD with a high HDL (MDH). Comparing with 370 

these clinical clusters, we were able to demonstrate that the multi-omics clusters 371 

significantly overlap with the clinically defined clusters. Multi-omics cluster 1, 372 

characterized by a relatively high C-peptide and triglycerides level, showed a significant 373 

overlap with SIRD and MOD. Multi-omics cluster 2, a cluster with a relatively high HDL 374 

and low C-peptide value, showed a significant overlap with MDH. These results further 375 

underline the complementarity of the multi-omics and clinical clustering approaches 376 

and suggests that multi-omics signatures can in theory be linked to clinical 377 

measurements and outcomes to explore molecular mechanisms linked to the underlying 378 

heterogeneity of disease. 379 

The present approach offers the prospect of multi-omics personalized medicine, in 380 

which an extended set of molecular characteristics is used to assess disease 381 

development and progression. Through multi-omics health management, each patient 382 

might be positioned with respect to the underlying dysregulated pathways, with 383 

therapies selected accordingly. Whether this approach will indeed provide better 384 
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outcomes than current practice, based on clinical features and more limited blood 385 

biochemistry, will need to be assessed in the future. 386 

 387 

Limitations of study  388 

From the patient network (Figure 1) it is clear that the multi-omics clusters are not 389 

completely distinct. The two clusters therefore represent different molecular 390 

signatures, where a patient shows more similarity to one cluster compared to the other 391 

on a continuous scale. Nevertheless, we do not recommend using such clusters to assign 392 

patients, but rather the use of the clustering results to explore the underlying molecular 393 

pathology and as an alternative route to identifying novel biomarkers for risk of type 2 394 

diabetes and its complications. 395 

  In both DCS and GoDARTS, patients were not necessarily recruited after diagnosis, and 396 

this heterogeneity in the disease duration could potentially have an effect on the blood 397 

measurements obtained. Moreover, as we mentioned above, in DCS, blood samples are 398 

taken in a fasted state, in contrast to GoDARTS, where blood measurements are done in 399 

a non-fasted state. However, it has been demonstrated that a normal food intake only 400 

has slight effects on cholesterol levels, and lipid profiles at most change minimally in 401 

response to normal food intake in general populations (23, 24).   402 

  One of the common questions regarding patients’ clustering results is whether patients 403 

move between clusters over time. In a recent 5-year follow-up study (25), 367 diabetes 404 

patients were assigned based on the nearest centroid approaches at both baseline and 405 

5-year follow-up. 23% of patients switched their cluster allocations after 5 years. This 406 

can be expected as the variables that were used for clustering such as age, BMI and 407 

HOMA2 can change over time, following the time increase, lifestyle choice changes and 408 

disease progress. For our study, roughly 1375 plasma molecules were used for 409 
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clustering. Some molecule concentrations such as triacylglycerol and diacylglycerol can 410 

change following lifestyle changes or medical treatment. Other “housekeeping” 411 

molecules are more likely to remain constant over time. The stability of molecular 412 

clustering results needs to be assessed in further prospective studies. 413 

  We cannot at this stage assert that the different clusters represent different aetiologies 414 

of type 2 diabetes, nor that the clustering method represents an optimal classification 415 

for type 2 diabetes subgroups. The multi-omics clusters in our study were derived 416 

primarily from patients from Europe. Consequently, the applicability of these results to 417 

other ethnic groups needs to be assessed.  418 
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Table 1. Genetic associations with altered molecular profiles between multi-449 

omics clusters reaching significance. The correlations between molecules and SNPs 450 

were estimated using linear regression models with age, BMI and gender adjustments. 451 

The commonly accepted threshold P ≤ 5 × 10(-8) for genome-wide association studies is 452 

applied in this present study.  453 

DCS       

Locus rs ID Chr Pos Alleles association 

molecule 

P-value 

(adjusted by 

BMI, age and 

sex) 

ANKH rs146886108 5 14,751,305 C/T Integrin alpha I 

beta 1 complex 

5.88E-10 

ANKH rs146886108 5 14,751,305 C/T Heat shock 

protein HSP 90 

alpha beta 

1.13E-21 

ANKH rs146886108 5 14,751,305 C/T Heat shock 

protein HSP 90 

beta 

1.08E-13 

ANKH rs146886108 5 14,751,305 C/T Glucose 6 

phosphate 

isomerase 

2.04E-15 

ANKH rs146886108 5 14,751,305 C/T Alcohol 

dehydrogenase 

NADP 

4.04E-32 

ABO rs505922 9 133,273,813 C/T E selectin 1.23E-15 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2022. ; https://doi.org/10.1101/2022.09.03.22279563doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.03.22279563
http://creativecommons.org/licenses/by-nc/4.0/


Page 20 of 27 
 

ABO rs505922 9 133,273,813 C/T CD209 antigen 2.09E-14 

GoDARTS       

Locus rs ID Chr Pos Alleles association 

molecule 

 
 
 

P-value 

(adjusted by 

BMI, age and 

sex) 

ABO rs505922 9 133,273,813 C/T E selectin 1.40E-16 

  454 

 455 

  456 
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Figure legends 539 

Figure 1. Experiment design and the molecular clusters displayed as both 540 

similarity matrices and patient network. (b,c) Molecular clusters were generated by 541 

integrated multi-omics (lipidomics and peptidomics) data in both DCS (b) and GoDARTS 542 

(c), respectively. The similarity matrices were calculated based on Euclidean distances 543 

with parameters of K=20 (the number of shared neighbours of datapoint), alpha=0.5 544 

(hyperparameter) and T=20 (number of iterations). Each point in the similarity 545 

matrices represents patient-to-patient similarity, the higher the colour intensity, the 546 

more similar the patients. Boxed regions represent the potential clusters. The patient 547 

networks were generated based on unweighted adjacency matrices. The nodes 548 

represent the patients, edge thickness reflects the strength of similarity, the size of the 549 

node represents the betweenness. Nodes were coloured based on their cluster 550 

assignments. DCS= Hoorn Diabetes Care System. GoDARTS=Genetics of Diabetes Audit 551 

and Research in Tayside Scotland. 552 

 553 

Figure 2. (a,b,c) Clinical characteristics and molecular profiles of multi-omics 554 

clusters in both DCS and GoDARTS clusters. (d) The hazard ratio for time to 555 

insulin requirement across clusters. Multi-omics clustering was done without 556 

separating the women and men. In each cohort, the statistical difference between 557 

cluster 1 and cluster 2 was determined by logistic regression with age, BMI and gender 558 

as covariates. Multi-analysed P-values were adjusted by the Benjamini-Hochberg 559 

procedure, and a false discovery rate (FDR)-adjusted P-value <=0.05 was considered 560 

significant. (a) Distributions of nine clinical measurements at baseline in both DCS and 561 

GoDARTS cohorts for each cluster. *:P-value<=0.05. **:P-value<=0.01. ***:P-562 

value<=0.001. (b) Venn diagrams showing overlaps of significant (significantly different 563 
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between clusters) proteins (upper) or lipids (lower) across DCS and GoDARTS cohorts. 564 

(c) The relative concentration heatmaps of common significant proteins (upper) or 565 

lipids (lower) between DCS and GoDARTS cohorts. Concentrations of each feature were 566 

first converted into the log(concentration) and then normalized in order to investigate 567 

the relative expression level of each feature between different clusters (Row Z-score). 568 

Heatmap cells were coloured in red/green to represent the relative expression level 569 

(red=low, green=high). The federated database does not allow to download data from 570 

individual samples in order to protect the patient's identity. Each vertical line in the 571 

heatmap represents 5 different patients' mean values for each feature. y-labels were 572 

hidden for a better presentation. Fully labelled versions are available in Supplemental 573 

Figure 5. (d) X-axis, hazard ratio, y-axis, database. Cox model with correction of gender 574 

(left) or with corrections for gender, age and BMI (right). The number in the panel 575 

represents the hazards with 95% confidence intervals. Multi-omics cluster 1:1 and 576 

Multi-omics cluster 2:2. Cox model gives the hazard ratio for the second group relative 577 

to the first group. The hazard ratio is not significant if the 95% confidence interval 578 

includes 1. DBP= Diastolic Blood Pressure. SBP= Systolic Blood Pressure. HbA1C= 579 

Haemoglobin A1C. DCS= Hoorn Diabetes Care System. GoDARTS=Genetics of Diabetes 580 

Audit and Research in Tayside Scotland. 581 

 582 

Figure 3 (a) Comparison of clustering in Slieker and Donnelly et al., 2021 versus 583 

clustering in the current study. The first number in each cell represents the number of 584 

individuals overlapping, the second number represents the hypergeometric overlap p-585 

value. (b) Distributions of nine clinical measurements at baseline in both DCS and 586 

GoDARTS cohorts for multi-omics clusters and clinical clusters. CL1= multi-omics 587 

cluster #1. CL2= multi-omics cluster #2. MD= mild diabetes. MDH= mild diabetes with 588 
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high HDL. MOD= mild obesity-related diabetes. SIDD= severely insulin deficient 589 

diabetes. SIRD= severely insulin resistant diabetes. SBP=systolic blood pressure. 590 

DBP=diastolic blood pressure. HbA1C=Hemoglobin A1C. 591 
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