Page 1 of 27

1 2	Novel subgroups of type 2 diabetes based on multi-Omics profiling: an IMI- RHAPSODY Study	
3 4 5 6 7 8 9	Shiying Li ¹ , Iulian Dragan ⁴ , Chun Ho Fung ² , Dmitry Kuznetsov ⁴ , Michael K. Hansen ¹² , Joline W.J. Beulens ^{5,6} , Leen M. 't Hart ^{5,6,7,8} , Roderick C. Slieker ⁷ , Louise A. Donnelly ⁹ , Mathias J. Gerl ¹⁰ , Christian Klose ¹⁰ , Florence Mehl ⁴ , Kai Simons ¹⁰ , Petra JM Elders ¹¹ , Ewan R. Pearson ⁹ , Guy A. Rutter ^{1,2,3*} and Mark Ibberson ^{4*}	
10	1 Centre de Recherche du CHUM, and Faculty of Medicine, University of Montreal, QC,	
11	Canada	
12	² Section of Cell Biology and Functional Genomics, Department of Metabolism, Diabetes	
13	and Reproduction, Imperial College of London, du Cane Road, London W120NN, United	
14	Kingdom	
15	³ Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore.	
16	⁴ Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland	
17	⁵ Department of Epidemiology and Data Sciences, Amsterdam University Medical Center,	
18	location VUmc, Amsterdam, The Netherlands	
19	⁶ Amsterdam Public Health, Amsterdam, The Netherlands	
20	⁷ Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden,	
21	The Netherlands	
22	⁸ Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden	
23	University Medical Center, Leiden, The Netherlands	
24	⁹ Division of Population Health & Genomics, School of Medicine, Unversity of Dundee, UK	
25	¹⁰ Lipotype GmbH Dresden Germany	
26	11 Department of General Practice and Elderly Care Medicine, Amsterdam Public Health	
27	Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands	
28	¹² Janssen Research and Development, Philadelphia, PA	
29		
30	Address correspondence to	
31	Guy A. Rutter guy.rutter@umontreal.ca, 514 890-8000, ext. 27081	
32 33	Mark Ibberson <u>mark.ibberson@sib.swiss.</u> (41) 21 692 4084	
34 35	Word count: 3823Number of Figures: 3Number of Tables: 1	

Page 2 of 27

36

37 Abstract

38	Type 2 diabetes is a complex, multifactorial disease with varying presentation and
39	underlying pathophysiology. Recent studies using data-driven cluster analysis have led
40	to a stratification of type 2 diabetes into novel subgroups based on six clinical
41	measurements. Whether these subgroups truly correspond to the underlying
42	phenotypic differences is nevertheless unclear. Here, we apply an unsupervised, data-
43	driven clustering method (Similarity Network Fusion) to characterize type 2 diabetes in
44	two independent cohorts involving 1,134 subjects in total based on integrated plasma
45	lipidomics and peptidomics data without pre-selection. Logistic regression was then
46	used to explore clustering based on ≥ 180 circulating lipids and 1,195 protein
47	biomarkers, alongside clinical signatures. Two subgroups were identified, one of which
48	associated with elevated C-peptide levels, diabetic complications and more severe
49	insulin resistance compared to the other. GWAS analysis against 403 type 2 diabetes
50	risk variants revealed associations of several SNPs with clusters and altered molecular
51	profiles. We thus demonstrate that heterogeneity in type 2 diabetes can be captured by
52	circulating omics alone using an unsupervised bottom-up approach. Such multi-omics
53	signatures could reflect pathological mechanisms underlying type 2 diabetes and thus
54	may help inform on precision medicine approaches to disease management.

55

56 Introduction

Type 2 diabetes is global problem of increasing proportions and a substantial threat to
human health (1). Recently, Ahlqvist et al. (2) proposed an approach to sub-classifying
patients with type 2 diabetes into four different subgroups by *K-means* clustering using
six clinical measurements: age at diagnosis, Body Mass Index (BMI), Glutamic acid

Page 3 of 27

61	decarboxylase (GAD) autoantibodies (GADA), HOMA2-B (beta-cell function), HOMA2-IR
62	(insulin resistance) and HbA1c. Since then, we (3) and others (4,5) have applied a
63	similar clustering method with independent cohorts and obtained similar results. These
64	studies suggest the new classification system facilitates meaningful sample subgroup
65	discovery across different populations. However, the value of this stratification
66	approach has been questioned by some researchers (6,7) in terms of its stability and
67	utility. Importantly, it is still debatable whether type 2 diabetes patients with different
68	underlying aetiologies are represented faithfully, by placing them into subsets, based
69	solely on a limited number of clinical features. Indeed, others (8) have proposed that
70	positioning individuals within a multi-dimensional, and potentially fluid, continuum of
71	variables may provide a more useful prognostic strategy.
72	
73	An alternative clustering approach, Similarity Network Fusion (SNF) (9) combines
73 74	An alternative clustering approach, Similarity Network Fusion (SNF) (9) combines multiple levels of data from the same patients into a similarity network, enabling
74	multiple levels of data from the same patients into a similarity network, enabling
74 75	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks
74 75 76	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global
74 75 76 77	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global network through an iterative process. Clustering can then be performed on this network
74 75 76 77 78	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global network through an iterative process. Clustering can then be performed on this network using a graph-based algorithm. As opposed to clustering patients based on a limited
74 75 76 77 78 79	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global network through an iterative process. Clustering can then be performed on this network using a graph-based algorithm. As opposed to clustering patients based on a limited number of pre-selected clinical features, this unsupervised bottom-up approach can
74 75 76 77 78 79 80	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global network through an iterative process. Clustering can then be performed on this network using a graph-based algorithm. As opposed to clustering patients based on a limited number of pre-selected clinical features, this unsupervised bottom-up approach can leverage much larger biological data sets ("omics"), and holds the promise of
74 75 76 77 78 79 80 81	multiple levels of data from the same patients into a similarity network, enabling exploratory multidimensional data-driven clustering. First, patient similarity networks are generated for each data level independently then merged into a single global network through an iterative process. Clustering can then be performed on this network using a graph-based algorithm. As opposed to clustering patients based on a limited number of pre-selected clinical features, this unsupervised bottom-up approach can leverage much larger biological data sets ("omics"), and holds the promise of uncovering new insights, which may be missed by models based on single data types,

85 cohorts to explore the stratification of type 2 diabetes based on combined plasma

Page 4 of 27

- 86 lipidomics and peptidomics using a federated database system. In addition, we explore
- 87 the genetic factors predisposing to membership in these groups and the potential
- 88 correlations with patient molecular profiles.
- 89
- 90 Methods
- 91 **Study populations**
- 92 We used data from two type 2 diabetes cohorts: Hoorn Diabetes Care System (DCS) and
- 93 Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS).
- 94 The DCS cohort recruits almost all type 2 diabetes patients from 103 GPs in the West-
- 95 Friesland region of the Netherlands. This prospective, regional cohort study started in
- 96 1998 and by the time of 2017, it holds 12,673 type 2 diabetes patients with a median of
- 97 0.7 years (IQR 0.2-3.7) after diagnosis (10).
- 98
- Between 1996 and 2015, GoDARTS recruited 10149 type 2 diabtes patients from the
- 100 Tayside region of Scotland. Patients in the GoDARTS cohort were not necessarily
- 101 recruited at the time of diagnosis (11).
- 102
- 103 Lipidomics and peptidomics are available for a subset of type 2 diabetes patients in
- 104 both DCS and GoDARTS cohorts. These data were generated as part of the IMI2
- 105 RHAPSODY project (3). The sample availability for omics was within 2 years of
- 106 diagnosis. Of note, individuals were selected without taking into consideration pre-
- 107 cluster assignments.
- 108
- 109
- 110

Page 5 of 27

111 Measurements

112	Data from both cohorts were used with informed consent obtained through the relevant
113	local ethical committees. In DCS, all blood measurements are performed in fasted
114	individuals. In contrast, all measurements in GoDARTS are performed in the non-fasted
115	state. In DCS, Haemoglobin A1c was measured based on the turbidimetric inhibition
116	immunoassay for haemolysed whole EDTA blood (Cobas c501, Roche Diagnostics,
117	Mannheim, Germany). The levels of triglycerides, total cholesterol and HDL cholesterol
118	were measured enzymatically (Cobas c501, Roche Diagnostics) (10). In DCS and
119	GoDARTS, C-peptide was measured on a DiaSorin Liaison (DiaSorin, Saluggia, Italy).
120	Plasma lipids were determined using a QExactive mass spectrometer (Thermo
121	Scientific). Plasma protein levels were measured on the SomaLogic SOMAscan platform
122	(Boulder, Colorado, USA). For more details refer to (3).
123	

124 **Cluster analysis**

125 A federated database of type 2 diabetes cohorts including DCS and GoDARTS has 126 previously been set up as part of the RHAPSODY project. This system enables statistical 127 and machine learning analysis to be performed on cohort data at a distance without any 128 disclosure of sensitive data. The federated database system was interrogated using the 129 R statistical programming language (version 4.0.4). In both DCS and GoDARTS cohorts, 130 patients with complete lipidomics and peptidomics (589 and 545 patients, DCS and 131 GoDARTS, respectively) were used for clustering and subsequent statistical analysis. 132 Lipidomics and peptidomics values were centered to a mean value of 0 and an SD of 1 in 133 each cohort using the *scale* function in R. Euclidean distances between each pair of 134 patients were then calculated based on the normalized lipidomics or peptidomics data 135 by using *dist2* function from *dssSNF* (*dsSwissKnifeClient* package) (12). Patient similarity

Page 6 of 27

136	matrices were generated from the Euclidean distance matrices with parameters of K
137	(the number of nearest neighbours) equal to 20 and hyperparameter alpha equal to 5.
138	The patient similarity matrices for lipidomics and peptidomics were then fused using
139	the SNF function within SNFtool package (13) with T (number of iterations) equal to 20.
140	In both DCS and GoDARTS, men and women were clustered together without pre-
141	separation. Two-step clustering was then performed, in which the optimal number of
142	clusters is estimated in the first step using the silhouette method and patient
143	assignments made in the second step. Silhouette widths of fused cluster patients were
144	calculated from the similarity matrices using the <i>Silhouette_SimilarityMatrix</i> function
145	(CancerSubtypes package) (14).
146	
147	SNF models were validated by bootstrapping tests (n=1000 iterations) that compared
148	model classification to models using randomized Euclidean distance matrices. Euclidean
149	distance matrices were randomized using the function <i>randomizeMatrix</i> within the
150	picante package (15). For each simulated model, the same parameters were used and
151	the number of clusters is set to correspond to the number of clusters in the study model.
152	The significance of each cluster (P-value ≤ 0.05) was calculated by assessing the
153	frequency of achieving a model with an equal or greater mean local cluster coefficient
154	for randomized data. Local cluster coefficient calculation was done with unweighted,
155	undirected adjacency matrices using the <i>transitivity</i> function in the <i>igraph</i> package (16).
156	The adjacency matrices were generated from the similarity matrices with the top 5%
157	similarity values set as 1 and the rest as 0.
158	
159	The possibility of using clinical measurements to replicate our multi-omics clustering

The possibility of using clinical measurements to replicate our multi-omics clusteringresults was assessed in a logistic regression model with pseudo R square as the

Page 7 of 27

161	recorded results. One of the common interpretations of pseudo R square is the
162	indication of the improvement to which the model parameters improve upon the
163	prediction of the null model. In a logistic regression model, we treated the patient's
164	assignment results as the dependent variable (cluster $1:1$; cluster $2:0$) with six clinical
165	measurements: age, BMI, C-peptide, LDL cholesterol, HDL cholesterol, Triglycerides act
166	as univariate or together as covariates. Pseudo R square=1-(deviation/ null deviation).
167	

168 Statistical analysis

169 Logistic regression modelling was performed by using the *ds.alm* function within the 170 dsBaseClient package to assess the association level of each molecule (lipidomics and 171 peptidomics), clinical measurements and type 2 diabetes SNPs (17) with the multi-172 omics clusters. The cluster classification was treated as a dependent categorical variable 173 with age, gender and BMI acting as covariates. Subsequently, for lipids, peptides and 174 clinical measurements, each cluster was subset for the strongly associated (P-value 175 <=0.05) features and the mean values of each group of features in each cluster were 176 calculated. Mean values were used since, to protect the patient's identity, individual-177 level data cannot be downloaded from the federated database system. However, it is 178 possible to display a mean value if it is derived from 5 or more patients. Several mean 179 values for each feature from 5 or more patients were calculated based on the default 180 patients' order in the remote server for each cluster. The feature values were 181 normalized. Hierarchical clustering was then performed, and the results were visualized 182 as heatmaps using the R package *gplots* (18).

183

For each patient in the database, the clinical cluster assignments were defined
previously, similar to (2), but with five clinical variables: age, BMI, HbA1c, high-density

Page 8 of 27

186	lipoprotein (HDL) and C-peptide (3). Our clusters were compared with these clinical
187	clusters by calculating the hypergeometric overlap p-value (phyper function in R).
188	
189	Cox regression was performed using the <i>dssCoxph</i> function in the <i>dssSwissKnifeClient</i>
190	package. Time to insulin requirement was defined as the length of time from diagnosis
191	until an individual started insulin treatment for a period of more than six months, or
192	alternatively as more than two independent HbA1c measurements greater than 69
193	mmol/mol (8.5%) at least three months apart and when ≥ 2 non-insulin glucose-
194	lowering drugs were taken. Hazard ratios for time to insulin treatment requirement
195	within the clusters were calculated using Cox regression with age, gender and BMI as
196	covariates.
197	
198	The associations between type 2 diabetes SNPs (17) and multi-omics clusters or
199	molecules with altered expression profiles were assessed using a linear regression
200	model with age, BMI and gender as co-independent variables. The routinely used
201	genome-wide common variant association threshold $p \mathbb{Z} \leq \mathbb{Z} 5 \mathbb{Z} \times \mathbb{Z} 10 - 8$ was applied in
202	this study (19) to assess significance.
203	
204	All analyses were performed using the R statistical programming language (version
205	4.0.4). The Benjamini-Hochberg procedure was used to determine the false discovery
206	rate correcting for multiple tests. Figures were produced using <i>gplots</i> (version 3.1.1),
207	ggplot2 (version 3.3.4) and igraph (version 1.2.6). Figure 1a was generated using
208	Biorender.
209	
210	

Page 9 of 27

211	Data availability statement
212	Information about accessing the Rhapsody federated database can be found at:
213	https://imi-rhapsody.eu/. Summary statistics of lipidomic and proteomic data will be
214	available from an interactive Shiny dashboard, available upon publication.
215	
216	Results
217	Unsupervised multi-Omics clustering defines two subgroups in independent
218	cohorts
219	Similarity Network Fusion (SNF) was performed using plasma lipidomics and
220	peptidomics data from a total of 1022 type 2 diabetes patients in two independent
221	cohorts. 589 and 545 type 2 diabetes patients, respectively, from the DCS and GoDARTS
222	cohorts with complete cases of plasma lipidomics and peptidomics measurements were
223	selected. The characteristics of these two cohorts were generally comparable in terms
224	of average age and BMI, with a majority of males (3). Individuals were clustered using
225	SNF as described in Methods. Through silhouette analysis, we were able to demonstrate
226	that clustering integrating both lipidomics and peptidomics outperforms either of the
227	single -omics in terms of cluster assignment quality (Supplemental Figure 1). Based on a
228	two-step clustering procedure, the optimal number of clusters was found to be two
229	(Supplemental Figure 1). The significance of the clustering results was validated by
230	bootstrapping (n=1000 iterations) against simulated datasets (Supplemental Figure 2).
231	In the DCS cohort, cluster 1 comprised 46.5% of the patients and was characterized by a
232	relatively high BMI value compared to cluster 2 (53.5%). In both GoDARTS (cluster
233	1:40.7%; cluster 2:59.3%) and DCS cohorts, patients have similar age, HbA1c values.
234	Furthermore, in the DCS cohort, triglycerides, C-peptide and homeostatic model
235	assessment (HOMA) 2, HOMA2-B and HOMA2-IR, which were calculated based on

Page 10 of 27

236	fasting blood glucose and fasting C-peptide concentration, showed a higher
237	concentration in cluster 1 compared to cluster 2. In contrast, LDL cholesterol, HDL
238	cholesterol and HOMA2-S show a higher concentration in cluster 2 (Supplemental
239	Figure 3). Similarly, a higher concentration of LDL cholesterol and HDL cholesterol, and
240	a lower concentration of triglycerides and C-peptide, were also observed in cluster 2
241	compared to cluster 1 in the GoDARTS cohort (Figure 2a; Supplemental Figure 3).
242	We compared type 2 diabetes progression rates between clusters in both cohorts using
243	Cox Proportional hazard models . In both cohorts, type 2 diabetes progression rate
244	showed a nominally significant difference in DCS and GoDARTS, respectively, between
245	multi-omics cluster 1 and cluster 2 ($p=0.0156$ (unadjusted), DCS; $p=0.0308$
246	(unadjusted), GoDARTS; corrected for gender). Cluster 2 reduces the hazard ratio by
247	44% or 27% in DCS or GoDARTS, respectively (Figure 2d, left). Results were in the same
248	direction but were less significant when additionally correcting for age and BMI (figure
249	2d, right).
250	We then investigated whether the multi-omics clusters could be replicated by using
251	clinical measurements alone. Pseudo R square was used to assess the possibility of
252	using six clinical features: age, BMI, LDL cholesterol, HDL cholesterol, C-peptide and
253	triglycerides to predict the multi-omics clustering results in a logistic model for both
254	cohorts (Supplemental Table 1). The highest pseudo R^2 scores are shown when all
255	seven clinical measurements act as covariates with 29.9% and 46.9% improvement
256	over random in DCS and GoDARTS, respectively. These results clearly indicate that the
257	molecular clusters we observe are not merely reflecting differences in routine clinical
258	measurements.

In summary, by combining plasma lipidomics and peptidomics data in a data-driven and
unsupervised analysis, we were able to separate type 2 diabetes patients from two

Page 11 of 27

261	independent cohorts into	o two subgroups that	t appear to differ in diabetes-related

- 262 clinical characteristics.
- 263

264 Similar molecular signatures separate subgroups in both cohorts

- 265 We investigated the correlation of each plasma lipidomics or peptidomics feature with
- the clustering results using logistic regression models adjusting for gender, BMI and
- age. In DCS, out of a total of 1195 different peptides and 180 different lipids that were
- used for clustering, 123 proteins and 137 lipids showed significant differences between
- 269 clusters. In GoDARTS, out of a total of 1195 different peptides and 199 different lipids
- that were used for clustering, 130 proteins and 149 lipids showed significant
- 271 differences between clusters. 50 significant common peptides and 109 significant
- common lipids are shared between the DCS and GoDARTS cohorts (Figure 2b).
- 273
- A hierarchical clustering of the relative concentration patterns of the cluster-
- associated features is shown as a heatmap in DCS and GoDARTS (Figure 2b;
- 276 Supplemental Figure 5). In DCS, a number of discriminative omics features were
- observed when comparing clusters. Phosphatidylcholine, Triacylglycerol, Diacylglycerol
- and Ceramide were relatively higher in cluster 1; Phosphatidylcholine 0 and
- 279 Sphingomyelin were relatively higher in cluster 2. These pronounced expression
- 280 patterns were also apparent in GoDARTS. For proteins, the difference in the molecular
- profiles between cluster 1 and 2 can be observed in both cohorts, but the differences
- were more modest compared to lipids.
- 283
- 284

Page **12** of **27**

285 **GWAS** analysis reveals putative associations between type 2 diabetes molecular

286 profiles and genetic factors

- 287 Finally, in order to investigate possible genetic differences between molecular clusters,
- we analysed genetic loci previously associated with type 2 diabetes (17). Multi-omics
- 289 clusters in each cohort were compared with type 2 diabetes SNPs using logistic
- 290 regression correcting for age, BMI and gender. We did not detect any significant
- associations of the type 2 diabetes variants with our clusters in either cohort.
- Since we had identified around 110 proteins and 130 lipids that showed altered levels
- 293 between clusters, we then tested the association between the altered molecular profiles
- and type 2 diabetes variants. The SNP and molecular profile association was assessed in
- a linear regression model with SNP dosages, age, BMI and gender as independent
- variables. In DCS, a novel protective type 2 diabetes variant (17), rs146886108, showed
- 297 putative association with several molecules such as heat shock protein 90 beta (*p*
- 298 =1.08e-13) and glucose 6 phosphate isomerase (*p* = 2.04e-15). A consistent association
- result between rs505922 and E-selection can also be observed in both DCS (p = 1.23e-

300 15) and GoDARTS (p = 1.40e-16) cohorts.

301

302 Multi-Omics clusters show similarity to known clinical subgroups

303 We next compared the multi-omics clusters with clusters based on clinical

304 measurements (3). Similar to a previous study (2), these clusters can be classified as

305 severe insulin-deficient diabetes (SIDD); severe insulin-resistant diabetes (SIRD); mild

306 obesity-related diabetes (MOD); mild diabetes (MD) and mild diabetes with high HDL

307 (MDH). The overlap of clinical clusters with molecular clusters is shown in figure 3a. In

- 308 DCS, multi-omics cluster 1 showed a significant overlap with clinical cluster SIRD and
- 309 MOD. On the other hand, multi-omics cluster 2 showed a significant overlap with clinical

Page 13 of 27

cluster MDH. In GoDARTS, a similar trend was observed, as multi-omics cluster $f 1$
showed a larger overlap with SIRD and MOD, and multi-omics cluster 2 showed an
overlap with MDH (figure 3a).
Box plots were used to further visualize the differences between multi-omics and
clinical clusters (figure 3b, Supplemental figure 4). In DCS, we observed that multi-
omics cluster 1, SIRD and MOD showed similar levels of C-peptide, HOMA-2B, HOMA-
2IR, and triglycerides levels. On the other hand, multi-omics cluster 2 and MDH both
showed a low C-peptide and a high HDL cholesterol level (Supplemental figure 4a). A
similar pattern was observed in GoDARTS (Supplemental figure 4b).
In summary, we conclude that multi-omics cluster ${f 1}$ shares similar clinical features to
SIRD and MOD clinical subgroups whereas multi-omics cluster 2 shows higher
similarity to the MDH clinical subgroup.
similarity to the MDH clinical subgroup.
similarity to the MDH clinical subgroup. Discussion
Discussion
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on plasma-measured multi-omics data. Clinical features such as age and BMI were
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on plasma-measured multi-omics data. Clinical features such as age and BMI were excluded as confounding variables driving SNF clustering as they were not significantly
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on plasma-measured multi-omics data. Clinical features such as age and BMI were excluded as confounding variables driving SNF clustering as they were not significantly different between cluster 1 and cluster 2. Moreover, using six clinical features to
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on plasma-measured multi-omics data. Clinical features such as age and BMI were excluded as confounding variables driving SNF clustering as they were not significantly different between cluster 1 and cluster 2. Moreover, using six clinical features to replicate the multi-omics clustering results was unsuccessful for both cohorts. These
Discussion Using an unsupervised, bottom-up approach, we were able to cluster individuals with diabetes from two large European cohorts into two robust clusters based solely on plasma-measured multi-omics data. Clinical features such as age and BMI were excluded as confounding variables driving SNF clustering as they were not significantly different between cluster 1 and cluster 2. Moreover, using six clinical features to replicate the multi-omics clustering results was unsuccessful for both cohorts. These findings suggest that patient stratification using molecular features can reveal novel

334 -IR, C-peptide and triglyceride levels, which is known to be associated with insulin

Page 14 of 27

335	resistance (20). Individuals with type 2 diabetes are at risk of many complications such
336	as kidney disease and cardiovascular disease. It has been demonstrated that insulin
337	resistance is associated with hallmarks of kidney damage such as glomerular
338	hypertension, hyperfiltration and proteinuria (21, 22). We show evidence from Cox
339	proportional hazards modelling that patients in different clusters have slower disease
340	progression rates in both cohorts. Therefore, these multi-omics clusters could
341	potentially define molecular signatures related to disease severity, progression and
342	complications risk which could be relevant for more precision-based therapy of type 2
343	diabetes.
344	We tested the associations of type 2 diabetes genetic loci with multi-omics clusters
345	but found no clear evidence to suggest that the multi-omics clusters were associated
346	with specific type 2 diabetes genetic variants in either cohort. This suggests that known
347	type 2 diabetes genes are not drivers of molecular differences between clusters. A
348	similar clustering result can be observed in both cohorts and cluster 1 and cluster 2 $$
349	show similar HbA1c levels suggesting that our clusters are stable and at least partially
350	mechanistically distinct. It would be intriguing to see whether similar results can be
351	obtained from both newly diagnosed patients and long-term diabetes patients could be
352	performed in the future to support this view.
353	In both cohorts, we have identified ${\sim}100$ proteins and ${\sim}130$ lipids that showed an
354	altered expression pattern between multi-omics cluster 1 and cluster 2. Currently, we
355	cannot fully identify which molecules likely to be the driver molecules, nor we can say
356	these molecules play an important role in type 2 diabetes development. Nevertheless,
357	we assessed the association between these molecules and the type 2 diabetes variants.
250	A novel type 2 dishetes SNP rs146886108 a missense variant that encodes

A novel type 2 diabetes SNP, rs146886108, a missense variant that encodes

359 p.Arg187Gln in ANKH, which was first identified by Mahajan et a. (17), and showed a

Page 15 of 27

360	strong correlation with several measured proteins, including heat shock protein 90
361	beta, glucose 6 phosphate isomerase. The UK Biobank Mendelian trait GWAS study also
362	showed a strong association between rs146886108 and random glucose. The fact that
363	we found a strong association between rs146886108 and glucose 6 phosphate
364	isomerase could potentially identify a mechanism behind the action of rs 146886108 on
365	glucose regulation. Further investigations may help to evaluate the causal roles of these
366	type 2 diabetes variants, with their associated molecules and possible mechanisms.
367	Using five clinical measurements, age, BMI, HbA1c, c-peptide and HDL, Slieker and
368	Donnelly et al. (3) have shown that people with type 2 diabetes could be grouped into
369	five distinct clusters: insulin-deficient (SIDD), insulin-resistant (SIRD), an obesity
370	cluster (MOD), mild diabetes (MD) and MD with a high HDL (MDH). Comparing with
371	these clinical clusters, we were able to demonstrate that the multi-omics clusters
372	significantly overlap with the clinically defined clusters. Multi-omics cluster 1,
373	characterized by a relatively high C-peptide and triglycerides level, showed a significant
374	overlap with SIRD and MOD. Multi-omics cluster 2, a cluster with a relatively high HDL
375	and low C-peptide value, showed a significant overlap with MDH. These results further
376	underline the complementarity of the multi-omics and clinical clustering approaches
377	and suggests that multi-omics signatures can in theory be linked to clinical
378	measurements and outcomes to explore molecular mechanisms linked to the underlying
379	heterogeneity of disease.
380	The present approach offers the prospect of multi-omics personalized medicine, in
381	which an extended set of molecular characteristics is used to assess disease
382	development and progression. Through multi-omics health management, each patient
383	might be positioned with respect to the underlying dysregulated pathways, with
384	therapies selected accordingly. Whether this approach will indeed provide better

Page 16 of 27

385	outcomes than current practice, based on clinical features and more limited blood
386	biochemistry, will need to be assessed in the future.

387

388 Limitations of study

- 389 From the patient network (Figure 1) it is clear that the multi-omics clusters are not
- 390 completely distinct. The two clusters therefore represent different molecular
- 391 signatures, where a patient shows more similarity to one cluster compared to the other

392 on a continuous scale. Nevertheless, we do not recommend using such clusters to assign

- 393 patients, but rather the use of the clustering results to explore the underlying molecular
- 394 pathology and as an alternative route to identifying novel biomarkers for risk of type 2
- 395 diabetes and its complications.

396 In both DCS and GoDARTS, patients were not necessarily recruited after diagnosis, and

397 this heterogeneity in the disease duration could potentially have an effect on the blood

398 measurements obtained. Moreover, as we mentioned above, in DCS, blood samples are

399 taken in a fasted state, in contrast to GoDARTS, where blood measurements are done in

400 a non-fasted state. However, it has been demonstrated that a normal food intake only

401 has slight effects on cholesterol levels, and lipid profiles at most change minimally in

402 response to normal food intake in general populations (23, 24).

One of the common questions regarding patients' clustering results is whether patients
move between clusters over time. In a recent 5-year follow-up study (25), 367 diabetes
patients were assigned based on the nearest centroid approaches at both baseline and
5-year follow-up. 23% of patients switched their cluster allocations after 5 years. This
can be expected as the variables that were used for clustering such as age, BMI and
HOMA2 can change over time, following the time increase, lifestyle choice changes and
disease progress. For our study, roughly 1375 plasma molecules were used for

Page 17 of 27

- 410 clustering. Some molecule concentrations such as triacylglycerol and diacylglycerol can
- 411 change following lifestyle changes or medical treatment. Other "housekeeping"
- 412 molecules are more likely to remain constant over time. The stability of molecular
- 413 clustering results needs to be assessed in further prospective studies.
- 414 We cannot at this stage assert that the different clusters represent different aetiologies
- 415 of type 2 diabetes, nor that the clustering method represents an optimal classification
- 416 for type 2 diabetes subgroups. The multi-omics clusters in our study were derived
- 417 primarily from patients from Europe. Consequently, the applicability of these results to
- 418 other ethnic groups needs to be assessed.
- 419

420 Acknowledgments

- 421 The authors acknowledge the support of the Health Informatics Centre, University of
- 422 Dundee, for managing and supplying the anonymized data.
- 423 Funding. G.R. was supported by a Wellcome Trust Investigator Award
- 424 (212625/Z/18/Z), MRC Programme grant (MR/R022259/1) Diabetes UK
- 425 (BDA/15/0005275, BDA 16/0005485) grants and a start-up grant from the CR-CHUM,
- 426 Université de Montréal. This project has received funding from the Innovative
- 427 Medicines Initiative 2 Joint Undertaking, under grant agreement no. 115881
- 428 (RHAPSODY). This Joint Undertaking receives support from the European Union's
- 429 Horizon 2020 research and innovation programme and EFPIA. This work is supported
- 430 by the Swiss State Secretariat for Education, Research and Innovation (SERI), under
- 431 contract no. 16.0097.
- 432 **Duality of Interest.** G.A.R. has received grant funding from, and is a consultant for, Sun
- 433 Pharmaceuticals Inc. K.S. is CEO of Lipotype. K.S. and C.K. are shareholders of Lipotype.
- 434 M.JG. is an employee of Lipotype. M.K.H. is an employee of Janssen Research &

Page 18 of 27

- 435 Development. All other authors declare that there are no relationships or activities that
- 436 might bias, or be perceived to bias, their work.
- 437 **Contribution Statement.** S.L., M.I. and G.A.R. designed the research. S.L. wrote the
- 438 manuscript. S.L. performed all data analysis with technical support from I.D., D.K.,
- 439 and M.I. set up a federated node system for data analysis. R.C.S., L.A.D., M.K.H., J.W.J.B.,
- 440 L.M't.H., F..M, P.J.M.E. and E.R.P. were involved in generating the peptidomics data,
- 441 generating the clinical cluster assignment results, managing and handling the data in
- 442 databases. M.JG., C.K. and K.S. generated the Lipotype data. The research was designed
- 443 partly based on the pre-work results by C.H.F. All authors read and approved the
- 444 manuscript and contributed according to the ICMJE criteria (www.icmje.org/). G.A.R.
- and M.I. co-supervised the work. M.I. is the guarantor of this work and, as such, had full
- 446 access to all the data in the study and takes responsibility for the integrity of the data
- 447 and the accuracy of the data analysis.

448

Page 19 of 27

449 Table 1. Genetic associations with altered molecular profiles between multi-

- 450 **omics clusters reaching significance**. The correlations between molecules and SNPs
- 451 were estimated using linear regression models with age, BMI and gender adjustments.
- 452 The commonly accepted threshold $P \le 5 \times 10(-8)$ for genome-wide association studies is
- 453 applied in this present study.

DCS						
Locus	rs ID	Chr	Pos	Alleles	association	P-value
					molecule	(adjusted by
						BMI, age and
						sex)
ANKH	rs146886108	5	14,751,305	C/T	Integrin alpha I	5.88E-10
					beta 1 complex	
ANKH	rs146886108	5	14,751,305	C/T	Heat shock	1.13E-21
					protein HSP 90	
					alpha beta	
ANKH	rs146886108	5	14,751,305	C/T	Heat shock	1.08E-13
					protein HSP 90	
					beta	
ANKH	rs146886108	5	14,751,305	C/T	Glucose 6	2.04E-15
					phosphate	
					isomerase	
ANKH	rs146886108	5	14,751,305	C/T	Alcohol	4.04E-32
					dehydrogenase	
					NADP	
ABO	rs505922	9	133,273,813	C/T	E selectin	1.23E-15

Page 20 of 27

rs505922	9	133,273,813	C/T	CD209 antigen	2.09E-14
rs ID	Chr	Pos	Alleles	association	P-value
				molecule	(adjusted by
					BMI, age and
					sex)
rs505922	9	133,273,813	C/T	E selectin	1.40E-16
	rs ID	rs ID Chr	rs ID Chr Pos	rs ID Chr Pos Alleles	rs ID Chr Pos Alleles association molecule

456

Page 21 of 27

457 **References**

458	1.	International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels,
459		Belgium: International Diabetes Federation, 2021.
460	2.	Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al.
461		Novel subgroups of adult-onset diabetes and their association with outcomes: a
462		data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018
463		May;6(5):361–9.
464	3.	Slieker RC, Donnelly LA, Fitipaldi H, Bouland GA, Giordano GN, Åkerlund M, et al.
465		Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes:
466		An IMI-RHAPSODY Study. Diabetes. 2021 Nov;70(11):2683–93.
467	4.	Tanabe H, Saito H, Kudo A, Machii N, Hirai H, Maimaituxun G, et al. Factors
468		Associated with Risk of Diabetic Complications in Novel Cluster-Based Diabetes
469		Subgroups: A Japanese Retrospective Cohort Study. J Clin Med Res [Internet].
470		2020 Jul 2;9(7).
471	5.	Safai N, Ali A, Rossing P, Ridderstråle M. Stratification of type 2 diabetes based on
472		routine clinical markers. Diabetes Res Clin Pract. 2018 Jul;141:275–83.
473	6.	Kahkoska AR, Geybels MS, Klein KR, Kreiner FF, Marx N, Nauck MA, et al.
474		Validation of distinct type 2 diabetes clusters and their association with diabetes
475		complications in the DEVOTE, LEADER and SUSTAIN-6 cardiovascular outcomes
476		trials. Diabetes Obes Metab. 2020 Sep;22(9):1537–47.
477	7.	Lugner M, Gudbjörnsdottir S, Sattar N, Svensson AM, Miftaraj M, Eeg-Olofsson K,
478		et al. Comparison between data-driven clusters and models based on clinical
479		features to predict outcomes in type 2 diabetes: nationwide observational study.
480		Diabetologia. 2021 Sep;64(9):1973–81.

Page 22 of 27

481	8.	McCarthy MI. Painting a new picture of personalised medicine for diabetes.
482		Diabetologia. 2017 May;60(5):793–9.
483	9.	Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network
484		fusion for aggregating data types on a genomic scale. Nat Methods. 2014
485		Mar;11(3):333–7.
486	10	. van der Heijden AA, Rauh SP, Dekker JM, Beulens JW, Elders P, 't Hart LM, et al.
487		The Hoorn Diabetes Care System (DCS) cohort. A prospective cohort of persons
488		with type 2 diabetes treated in primary care in the Netherlands. BMJ Open. 2017
489		Jun 6;7(5):e015599.
490	11	. Hébert HL, Shepherd B, Milburn K, Veluchamy A, Meng W, Carr F, et al. Cohort
491		Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS).
492		Int J Epidemiol. 2018 Apr 1;47(2):380–1j.
493	12	. Iulian Dragan (2021). dsSwissKnifeClient: DataSHIELD Tools and Utilities - client
494		side. R package version 0.2.0
495	13	. Bo Wang, Aziz Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael Brudno,
496		Benjamin Haibe-Kains and Anna Goldenberg (2021). SNFtool: Similarity Network
497		Fusion. R package version 2.3.1.
498	14	. Xu T, Le TD, Liu L, Su N, Wang R, Sun B, et al. CancerSubtypes: an R/Bioconductor
499		package for molecular cancer subtype identification, validation and visualization.
500		Bioinformatics. 2017 Oct 1;33(19):3131–3.
501	15	. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al.
502		Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010
503		Jun 1;26(11):1463–4.

Page 23 of 27

504	16. Csardi G, Nepusz T: The igraph software package for complex network research,
505	InterJournal, Complex Systems 1695. 2006.
506	17. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al.
507	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density
508	imputation and islet-specific epigenome maps. Nat Genet. 2018 Nov;50(11):1505
509	-13.
510	18. Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman,
511	Wolfgang Huber, Andy Liaw, Thomas Lumley, Martin Maechler, Arni Magnusson,
512	Steffen Moeller, Marc Schwartz and Bill Venables (2020). gplots: Various R
513	Programming Tools for Plotting Data. R package version 3.1.1.
514	19. Panagiotou OA, Ioannidis JPA, Genome-Wide Significance Project. What should
515	the genome-wide significance threshold be? Empirical replication of borderline
516	genetic associations. Int J Epidemiol. 2012 Feb;41(1):273–86.
517	20. Glueck CJ, Khan NA, Umar M, Uppal MS, Ahmed W, Morrison JA, et al. Insulin
518	resistance and triglycerides. J Investig Med. 2009 Dec;57(8):874–81.
519	21. Groop L, Ekstrand A, Forsblom C, Widén E, Groop PH, Teppo AM, et al. Insulin
520	resistance, hypertension and microalbuminuria in patients with type 2 (non-
521	insulin-dependent) diabetes mellitus. Diabetologia. 1993 Jul;36(7):642–7.
522	22. Gnudi L, Coward RJM, Long DA. Diabetic Nephropathy: Perspective on Novel
523	Molecular Mechanisms. Trends Endocrinol Metab. 2016 Nov;27(11):820–30.
524	23. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels:
525	influence of normal food intake on lipids, lipoproteins, apolipoproteins, and
526	cardiovascular risk prediction. Circulation. 2008 Nov 11;118(20):2047–56.

Page 24 of 27

527 24. Liu MM, Peng J, Cao YX, Guo YL, Wu NQ, Zhu CG, et al. The difference bet
--

- 528 fasting and non-fasting lipid measurements is not related to statin treatment.
- 529 Ann Transl Med. 2021 Mar;9(5):386.
- 530 25. Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, et al.
- 531 Risk of diabetes-associated diseases in subgroups of patients with recent-onset
- 532 diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019
- 533 Sep;7(9):684–94.
- 534
- 535
- 536
- 537
- 538

Page 25 of 27

539 Figure legends

540 Figure 1. Experiment design and the molecular clusters displayed as both 541 similarity matrices and patient network. (b,c) Molecular clusters were generated by 542 integrated multi-omics (lipidomics and peptidomics) data in both DCS (b) and GoDARTS 543 (c), respectively. The similarity matrices were calculated based on Euclidean distances 544 with parameters of K=20 (the number of shared neighbours of datapoint), alpha=0.5 545 (hyperparameter) and T=20 (number of iterations). Each point in the similarity 546 matrices represents patient-to-patient similarity, the higher the colour intensity, the 547 more similar the patients. Boxed regions represent the potential clusters. The patient 548 networks were generated based on unweighted adjacency matrices. The nodes 549 represent the patients, edge thickness reflects the strength of similarity, the size of the 550 node represents the betweenness. Nodes were coloured based on their cluster 551 assignments. DCS= Hoorn Diabetes Care System. GoDARTS=Genetics of Diabetes Audit 552 and Research in Tayside Scotland. 553 554 Figure 2. (a,b,c) Clinical characteristics and molecular profiles of multi-omics 555 clusters in both DCS and GoDARTS clusters. (d) The hazard ratio for time to 556 insulin requirement across clusters. Multi-omics clustering was done without separating the women and men. In each cohort, the statistical difference between 557 558 cluster 1 and cluster 2 was determined by logistic regression with age, BMI and gender 559 as covariates. Multi-analysed P-values were adjusted by the Benjamini-Hochberg 560 procedure, and a false discovery rate (FDR)-adjusted P-value <=0.05 was considered 561 significant. (a) Distributions of nine clinical measurements at baseline in both DCS and GoDARTS cohorts for each cluster. *: P-value<=0.05. **: P-value<=0.01. ***: P-562 563 value<=0.001. (b) Venn diagrams showing overlaps of significant (significantly different

Page 26 of 27

564	between clusters) proteins (upper) or lipids (lower) across DCS and GoDARTS cohorts.
565	(c) The relative concentration heatmaps of common significant proteins (upper) or
566	lipids (lower) between DCS and GoDARTS cohorts. Concentrations of each feature were
567	first converted into the log(concentration) and then normalized in order to investigate
568	the relative expression level of each feature between different clusters (Row Z-score).
569	Heatmap cells were coloured in red/green to represent the relative expression level
570	(red=low, green=high). The federated database does not allow to download data from
571	individual samples in order to protect the patient's identity. Each vertical line in the
572	heatmap represents 5 different patients' mean values for each feature. y-labels were
573	hidden for a better presentation. Fully labelled versions are available in Supplemental
574	Figure 5. (d) X-axis, hazard ratio, y-axis, database. Cox model with correction of gender
575	(left) or with corrections for gender, age and BMI (right). The number in the panel
576	represents the hazards with 95% confidence intervals. Multi-omics cluster 1:1 and
577	Multi-omics cluster 2:2. Cox model gives the hazard ratio for the second group relative
578	to the first group. The hazard ratio is not significant if the 95% confidence interval
579	includes 1. DBP= Diastolic Blood Pressure. SBP= Systolic Blood Pressure. HbA1C=
580	Haemoglobin A1C. DCS= Hoorn Diabetes Care System. GoDARTS=Genetics of Diabetes
581	Audit and Research in Tayside Scotland.
582	

Figure 3 (a) Comparison of clustering in Slieker and Donnelly et al., 2021 versus
clustering in the current study. The first number in each cell represents the number of
individuals overlapping, the second number represents the hypergeometric overlap pvalue. (b) Distributions of nine clinical measurements at baseline in both DCS and
GoDARTS cohorts for multi-omics clusters and clinical clusters. CL1= multi-omics
cluster #1. CL2= multi-omics cluster #2. MD= mild diabetes. MDH= mild diabetes with

Page 27 of 27

- 589 high HDL. MOD= mild obesity-related diabetes. SIDD= severely insulin deficient
- 590 diabetes. SIRD= severely insulin resistant diabetes. SBP=systolic blood pressure.
- 591 DBP=diastolic blood pressure. HbA1C=Hemoglobin A1C.

- - -

Hazard Ratio

Figure 3

