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Abstract 46 

The majority of people worldwide live in cities, yet how urban living affects brain and 47 

mental illness is scarcely understood. Urban lives are exposed to a a wide array of 48 

environmental factors that may combine and interact to influence mental health. While 49 

individual factors of the urban environment have been investigated in isolation, to date 50 

no attempt has been made to model how the complex, real life exposure to living in the 51 

city relates to brain and mental illness, and how it is moderated by genetic factors. Using 52 

data of over 150,000 participants of the UK Biobank, we carried out sparse canonical 53 

correlation analyses (sCCA) to investigate the relation of urban living environment with 54 

symptoms of mental illness. We found three mental health symptom groups, consisting 55 

of affective, anxiety and emotional instability symptoms, respectively. These groups 56 

were correlated with distinct profiles of urban environments defined by risk factors 57 

related to social deprivation, air pollution and urban density, and protective factors 58 

involving green spaces and generous land use. The relations between environment and 59 

symptoms of mental illness were mediated by the volume of brain regions involved in 60 

reward processing, emotional processing and executive control, and moderated by 61 

genes regulating stress response, neurotransmission, neural development and 62 

differentiation, as well as epigenetic modifications. Together, these findings indicate 63 

distinct biological pathways by which different environmental profiles of urban living 64 

may influence mental illness. Our results also provide a quantitative measure of the 65 

contribution of each environmental factor to brain volume and symptom group. They 66 
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will aid in targeting and prioritizing important decisions for planning and public health 67 

interventions. 68 

 69 

Introduction 70 

More than 50% of the world population lives in an urban area, and it is estimated 71 

that by 2050, two-thirds of the world population will live in cities1. This dramatic 72 

increase in urbanization means that living environments are going through drastic 73 

transformations: Lives in urban areas are led in increasingly higher density residential 74 

and commercial buildings1, concomitant reduced access to green areas2, increased 75 

exposures to potentially harmful substances3 and more stressful social conditions4. At 76 

the same time urbans residents potentially benefit from better infrastructure and more 77 

work opportunities than rural dwellers1. 78 

The impact of the urban living environment on mental health, is not well 79 

understood. Thus far there is evidence of urban-rural differences in the prevalence of 80 

psychiatric disorders5, and recent research has confirmed that individuals living in 81 

urban environments are at a higher risk of experiencing various mental health issues. 82 

The most prevalent of these issues are increased emotional problems, including 83 

symptoms of depression and anxiety5-8. In addition to the investigation of a general and 84 

complex environmental factor as urbanicity, there have been investigations of isolated 85 

environmental factors relevant to urban living, such as greenspaces 9,10, socio-economic 86 

status11 and others12. But these isolated factors have not been considered in the wider 87 
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environmental context that characterises a living environment. In order to develop 88 

targeted prevention and intervention programmes ranging from urban planning to 89 

individual psychosocial coping programmes, it is neither sufficient to regard urbanicity 90 

as one risk factor, nor is it sufficient to focus on single isolated environmental factors 91 

alone. The urban environment, as any other living environment, is composed of 92 

simultaneous interacting factors, which may form profiles or signatures that together 93 

can reduce or increase risk for mental illness13,14.   94 

The relation of symptoms of mental illness and brain structure with the exposure 95 

to environmental profiles of multiple factors composing a living environment are 96 

currently unknown, either in urban settings or otherwise. Furthermore, exposure to 97 

environmental adversity does not result in a uniform response, but individual 98 

differences have been well documented15. Genetic variations are known to be one 99 

important source of such individual differences16. In fact, activity of biological 100 

pathways, such as the stress response pathway or epigenetic modifications that are 101 

known mediators of the effect of stressful environmental stimuli on brain and mental 102 

illness have been shown to vary depending on particular genotypes17.  103 

In this paper, we identify environmental profiles of urban living and relate them 104 

to groups of mental illness symptoms. We aim to understand what combinations of 105 

environmental profiles are most relevant for these emotional problems, and how within 106 

these combinations each single factor contributes to risk or resilience.  We also identify 107 

regional brain areas that mediate the effect of different environmental profiles on 108 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.22279549doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279549
http://creativecommons.org/licenses/by-nd/4.0/


6 

 

mental illness symptoms groups. To discover moderators that may underlie individual 109 

differences in response to adverse environmental profiles, we investigate genetic 110 

variations derived from genome-wide analyses of symptoms of mental illness and test 111 

them for moderation of the regional brain volumes correlated to environmental 112 

adversity. To this end, we carried out four analysis steps: (1) a two-way sparse 113 

canonical correlation analysis (sCCA) to identify environmental profiles and their 114 

related symptom groups of mental illness. (2) a genome-wide association study (GWAS) 115 

of the symptom groups identified, followed by the computation of gene scores of 116 

GWAS-significant genes. (3) a three-way multiple-sparse canonical correlation 117 

analysis (msCCA) relating urban living environmental profiles and symptom groups 118 

with regional brain volume. (4) a moderated mediation analysis to characterize the 119 

mediation of environmental profiles and symptom groups by regional brain volume, 120 

and its moderation by gene scores (Figure 1 and Supplementary Figure 1). 121 

Results 122 

Overview of analyses 123 

Our analyses were carried out in participants of UK Biobank, a large and 124 

predominantly urban population-based cohort. A subset of 156,375 participants that 125 

were assessed for both, 21 mental symptoms measures as well as 128 environmental 126 

variables linked to their home address. These environmental variables included air and 127 

sound pollution, traffic, greenspace and coastal proximity, socioeconomic indices of 128 

multiple deprivation (IMD), building class, destination accessibility, land use density, 129 
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terrain, normalized difference vegetation index (NDVI) and street network accessibility. 130 

The participants from UK Biobank -Biobank Urban Morphometric Platform (UK-131 

BUMP), with complete urban living environmental data and mental health data 132 

(n=156,375) were divided into datasets without neuroimaging data (n= 141,325, UKB-133 

nonNI) and with neuroimaging data (n=15,050, UKB-NI). At the time of our analyses, 134 

brain neuroimaging was ascertained in 42,796 participants, of which 15,050 had 135 

complete neuroimaging, mental health and environmental assessments (Supplementary 136 

methods). 137 

We apply a training and test data split design to investigate the relation of urban 138 

living environment with symptoms of mental illness using sparse canonical correlation 139 

analysis (sCCA), a multivariate analysis technique to determine multivariate 140 

associations between two or more sets of variables. First, we characterise the 141 

environmental profiles associated with groups of mental health symptoms using a 142 

classical (binary) sCCA. Following a GWAS analysis, we infer a set of genes scores 143 

associated with these symptoms groups. Next, using a multi-view sparse CCA 144 

(msCCA), we identify the regional brain volumes jointly associated with environment 145 

and mental health. We then describe the directionality of this relationship using a 146 

moderated mediation analysis. Throughout the analysis we were careful to retain a strict 147 

training-test separation to avoid bias. Demographic information on the specific 148 

statistical analysis is shown in Table 1. Schematic summaries are shown in Figure 1 149 

and Supplementary Figure 1. 150 
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 151 

Figure 1: Characterization of the relation of urban living environment profile, 152 

regional brain volume and mental illness symptoms, and its moderation by genes. In 153 

141,325 participants without neuroimaging data (UKB-nonNI), we identified 154 

environmental profiles correlated to symptom groups of emotional problems by 155 

splitting our data in training and test datasets, and applying bootstrapping with 156 

replacement and random resampling. Next, we carried out genome-wide association 157 

analysis (GWAS) analyses of the symptom groups identified in 85,348 participants with 158 

complete genomic, environment and mental health data from the UKB-nonNI dataset. 159 

The dataset with neuroimaging data (n=15,050, UKB-NI) was used for independent 160 

replication of the multivariate relation between urban living environment, genes and 161 

mental health, as well as for additional neuroimaging analyses. We analysed relations 162 

between the environmental profiles, regional brain volume and the emotional symptom 163 

groups applying msCCA. Again, we used a split design with a training and a test dataset. 164 

Using a moderated mediation analysis, we then investigated the mediation of the effect 165 

of the environmental profiles on emotional symptom groups by regional brain volume 166 
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and its genetic moderation in 8,726 participants with complete genomic, environment, 167 

brain volume and mental health data in UKB-NI.  168 

 169 

Correlation of urban living environment with symptoms of mental illness. 170 

A total of 53 urban living environment catgories including 128 items were 171 

included in this study. In the 53 categories, there were 34 categories having one 172 

independent item. In the remaining 19 categories, given that some items of each 173 

category examined similar aspects of urban environment, ten fold cross-validation 174 

confirmatory factor analysis (CFA) was performed to collapse the available information 175 

into 19 latent urban living environmental categories using the R package lavaan 176 

(https://cran.r-project.org/web/packages/lavaan)18. Ten-fold cross-validation splits 177 

were performed to ensure unbiased estimates of generalizability throughout the analytic 178 

pipeline and to optimize the CFA models. To investigate the relation of urban living 179 

environment with symptoms of mental illness, we used sCCA regression to link 53 180 

independent urban living environment categories and 21 prospective symptoms of 181 

mental illness (see Online Methods). To avoid overestimating the variance shared 182 

between urban living environment and symptoms of mental illness, we used a split data 183 

analysis design, which allows us to estimate effect sizes in an unbiased way. We carried 184 

out model selection in a training dataset of 90% of the data (n = 127,134), and model 185 

validation in the testing dataset of the remaining 10% (n = 14,132) in the 141,326 186 

participants of the UKB-nonNI dataset. To enhance stability, we resampled the data 187 
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and retained only variables that contributed to the model in 90% of resamples (Methods 188 

and Supplementary Figure 1)19.  189 

Using msCCA regression, we found a significant relationship between urban 190 

living environment profiles and a subset of five symptoms of mental illness in the 191 

training dataset (r=0.22, Ppermutation<0.001), explaining 4.84% of the variance. The 192 

model was also significant when applied to the test dataset (r = 0.19, Ppermutation<0.001, 193 

PFDR<0.001) explaining 3.61% of the variance between environment profiles and 194 

symptoms groups of mental illness (Figure 1). These symptoms of mental illness consist 195 

of a group of five self-reported symptoms, namely frequency of unenthusiasm, 196 

frequency of tiredness, loneliness, frequency of depressed mood and fed-up feelings 197 

(Figure 2), which we summarised as the affective symptom group. This symptom group 198 

is positively correlated with IMD score, air and noise pollution, measures of street 199 

accessibility and neighbourhood walkability (street radial and centrality), traffic and 200 

density of urban infrastructures (factories, retails, offices and community services), 201 

while being negatively correlated with percentage of domestic garden, natural 202 

environment and greenspace, and distance to urban facilities (community services, 203 

factories, emergency, education, food stores, community and healthcare) 204 

(Supplementary Table 5 and Figure 2). We assessed robustness in two ways, first we 205 

used bootstrapping to resample the training data (with replacement) 1000 times, each 206 

containing 10% to 150% of the training dataset in 10% increments. Then, we performed 207 

a second validation by drawing 1000 resamples of the training dataset, each containing 208 

90% of the dataset (Supplementary Table 6 and Figure 2). No specific gender effect 209 
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was detected (Supplementary Results and Supplementary Table 7). Our results indicate 210 

that the affective symptom group is positively correlated with an environment profile 211 

dominated by high degrees of social deprivation and air pollution, and to a lesser extent 212 

traffic and short distance to infrastructural facilities. Other properties of urbanicity, in 213 

particular various forms of green space and social infrastructure appear to be protective 214 

in this model. 215 

After determining the significance of the first canonical correlate, we removed the 216 

effect of the first set of canonical vectors by projection deflation, as we have done 217 

previously19. This approach is more appropriate for regularised CCA than standard 218 

deflation methods more commonly used in the field20 because it ensures that the 219 

predictions for successive components are orthogonal (i.e. uncorrelated). This is also 220 

important to keep in mind in order to correctly interpret our findings (e.g. the GWAS 221 

analysis we report below) because the second canonical variables relate to covariance 222 

between datasets that is orthogonal to the first set of canonical variables, as is also the 223 

case in standard CCA. In other words, the second CCA component explains covariance 224 

over and above what is explained by the first component. We then repeated the analysis 225 

to investigate the presence of a second canonical correlation between the remaining 226 

urban living environment and mental health variables. Here, we identified another 227 

mental illness symptoms consisting of six self-report measures, including worrying too 228 

long, anxious feelings, nervous feelings, nerves, tense and suffering from nerves 229 

(Figure 2), summarised as the anxiety symptom group, which was significantly 230 

associated with the environmental profile in the training dataset (r = 0.15, 231 
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Ppermutation<0.001). The test sample correlation is also significant (r = 0.12, 232 

Ppermutation<0.001, PFDR<0.001), explaining 1.44% of the variance between 233 

environmental profile and anxiety symptom group. This symptom group was positively 234 

correlated with measures of urban morphology, including density of leisure places, 235 

street accessibility and neighbourhood walkability (street network detour and shape) 236 

(Supplementary methods and Supplementary Table 2-3), mean terrain, Euclidean 237 

distance to coast, variation of NDVI and density of mixed urban infrastructure 238 

(residential, transport, utility, animal centre, storage land and agriculture, et.ac) while 239 

being negatively correlated with mean NDVI, distance to waste and energy as well as 240 

percentage of water (Supplementary Table 5 and Figure 2). The second environmental 241 

correlate captures a different urban profile, one that is dominated by green spaces and 242 

long distances to waste and energy facilities as well as presence of water, all of which 243 

are inversely correlated (protective) to symptoms of anxiety. The anxiety symptom 244 

group is also positively correlated with signs of denser urban build-up, such as density 245 

of streets and leisure places as well as urban regions with mixed residential, commercial 246 

and industrial use.  247 

We removed the effects of the second canonical correlate and investigated the 248 

presence of a third canonical correlation between the remaining urban living 249 

environment and symptoms of mental illness. Here, the correlation coefficient between 250 

two canonical variables was 0.12 in the training dataset (Ppermutation<0.001) and 0.10 in 251 

the test dataset (Ppermutation<0.001, PFDR<0.001), explaining variance of 1.44% and 252 

1.00%, respectively. The canonical mental health correlate consists of nine symptoms 253 
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including feeling guilty, frequency of tenseness, miserableness, mood swings, 254 

neuroticism score, risk taking, irritability and sensitivity, hurt feelings, illness, injury, 255 

bereavement or stress in last 2 years (Figure 2), which we termed the emotional 256 

instability symptom group. This symptom group is positively correlated with density 257 

of education facilities, variation of terrain, building class (flats in highrisers, terraced 258 

houses etc.), measures of street accessibility and neighbourhood walkability (street 259 

network link characteristics), density of accommodation, medical and emergency 260 

facilities, while being negatively correlated with density of unused land, density of 261 

water, open space, amenity, park, allotment and information stations as well as distance 262 

to food store.  263 

We independently replicated these correlations in the UKB-NI dataset (n=15,050) 264 

by applying the same sCCA split data (90%/10%) with a resampling threshold of 90%. 265 

The replication analysis yielded three statistically significant canonical correlates in the 266 

training and test datasets, which were identical to those of the primary analyses. In the 267 

first affective symptoms group, the canonical correlation was 0.20 in the training 268 

dataset (n=13,545; Ppermutation<0.001) and 0.16 in test dataset (n=1,505; Ppermutation<0.001, 269 

PFDR<0.001), in the second anxiety symptoms group, the correlation coefficient was 270 

0.10 in the training dataset (Ppermutation<0.001) and 0.08 in the test dataset 271 

(Ppermutation<0.001, PFDR<0.001). In the third emotional instability symptoms group the 272 

correlation coefficient between two canonical variables was 0.06 in the training dataset 273 

(Ppermutation<0.001) and 0.04 in the test dataset (Ppermutation<0.0039, PFDR =0.0273) 274 

(Supplementary Table 8).  275 
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 276 

 277 

Figure 2. Multivariate relation between urban living environment profile and 278 

symptoms of mental illness. a. A total of 128 items corresponding to 53 categories of 279 

urban living environment are included; b. The sCCA-regression model linking urban 280 

living environment to symptoms of mental illness identified three significant correlates 281 

in train datasets (red dot), including affective symptoms group (r=0.22, 282 

Ppermutation<0.001), anxiety symptoms group (r=0.15, Ppermutation<0.001) and emotional 283 
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instability symptoms group (r=0.12, Ppermutation<0.001). These results were still 284 

significant in test datasets of affective (r=0.19, Ppermutation<0.001), anxiety (r=0.12, 285 

Ppermutation<0.001) and emotional instability symptoms group (r=0.10, 286 

Ppermutation<0.001). c. An example of correlation map between urban environment 287 

profile and affective symptoms group in train dataset (r=0.22, Ppermutation<0.001) and 288 

test dataset (r=0.19, Ppermutation<0.001). d. In the first (top), second (medium) and third 289 

(bottom) correlates, urban living environment profiles contributing to this relationship 290 

were shown on the left, symptoms group of mental illness contributing to this 291 

relationship were shown on the right. The bars demonstrated the structure coefficient 292 

value (rs) of each variable in sCCA-regression analysis. e. Robustness assessment. Left: 293 

We used bootstrapping to resample the training data (with replacement) 1000 times, 294 

each containing 10% to 150% of the training dataset in 10% increments Stability in 295 

correlation coefficient after about 30% of the sample size were observed; Right: To 296 

estimate of the stability of the findings across subsamples, we resampled the same 297 

proportion 90% of original sample size as train dataset for 1000 times, reran the sCCA 298 

algorithm and calculated the correlation between the resulting feature in the remaining 299 

10% test dataset. CC value, canonical correlation coefficient; IMD, Index of Multiple 300 

Deprivation; NDVI, Normalized difference vegetation index; rs, structure coefficient 301 

value; STD, standard deviation; UE, urban living environment.  302 

 303 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.22279549doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279549
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

GWAS analyses of the mental health symptoms groups that related to urban 304 

environment profile 305 

We next performed a GWAS analysis of the canonical variates of the affective, 306 

anxiety and emotional instability symptom groups in 85,348 participants with complete 307 

genetic, urban environment and mental health data in UKB-nonNI datasets (Table 1). 308 

Gene-set enrichment analysis was then performed to explore biological mechanism 309 

underlying the genes associated with the symptoms groups using TopGene21. To reduce 310 

dimensionality, we generated scores for each of the genes where significant SNPs were 311 

localised (see Supplementary methods). The score of each gene is calculated as the sum 312 

of the count of risk alleles multiplied by the corresponding beta value from GWAS 313 

across the index SNPs of each clump after adjusting for linkage disequilibrium (see 314 

Supplementary methods). These gene scores were then analysed for moderation of the 315 

relation of environment, regional brain volume and symptoms group of mental illness 316 

(see below).  317 

For the affective symptom group, we found 2,983 significant associations with 318 

SNPs at Bonferroni Pc<0.05 (uncorrected P<0.05/139,187,27/3=1.20 × 10-9, 319 

Supplementary Table 9), located in 43 genes. The lambda genomic control inflation 320 

factor was 1.0195 and the intercept value in linkage disequilibrium score regression 321 

(LDSC) was 1.011, indicating that population stratification was minimal in this study 322 

and did not cause significant inflation to the test statistics. By far the strongest 323 

association with the affective symptom group was found in a genomic region of 324 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.22279549doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279549
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

chromosome 17q21.3 spanning from position 43487217 to 44862162 (hg19), the site 325 

of a human supergene candidate that encodes several genes previously implicated in 326 

mental illness (Figure 3)22. The lead SNP was rs62062288, located in intron 6 of 327 

microtubule associated protein tau (MAPT) gene of chromosome 17 (P=6.09×10-15), a 328 

gene that encodes Tau protein in neurons and has been shown to be involved in affective 329 

symptoms23, alcohol disorders24 as well as risk taking behaviour25. In the same region 330 

of chromosome 17q21.3, we also found strong association of the affective symptom 331 

group with Corticotrophin Release Hormone Receptor 1 (CRHR1, a critical regulatory 332 

gene for neuroendocrinological and behavioural stress response26 as well as alcohol use 333 

disorders27,28). The remaining top associated genes were also encoded in this region. 334 

They include ARL17B (ADP ribosylation factor-like GTPase17B, potentially regulating 335 

G-protein signalling29), KANSL1 (KAT8 regulatory NSL complex subunit1, part of a 336 

histone acetyltransferase complex, an epigenetic regulator30), and MAPT-AS1 (MAPT 337 

antisense RNA 1, involved in progression of tau pathology in neurodegeneration31), as 338 

well as a pseudogene RP11-259G18 (Figure 3 and Supplementary Table 9). Additional 339 

associations were found on genomic region of chromosome 18q21.2, at the DCC gene 340 

locus (DCC Netrin 1 Receptor, regulates synaptic plasticity32 and neuronal migration33) 341 

and TCF4 gene locus (transcription factor 4, involved in neural differentiation34), 342 

chromosome 14q24.1 (DCAF5 and EXD2 gene locus) and chromosome 3q22 (STAG1 343 

and a pseudogene RP11-102M11.2). Bioinformatics analyses of the 43 genes using 344 

TopGene revealed enrichment of neuronal differentiation, regulation of axogenesis and, 345 

importantly, CRH-binding and activity (Supplementary Table 12). We then calculated 346 
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43 genes scores. The relationship between urban living environment profile and 347 

affective symptom group have shown different vulnerabilies depending on the genetic 348 

background. For example, we found that participants with lower CRHR1 gene scores 349 

demonstrate smaller correlation of urban environment profile with the affective 350 

symptom group compared to those with higher CRHR1 genes scores (Figure 3). 351 

We found significant associations of the anxiety symptom group with 29 SNPs 352 

covering 11 genes at Bonferroni Pc<0.05 (Supplementary Table 10 and Supplementary 353 

Figure 2). The drop in genome-wide significant hits compared to the affective symptom 354 

group GWAS is likely caused by the decreased covariance of the second CCA correlate, 355 

the anxiety symptom group, following deflation of the correlates of the first CCA 356 

correlate, the affective symptom group, as described above. The lead SNP associated 357 

with the anxiety symptom group was rs77641763 located in the intron 15 of 358 

Exonuclease 3'-5' Domain Containing 3 (EXD3) gene of chromosome 9 (P=4.08×10-359 

10). EXD3, involved in nucleic acid binding and widely expressed in the brain, has been 360 

associated with a group of anxiety, phobic and dissociative disorders35. The other top 361 

significant genes include NOLC1 (Nucleolar And Coiled-Body Phosphoprotein 1), a 362 

chaperone for shuttling between the nucleolus and cytoplasm36,37, ELOVL3 (Elongation 363 

of very long chain fatty acids protein 3, provides precursors for synthesis of 364 

sphingolipids and ceramides38), LBX1-AS1 (Ladybird homeobox 1- antisense RNA 1, 365 

involved in neuronal determination processes39), PITX3 (Paired Like Homeodomain 3, 366 

regulates differentiation and maintenance of midbrain dopamine neurons during 367 

development40), GBF1 (Golgi Brefeldin A Resistant Guanine Nucleotide Exchange 368 
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Factor 1, involved in axonal neuropathy41), CNNM2 (Cyclin And CBS Domain 369 

Divalent Metal Cation Transport Mediator 2, linked to neurodevelopmental 370 

impairments42) and NT5C2 (cytosolic 5′-nucleotidase II, regulating AMPK signalling 371 

and protein translation during early neurodevelopment43) (Supplementary Table 10). 372 

The 11 genes associated with the anxiety symptom group were enriched for small 373 

nucleolar ribonucleoprotein (snoRNP) complex binding involved in serotonin receptor 374 

regulation (Supplementary Table 12). And participants with lower EXD3 gene scores 375 

demonstrate smaller correlation of urban environment profile with the anxiety symptom 376 

group compared to those with higher EXD3 genes scores (Figure 3). 377 

In the emotional instability symptom group, there were 6 significant genetic 378 

associations at Bonferroni Pc<0.05 (Supplementary Table 11 and Supplementary 379 

Figure 2). The lead SNP was rs77786116 located in Intraflagellar Transport 74 (IFT74) 380 

gene of chromosome 9 (P=4.16×10-10). ITF74 is a critical factor in neuronal migration, 381 

a cause for Bardet-Biedl syndrome and Joubert syndrome44,45 and is associated with 382 

paranoid schizophrenia46. The other significant genes include TMPO (thymopoietin, 383 

involves in neuron proliferation), LDHC (lactate dehydrogenase C, involved in 384 

anaerobic and aerobic glycolysis), SLC9A7P1 (solute carrier family 9 member 7 385 

pseudogene 1). Together, they are enriched for cerebellar granular layer development 386 

process (Supplementary Table 12).  387 

We independently replicated the SNPs that in the discovery GWAS were 388 

significantly associated with symptom groups of mental illness (UKB-nonNI dataset) 389 
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in a dataset of 8,726 participants of UKB-NI. The significance threshold was 390 

Bonferroni Pc<0.05 (uncorrected P<0.05/3018, the numbers of all significant SNPs 391 

from discovery GWAS analysis). Of these 3018 significant SNPs from GWAS analysis 392 

of mental illness symptom groups, we replicated in the independent UKB-NI dataset 393 

2034 SNPs associated with the affective symptom group, 18 SNPs associated with the 394 

anxiety symptom group and 3 SNPs associated with the emotional instability symptom 395 

group (Supplementary Table 13-15). We then calculated the corresponding genes 396 

scores as before and validated the associations between genes scores and symptoms 397 

group of mental illness in the UKB-NI dataset. Of 43 genes scores associated with 398 

affective symptom group in the discovery analysis, we replicated 36 genes in the 399 

replication analysis, the top ten associated genes including MAPT, CRHR1, DCC, 400 

DND1P1, KANSL1, PLEKHM1, RP11-363J20.1:EXD2, STAG1, C5orf17 and DCAF5. 401 

Of 11 genes scores in the anxiety symptom group, we replicated 6 genes, including 402 

EXD3, LBX1-AS1, NT5C2, GBF1, NOLC1 and CNNM2. Of 6 genes scores associated 403 

with emotional instability symptom, we replicated 3 genes including LDHC, IFT74 and 404 

TMPO (Supplementary Table 15). 405 
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 406 

Figure 3. Associations of genomics, urban living environment profiles and mental 407 

health symptoms. a. Left. Manhattan plot of GWAS analysis. GWAS of the affective 408 

symptom group identifies 2,983 significantly associated SNPs. The strongest 409 

association with the affective symptom group was found in a genomic region of 410 

chromosome 17q21.3 spanning from position 43487217 to 44862162 (hg19) containing 411 

a potential supergene that encodes several genes previously implicated in mental 412 

illness. An intron variant rs62062288 located in MAPT gene of chromosome 17 413 

(P=6.09×10-15) was the lead SNP; Right. Quantile-quantile plot of GWAS analysis. 414 
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The lambda genomic control inflation factor of 1.0195 and intercept value in LDSC of 415 

1.011, which indicate that population stratification was minimal in this study to cause 416 

significant inflation to the test statistics. b. Locus zoom plots of significant genomic 417 

region of 17q21.3 (left), 18q21.2 (medium) and 14q24.1 (right) in GWAS analysis of 418 

affective symptom group. The purple dots demonstrate the lead SNPs of each genomic 419 

region. c-d. Two examples of the affective symptom group influenced by both genomics 420 

and urban living environment profile. c. Left. The first urban living environment profile 421 

showed significant positive correlation with the affective symptom group; Medium. 422 

Participants with higher CRHR1 gene scores show more severe affective symptoms 423 

compared to those with lower CRHR1 gene scores; Right: Participants with lower 424 

CRHR1 gene scores demonstrate smaller correlation of urban environment profile with 425 

the affective symptom group compared to those with higher CRHR1 genes scores. d.  426 

Left. The second urban living environment profile showed significant positive 427 

correlation with the anxiety symptom group; Medium. Participants with higher EXD3 428 

gene scores show more severe anxiety symptoms compared to those with lower EXD3 429 

gene scores; Right: Participants with lower EXD3 gene scores demonstrate smaller 430 

correlation of urban environment profile with the anxiety symptom group compared to 431 

those with higher EXD3 genes scores. e. Gene-set enrichment analysis of affective 432 

symptom group-associated 43 genes. Top: Tissue-specific expression analysis showed 433 

affective symptom group associated 43 genes were significantly overexpressed in  434 

brain and pituitary tissues. Bottom: In the 43 genes associated with the symptom group, 435 

we found over-representation in the molecular function of CRH receptor activity (FDR 436 
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qc = 4.37 × 10−4) and CRF receptor activity (FDR qc = 4.37 × 10−4); CRH, 437 

corticotropin-releasing hormone; CRF, corticotropin-releasing factor; GWAS, 438 

genome-wide association analysis; lambda GC, lambda genomic control inflation 439 

factor.  440 

 441 

Brain volume changes underlying the associations between urban living 442 

environment and symptom groups of mental illness  443 

To further investigate the neurobiological mechanisms underlying the associations 444 

of urban living environment with mental symptoms groups, we carried out msCCA on 445 

the urban living environment profiles, brain volume measures and symptoms group of 446 

mental illness. This analysis was conducted in an independent dataset of 15,050 UKB 447 

participants, split in a training dataset (90%) and a test dataset (10%). We found 13 448 

regional brain volumes significantly associated with the first urban environmental 449 

profile and the affective symptom group (r=0.052, Ppermutaiton=0.01 in training dataset; 450 

r=0.046, Ppermutaiton=0.01 in test dataset). These brain volumes include the left amygdala 451 

and right ventral striatum, right frontal pole, right occipital fusiform gyrus, as well as 452 

bilateral cerebellar lobules VIIIa and VIIb, right posterior cerebellum crus I and II 453 

(Figure 4 and Supplementary Table 17). The first urban environment profile was 454 

negatively correlated with brain volume in these areas and positively correlated with 455 

affective symptoms group. We also found 11 regional brain volumes significantly 456 

associated with the second urban environmental profile and the anxiety symptom group 457 
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(r=0.045, Ppermutation=0.006 in training dataset; r=0.045, Ppermutation=0.007 in test dataset) 458 

(Supplementary Table 17). These brain volumes include the inferior frontal regions and 459 

the right amygdala, as well as the bilateral cerebellar lobules VIIIa and VIIb, posterior 460 

cerebellum crus I, right cerebellar lobule V and left lobule VI (Figure 4 and 461 

Supplementary Table 17). Finally, there were 13 regional brain volumes, including 462 

bilateral frontal pole, amygdala, precentral gyrus, insular and left lateral occipital cortex, 463 

associated with the third urban environment profile and the emotional instability 464 

symptom group (r=0.057, Ppermutation<0.001 in the training dataset; r=0.060, 465 

Ppermutation<0.001 in test dataset) (Figure 4 and Supplementary Table 17). 466 

 467 

Moderated mediation analysis between urban living environment profile, brain 468 

volume and mental illness symptoms groups modulated by genomics 469 

To test whether the relation of urban living environment with symptoms group of 470 

mental illness is mediated by brain volume and moderated by genetics, we 471 

independently performed moderated mediation analysis in each replicated gene score 472 

(moderating variable), three urban living environment profiles (independent variable), 473 

three brain volume correlates (mediated variable) and three symptoms groups of mental 474 

illness (dependent variable) in 8,726 participants with complete data. Explained 475 

mediation effect (EME) were reported for moderated mediation analyses. Thus, a total 476 

of 21 moderated mediations analysis were tested (13 gene scores of the affective 477 

symptom group, 6 gene scores of the anxiety symptom group and 2 gene scores of the 478 
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emotional instability symptom group). Of the 13 replicated gene scores in the affective 479 

symptom group, we found that the CRHR1 gene score (EME=5.01%), MAPT gene 480 

score (EME=3.62%), TCF4 gene score (EME=1.62%) and DCC gene score 481 

(EME=1.96%) moderate the mediation pathway from environment profile to brain 482 

correlate to affective symptom group. For example, participants with higher CRHR1 483 

genetic risk living in areas of more urban environment exposure had lower brain volume 484 

and demonstrated more severe affective symptoms (Figure 4). We found moderation of 485 

the mediation pathway of the anxiety symptom group by the EXD3 gene score 486 

(EME=3.65%) and of the emotional instability symptom group by the IFT74 gene score 487 

(EME=2.86%) (Figure 4).  488 

 489 

 490 

Figure 4. Three-way msCCA regression between urban living environmental profile, 491 

regional brain volume and mental illness symptom group, and moderated mediation 492 
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analysis of gene scores. a. Left. Urban living environment variables contributing to the 493 

three way corelates are shown on the left. Righ. Regional brain volume associated with 494 

urban living environment profile and affective (top), anxiety (medium) and emotional 495 

instability (down) symptom groups, respectively, in both training and test datasets. 496 

Negative loading was shown in blue. b. Top. A schematic diagram of moderated 497 

mediation analysis between genomics, urban living environment profile, brain and 498 

mental illness symptom group. Bottom. Columns show an indirect effect in the 499 

mediation analysis between environmental profile, brain volume and mental illness 500 

symptom groups, which were moderated by each gene score. We found that the CRHR1 501 

gene score (EME=5.01%), MAPT gene score (EME=3.62%), TCF4 gene score 502 

(EME=1.62%) and DCC gene score (EME=1.96%) moderate the mediation pathway 503 

from environmental profile to brain correlate to the affective symptom group. The 504 

EXD3 gene moderates the mediation pathway from environmental profile to brain 505 

correlate to the anxiety symptom group (EME=3.65%). IFT74 gene score moderates 506 

the mediation pathway from environment profile to brain correlate to emotional 507 

instability symptom group (EME=2.86%). AM, allotment. EME, explained mediation 508 

effect; IMD, Index of Multiple Deprivation; NDVI, normalized difference vegetation 509 

index; SN, street network measures; STD, standard deviation.  510 

 511 

Discussion 512 
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We describe how the urban living environment affects brain and mental illness 513 

by identifying environmental profiles derived from a comprehensive set of measures of 514 

deprivation, pollution, land use, and infrastructure that are correlated with distinct 515 

groups of affective, anxiety and emotional instability symptoms, mediated by 516 

reductions in regional brain volume and moderated by genes involved in pertinent 517 

biological pathways.  518 

Our approach and findings are novel, as they characterise specific multimodal 519 

environmental profiles in an integrated way, while enabling a qualitative and 520 

quantitative assessment of each factor of the profile. This is an advance beyond the 521 

isolated assessment of individual environmental factors, as has previously been the 522 

norm9,47. As a consequence, we are able to explain a greater degree of variance of 523 

integrated environmental factors (3.61%) than comparable studies measuring 524 

individual environmental factors, such as night-time light (2.56%), built-up areas 525 

(1.21%) and NDVI (1.00%)8, alone. Furthermore, the integrated approach enables us 526 

to assess the role of each individual environmental factor in a context that is relevant 527 

for mental illness. In another innovation, we describe how the effect of environmental 528 

profiles on symptoms groups of mental illness is mediated by regional brain volume 529 

and moderated by genetic factors.  530 

By providing evidence for the brain-related correlates of environmental 531 

adversity and their consequences for mental health, we are broadening the evidence 532 

required for responsible urban and development planning. Furthermore, we are 533 
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enabling the development of neurobehavioural interventions that may convey adaptive 534 

coping skills for environmental adversity by targeting specific brain mechanisms, for 535 

example through neurofeedback-guided virtual reality sessions48,49. The identification 536 

of genetic moderators points towards biological pathways that might underlie the 537 

observed relation between environment, brain and behaviour. It may also enable the 538 

selection of individuals that are more sensitive to environmental adversity, and thus 539 

might be more likely to benefit from targeted interventions. 540 

Specifically, our analyses reveal the first environmental profile dominated by 541 

high degrees of deprivation and air pollution, and to a lesser extent traffic, short distance 542 

to infrastructural facilities and lack of green space. This environmental profile evokes 543 

the image of a poor, dense inner city neighbourhood. It is correlated with increased 544 

affective symptoms, in particular high levels of unenthusiasm, tiredness, loneliness, as 545 

well as depressed mood and feelings of being fed-up. The correlation is mediated by 546 

volume reductions in brain regions linked to emotional processing, such as the left 547 

amygdala50, regions linked to reward processing and exploration, such as the right 548 

ventral striatum51 and the right frontal pole52, as well as other brain areas implicated in 549 

affective processing, such as several cerebellar regions53 and the right occipital fusiform 550 

gyrus54. While these findings point towards plausible mediators of a stressful 551 

environment on affective symptoms, they also suggest the presence of different 552 

underlying neurobehavioural mechanisms, a possibility that is supported by the 553 

findings of our genetic analysis. Here we identified different moderators that may 554 

influence distinct brain mechanisms underlying the affective symptoms identified: First 555 
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and foremost, CRHR1, which is also expressed in the amygdala55, is a critical regulator 556 

of both the hypothalamic as well as the behavioural extrahypothalamic stress response. 557 

In addition, the environmental effect is moderated by genes regulating brain structure, 558 

including MAPT, involved in neurodegeneration56, TCF4, inducing neural 559 

differentiation57 and DCC, an adhesion molecule that guides axon growth58. Apart from 560 

these moderators, we identified several genes that were associated with the affective 561 

component and were involved in relevant neural mechanisms, including G-protein 562 

signalling (ARL17B)59, epigenetic regulation (KANSL1)60 and others. These moderating 563 

genes are located in two genomic loci of chromosome 17q21.3 and 18q21.2. Notably, 564 

the chromosome 17q21.3 genomic locus is the site of a human supergene candidate, a 565 

cluster of tightly linked functional genetic elements spanning approximately 900 kb 566 

that control balanced phenotypes and are inherited as a unit61. Haplotypes of this cluster 567 

have been associated with brain morphology and different cognitive and behavioural 568 

traits, including depressive behaviour, neuroticism and risk taking behaviour62,63.  The 569 

18q21.2 region at the transcription factor 4 gene TCF4 and netrin 1 receptor gene DCC 570 

featured the most pleiotropic association with eight psychiatric disorders64, and has 571 

been previously associated with both depression and neuroticism65,66. The product of 572 

DCC plays a critical role in guiding axonal growth during neurodevelopment and serves 573 

as a master regulator of midline crossing and white matter projections67. 574 

The second environmental profile captures a different urban profile, one that is 575 

dominated by green spaces and long distances to waste and energy facilities as well as 576 

presence of water, all of which are inversely correlated (protective) to symptoms of 577 
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anxiety. These symptoms are ‘worry too long, anxious feelings, nervous feelings, 578 

nerves, tense and suffer from nerves’. The anxiety symptoms are also positively 579 

correlated with signs of denser urban build-up, such as density of streets and leisure 580 

places as well as urban regions with mixed residential, commercial and industrial use. 581 

Together, these correlations point to an important role of green spaces and a less dense 582 

and more generous land use in protecting against symptoms of anxiety, thus extending 583 

previous findings relating urban green spaces to mental health8. The relation between 584 

environmental profiles and anxiety symptoms are mediated by volume reductions in the 585 

inferior frontal regions, the right amygdala and cerebellar regions. They are moderated 586 

by variations in the EXD3 gene, involved in nucleic acid binding and widely expressed 587 

in the brain. EXD3 has previously been associated with anxiety, phobic and dissociative 588 

disorders35.  While EXD3 has a low tissue specificity, its expression in the brain is 589 

highest in frontal cortical brain areas. Similar to the second environmental profile, the 590 

third environmental profile shows positive correlations of measures of density of land 591 

use and urban infrastructure with a group of symptoms best summarised as emotional 592 

instability, which include feeling guilty, frequency of tenseness, miserableness, mood 593 

swings, neuroticism score, risk taking, irritability and sensitivity, hurt feelings, illness, 594 

injury, bereavement or stress in last 2 years. These symptoms were mediated by frontal 595 

pole, amygdala, precentral gyrus, insular cortex and cerebellum, and moderated by 596 

ITF74, a critical factor in neuronal migration, a cause for Bardet-Biedl syndrome and 597 

Joubert syndrome44,45, which has been found associated with paranoid schizophrenia46. 598 
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While our findings differentiate distinct groups of environmentally-related 599 

symptoms of mental illness, the overarching role of social deprivation68 and urban 600 

density69 as a risk factor is evident. Conversely, we found green spaces9,10 and generous 601 

land use70 to be protective factors against affective and anxiety symptoms. These 602 

environmental factors may engage brain mechanisms related to behavioural inhibition 603 

(frontal cortex), reward processing (ventral striatum) and emotional processing 604 

(amygdala) that may be moderated by biological pathways involved in stress response, 605 

neuronal plasticity, epigenetic, transcriptional and neurotransmitter regulation. 606 

Interestingly, the posterior cerebellar lobule VIIb and VIIIa, posterior cerebellar crus I 607 

are among the brain mediators of environmental effects on symptoms of mental illness, 608 

supporting a role for the cerebellum in coordinating and regulating not only voluntary 609 

movements, but also cognitive and affective perceptions of the environment8,71.  610 

Our data do not enable the characterisation of individual biological pathways 611 

that mediate defined environmental adversity. To carry out such mechanistic 612 

investigation and to identify biomarkers for risk and resilience, a more deeply 613 

phenotyped dataset with neurobehavioural characterisation is required. Our findings 614 

generate hypotheses, that may be tested in well characterised samples of a much smaller 615 

size. Another important question raised by this study is the generalizability of its results 616 

beyond industrialised high income countries to low and medium income countries, 617 

where socioeconomic conditions between rural and urban dwellers may be different 618 

compared to Europe. Further studies validating our results in a global mental health 619 

context are required. 620 
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By providing first evidence for comprehensive environmental profiles that 621 

affect distinct groups of symptoms of mental illness, our results lay the ground work 622 

for an exact characterisation of biological mechanisms underlying complex, real-life 623 

environmental adversity. The quantification of the relative contribution of each 624 

environmental factor to brain and symptoms of mental illness and their interplay in a 625 

living environment are novelties of this study that will aid in targeting and prioritizing 626 

important decisions for planning and public health interventions. 627 

 628 

Material and methods  629 

Participants 630 

UK Biobank Project 631 

UK Biobank (UKBB) is a population-based cohort including 502,616 participants 632 

living in United Kingdom, where over 40,000 participants have obtained neuroimaging 633 

scans (at the time of our analyses datasets of 42,796 participants were available). 634 

Individuals were invited to the study if they were registered with the National Health 635 

Service and if they lived within a 35 km radius of one of the 22 assessment centres 636 

located across the UK at the time of recruitment, which took place between 2007 and 637 

2010. Baseline assessments included genomics, physical and social exposures, 638 

sociodemographic, lifestyle, occupational, psychosocial and environmental measures. 639 

Informed consent was obtained from all UKBB participants. Ethical procedures are 640 

controlled by a dedicated Ethics and Guidance Council 641 
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(http://www.ukbiobank.ac.uk/ethics) that has developed with UKBB an Ethics and 642 

Governance Framework (http://www.ukbiobank.ac.uk/wp-643 

content/uploads/2011/05/EGF20082.pdf), with IRB approval also obtained from the 644 

North West Multi-center Research Ethics Committee. The data collected at baseline 645 

was used in this study. Demographic information of each statistical analysis was shown 646 

in Table 1. 647 

 648 

Data collection 649 

Urban living environment data 650 

Indices of multiple deprivation (IMD), traffic, residential pollution, greenspace 651 

and coastal proximity as well as urban morphometric measures were used to measure 652 

the urban living social and physical environment around participants available in the 653 

category ‘local enviroment’ in UK Biobank (data-field 113). A total of 53 categories 654 

including 128 urban living environment items were included in the urban living 655 

environment data. The detailed items and categories used are shown in Supplementary 656 

Table 1 and 2. To exclude items with extremely skewed data distribution, we used the 657 

function nearZeroVar from the caret R package72 and no items excluded. In the 128 658 

items, we calculated the median absolute deviation (MAD) and removed values larger 659 

than 4 MAD in each environment item. For further analyses, we used 216,341 660 

participants with complete 128 environmental items.  661 

 662 
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Indices of Multiple Deprivation 663 

Indices of Multiple Deprivation (IMD) scores were used to classify the relative 664 

deprivation (a measure of poverty) in British local councils which published by UK 665 

government (https://www.gov.uk/government/collections/english-indices-of-666 

deprivation).  IMD scores were calculated separately in England (EIMD), Scotland 667 

(SIMD) and Wales (WIMD), because multiple different components of deprivation are 668 

weighted with different strengths and compiled into a single score of deprivation. The 669 

EIMD score is composed of seven domain indices, including income deprivation 670 

(Income subdomain, Income Deprivation Affecting Children Index and Older People 671 

Index), employment deprivation, health deprivation and disability, education, skills and 672 

training deprivation (children and young people subdomain and adults’ skills 673 

subdomain), barriers to housing and services (wider and geographical barriers 674 

subdomain), living environment deprivation (indoors and outdoors subdomain) and 675 

crime. The SIMD score is composed of seven domain indices, including crime (only 676 

from 2006), current income, education, skills and training, employment, geographic 677 

access, health and housing. The WIMD score is composed of eight domain indices for 678 

income, employment, health, education, access to services, community safety, physical 679 

environment and housing.  680 

Traffic 681 

Traffic consists of seven items: (1) Close to major road; (2) Inverse distance to the 682 

nearest major road; (3) Inverse distance to the nearest road; (4) Sum of road length of 683 
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major roads within 100m; (5) Total traffic load on major roads; (6) Traffic intensity on 684 

the nearest major road; (7) Traffic intensity on the nearest road. 685 

Residential pollution 686 

Residential air pollution consists of five items: (1) Nitrogen dioxide air pollution 687 

from 2005 to 2010; (2) Nitrogen oxides air pollution in 2010; (3) Particulate matter 10 688 

um air pollution in 2007 and 2010; (4) Particulate matter 2.5 um air pollution in 2010; 689 

(5) Particulate matter 2.5-10um air pollution in 2010. Residential sound pollution 690 

consists of five items: (1) Average 16-hour sound level of noise pollution; (2) Average 691 

24-hour sound level of noise pollution; (3) Average daytime sound level of noise 692 

pollution; (4) Average evening sound level of noise pollution; (5) Average nighttime 693 

sound level of noise pollution. 694 

Greenspace and coastal proximity 695 

Greenspace and coastal proximity category contains environmental indicators 696 

relating to greenspace exposure and distance to the coast that was attributed to 697 

participants based on 300m home location buffers, including five items: (1) Natural 698 

environment percentage estimate compared to the 'built environment'; (2) Greenspace 699 

percentage estimates; (3) Domestic garden percentage estimates; (4) Domestic water 700 

percentage estimates; (5) Distance from home location to coast. 701 

Urban Morphometric Platform measures 702 
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UK Biobank Urban Morphometric Platform (UKBump) was an individual-level 703 

built environment database of health-specific urban exposures within residential street 704 

catchments of UK Biobank participants’ geocoded home address73. Spatial and network 705 

modelling were performed upon multiple UK-wide dataset, including AddressBase 706 

Premium data of Ordnance Survey GB, remotely sensing data, digital terrain 707 

topographical models and other datasets based on the anonymized UK Biobank 708 

participants’ geocoded home address73. 709 

A total of six metrics including 104 urban environment measures from UKBump 710 

were used. The six metrics used in this study include: (1) Building class (n=3); (2) 711 

Destination accessibility (n=33); (3) Greenness (n=2); (4) Land use density (n=46); (5) 712 

Street network accessibility based on 400m home location buffers (n=18) 713 

(Supplementary Table 3); (6) Terrain (slope) (n=2).  714 

 715 

Genomics data 716 

We used the imputed genomic data (Version 3) made available by UK Biobank 717 

with 487,411 individuals74, which was imputed from the Haplotype Reference 718 

Consortium (HRC) reference panel75 and a merged UK10K and 1000 Genomes phase 719 

3 reference panels76. In participants-level quality control, we applied exclusion filters 720 

for participants as follows: (1) participants with a mismatch in reported sex and 721 

chromosome X imputed sex or with putative sex chromosome aneuploidy; (2) 722 

participants with genetic kinship to other participants; (3) excess heterozygosity or 723 

missing rates; (4) non-Caucasian participants; (5) without calculated genetic principal 724 
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components. In SNPs-level quality control, we applied exclusion filters for SNPs as 725 

follows: (1) minor allele frequency (MAF) < 0.001; (2) imputation info quality score > 726 

0.3. A total of 275,988 participants and 139,187,27 SNPs were finally used in the 727 

further analysis. 728 

 729 

Mental health measures 730 

There are 44 mental health items in the category ‘Mental health’ in the UK 731 

Biobank that cover symptoms of affective and anxiety disorders, as well as personality 732 

(category id:100060). These items were obtained from a standardised mental health 733 

questionnaire that participants answered at the time of recruitment. Of this 734 

questionnaire 21 items were excluded because the missing rate was larger than 50% 735 

from 502,616 participants of UK Biobank. To exclude mental health items with 736 

extremely skewed data distribution, we used the function nearZeroVar from the caret 737 

R package72 and excluded 2 items. Finally, a total of 21 mental health items with 738 

complete data in 365,201 participants were included in the further analysis. A full list 739 

of the 21 mental health measures is shown in Supplementary Table 4.  740 

 741 

Neuroimaging data 742 

In this study, neuroimaging data were acquired from one 3.0-Tesla MRI scanner 743 

from Siemens® Skyra running VD13A SP4 with a standard 32-channel radiofrequency 744 

receive head coil at UK Biobank imaging center in Cheadle Manchester. The standard 745 
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parameters of a 3D MPRAGE sequence are shown in 746 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.  747 

A total of 154 regional image-derived phenotypes (IDPs) were investigated: 111 748 

cortical and subcortical gray matter volume (GMV) segmentations from the FAST 749 

segmentations (data-field 1101), 28 cerebellum GMV segmentations from the FAST 750 

segmentations (data-field 1101), and 15 subcortical volumes from the FIRST (data-751 

field 1102). The detailed information are shown in 752 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. A total of 42,796 753 

participants’ neuroimaging data were used for the present study. 754 

 755 

Confounding variables  756 

Age, gender and assessment centers were adjusted as confounding covariates in 757 

the further analysis. The 21 mental health variables were firstly corrected for 758 

confounding variables and normalized as well. For neuroimaging-related analyses, total 759 

incranial volume (TIV) was additionally corrected.  760 

 761 

Statistical analysis 762 

Train and test sample split design 763 

Participants from UK Biobank with complete urban living environmental data and 764 

mental health data (n=156,375) were divided into datasets without neuroimaging data 765 
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(UKB non-NI dataset, n=141,325) and with neuroimaging data (UKB NI dataset, 766 

n=15,050). Participants without neuroimaging data (n=141,325) were divided into train 767 

and test dataset to ensure validity of the results: 90% of the participants were used as a 768 

training dataset (n=127,193) and 10% of the participants (n=14,132) were used as a test 769 

dataset for model validation. The dataset with neuroimaging data (n=15,050) was used 770 

for independent replication of the relation between urban living environment, genes and 771 

mental health, as well as for additional neuroimaging analyses. (Table 1). 772 

 773 

Table 1. Demographics of participants used in specific statistical analysis. 774 

Analysis  Required data Sample size (n) Age (years) Gender (Male/Female) 

CFA and sCCA E, MH 141,325 59.22(8.22) 65,729/75,596 

GWAS G, MH, E 85,348 59.37(7.98) 40,966/44,382 

msCCA E, B, MH 15,050 57.75(7.50) 7,305/7,745 

Modulated mediation   G, E, B, MH 8,726 58.03(7.42) 4,294/4,432 

B, brain volume data; CFA, confirmatory factor analysis; E, urban living environment data; G, genomic 775 

data; GWAS, genome-wide analysis; MH, mental health data; msCCA, multiple sparce canonical 776 

correlation analysis; sCCA, sparce canonical correlation analysis.  777 

 778 

Urban living environmental variables construction 779 

In the CFA models, ten-fold cross-validation was performed to ensure unbiased 780 

estimates of generalizability throughout the analytic pipeline and to optimize the CFA 781 

models. For each fold, 90% of participants were used to build the CFA model, and the 782 
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optimized CFA model was used to calculate latent variables for the remaining 10% of 783 

participants in each environment subcategory. We used two criteria to optimize the 784 

CFA model by selecting appropriate environment measures. The first criterion was the 785 

goodness of fit of the CFA model assessed by Tucker-Lewis index (TLI), Comparative 786 

Fit Index (CFI), chi square, root mean square error of approximation (RMSEA) and 787 

standard root mean square residual (SRMR). The criteria for excellent model fit were 788 

TSI>0.95, CFI>0.95, RMSEA<0.06 and SRMR<0.0857-59. The second criterion was the 789 

inclusion of environment measures that best reflect different aspects of urban 790 

environment. For example, in residential noise pollution variables, we initially 791 

constructed a CFA model by including all five noise pollution measures in the training 792 

dataset. Based on factor loadings of the five noise pollution measures, we removed the 793 

‘Average night-time sound level of noise pollution’ item with the smallest factor 794 

loading and repeated the CFA modelling. These steps were iterated until the resulting 795 

CFA model satisfied our criteria for excellent model fit in the training dataset. The 796 

factor loadings of the optimized CFA model were used to calculate the latent residential 797 

noise pollution measure in the test dataset. This process was applied into 10 folds to 798 

predict all out-of sample 19 environmental variables. 799 

 800 

Multivariate relation of urban living environment with mental health 801 

To investigate the multivariate relation between urban living environment and 802 

mental health, we conducted multivariate analyses using sparse canonical correlation 803 
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analysis (sCCA) implemented in MATLAB (version R2018a) based on our previous 804 

work19. In detail, the analysis design was carried out as follows:  805 

(1) The full dataset was randomly split into training and test datasets. The training 806 

dataset was made up of 90% of the data whilst the testing set was made up of the 807 

remaining 10%. 808 

(2) The training dataset was then randomly split into 100 resamples. Each resample 809 

was made up of nt/2 participant scans, where nt is the total number of participants in 810 

the training dataset.  811 

(3) The first stage of the msCCA-regression algorithm was then applied to each 812 

resample, with a sparsity constraint of 0.5 in each view of the data19.  813 

(4) The resulting weights for each environment and mental health variable were 814 

recorded for each resample. The environment and mental health variables with non-815 

zero loading above 90% across the resamples were selected and retained as stable 816 

variables in subsequent analyses. 817 

(5) We then re-applied the sCCA algorithm to the data, without sparsity constraints, 818 

on the stable urban living environment and mental health measures in the training 819 

dataset. The canonical correlation value between urban living environment and mental 820 

health measures were recorded.   821 

(6) We then permuted the training data, and repeated steps (2)-(5). This was done 822 

for 10,000 different permutations of the training data labelling. In each case, we 823 
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recorded the canonical correlation value between urban living environment and mental 824 

health measures. In this way, we built up a permutation distribution to assess the 825 

significance of the relationship between urban living environment and mental health 826 

measures in the experimental labelling, within the training dataset. 827 

(7) We then applied the trained model to the test dataset to produce canonical 828 

correlates of urban living environment and mental health measures. We recorded 829 

associations for training and testing dataset. 830 

(8) We then randomly permuted the data rows in the test dataset and recalculated 831 

correlation values between urban living environment and mental health canonical 832 

correlates. We recorded associations between urban living environment and mental 833 

health correlates, for each of 10,000 permutations of the experimental labelling. False 834 

Discovery Rate (FDR) correction was used to control for multiple testings and a 835 

PFDR<0.05 was considered statistically significant. 836 

(9) After determining the significance of the first canonical correlate, we remove 837 

the effect of the first set of canonical vectors by projection deflation as we did before19, 838 

and repeat the sCCA analysis between the remaining urban living environment and 839 

mental health variables. These steps were iterated until the resulting canonical correlate 840 

were not significant any more. 841 

(10) To ensure reliability and reproducibility, we undertook further analyses 842 

including: a. sample composition using bootstrapping with replacement and random 843 

resampling; b. the effect of sex (Supplemental Methods).  844 
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Finally, we calculated the canonical correlations coefficient between the urban 845 

living environment canonical variables (which we refer to as ‘urban environmental 846 

profile’) and mental health canonical variables (referred to as ‘mental illness symptom 847 

group’), as well as structure coefficient value (rs) of individual variables 848 

  849 

GWAS analyses of the mental health symptoms groups that related to urban 850 

environment profile  851 

For the significant mental illness symptom group that correlated with urban living 852 

environment profile from sCCA results, we conducted a genome-wide association 853 

analysis (GWAS) of the corresponding mental illness symptom group in 85,348 854 

participants with complete genomic, urban environment and mental health data (Table 855 

1). Using BGENIE v1.2 (https://jmarchini.org/bgenie/), we fit an additive model of 856 

association at each variant, using expected genotype count (dosage) from the imputed 857 

genetic data. The covariates included age, gender, assessment centre, processing batch 858 

and the top 10 ancestry principal components. Bonferroni Pc<0.05 (uncorrected 859 

P<0.05/139,187,27×numbers of significant mental illness symptom group from sCCA 860 

results) was considered as a statistically significant threshold. We employed the FUMA 861 

online platform (https://fuma.ctglab.nl/) to fine mapping to genes and perform 862 

annotation of significant SNPs of each GWAS analysis. All SNPs with genome-wide 863 

significance were mapped to genes based on physical distance. Each SNP was mapped 864 

to the nearest gene in the human reference assembly (GRCh37/hg19). 865 
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Gene-set enrichment analysis 866 

To better understand the biological function of fine-mapping genes associated with 867 

mental health components, these genes were functionally annotated using ToppGene 868 

portal (https://toppgene.cchmc.org/) to identify significant enrichments for gene 869 

ontology (GO). The Benjamini and Hochberg method for false discovery rate (FDR-870 

BH correction) (qc < 0.05) was applied to correct for multiple comparisons. The default 871 

full reference gene list of each category in ToppGene were used as background gene 872 

set. 873 

 874 

Replication ananlysis  875 

To replicate the multivariate relation between urban living environment and 876 

mental health, we applied the sCCA analysis in an independent dataset of 15,050 877 

participants with complete environmental, mental health and neuroimaging data from 878 

UKB-NI dataset. Again, we used a training dataset (n=13,545, 90%) and a test dataset 879 

(n=1,505, 10%) , a re-sampling method to ensure variable stability (with a threshold of 880 

90% for non-zero weights from re-sampled data to consider as stable variables) and 881 

permutation tests to assess the significance of the results (10,000 times) as we used in 882 

the discovery sCCA analysis.  Next, we independently replicated the significant SNPs 883 

associated with symptom groups of mental illness surviving from the discovery GWAS 884 

analysis (UKB-nonNI dataset) in an independent 8,726 participants of UKB-NI dataset 885 

at Bonferroni Pc<0.05 (uncorrected P<0.05/the numbers of all significant SNPs of 886 
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GWAS from discovery analysis). Then we calculated the corresponding genes scores 887 

as the same way we did in the discovery analysis. And finally we independently 888 

validated the associations between genes scores and symptoms group of mental illness 889 

in the UKB-NI dataset.  890 

 891 

Brain volume changes underlying the associations between urban living 892 

environment and mental health  893 

To investigate neurobiological mechanisms underlying the associations between 894 

urban living environment and mental health, we carried out a multiple sparse canonical 895 

correlation analysis (msCCA) between the environmental component, brain volume 896 

measures and the mental health component. This analysis was conducted in an 897 

independent sample of 15,050 participants with environmental, mental health and 898 

neuroimaging data from UK Biobank. Again, we used a training dataset (n=13,545, 899 

90%) and a test dataset (n=1,505, 10%), a re-sampling method to ensure variable 900 

stability (with a threshold of 85% for non-zero weights from re-sampled data to 901 

consider as stable variables) and permutation tests to assess the significance of the 902 

results (10,000 times). An in-house Matlab script based on our previous work19 was 903 

employed for this analysis. Finally, the brain volume canonical variables (refered to as 904 

brain component), the canonical correlations coefficient between environment, brain 905 

and mental health canonical variables, structural loadings and weights of corresponding 906 

brain volume variables were calculated. 907 
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Moderated mediation analysis between urban living enviroment, brain volume 908 

and mental health correlates modulated by genomics 909 

The above analysis was carried out separately to identify the associations of mental 910 

health symptoms with urban living environment, genetic variation and brain volume, 911 

leaving the complex associations of urban living, genomics, brain and mental health 912 

unexplored. To formally test whether urban living environment-mental health 913 

relationship can be mediated by brain volume and modulated by genetics, we carried 914 

out a modulated mediation analysis in 8,726 participants. Moderated mediation analysis 915 

is an extension of mediation analysis, which is a valuable technique for assessing 916 

whether an indirect effect is conditional on a moderating variable. The basis of 917 

moderation and mediation effect were integrated into a combined model of moderated 918 

mediation within a linear regression framework. Finally, genomics was defined as 919 

modulated variables, the urban living environment correlate was defined as an 920 

independent variable, the brain volume correlates a mediator variable and the mental 921 

health correlates a dependent variable.  922 

In moderated mediation analyses, all indirect effects are estimated in one multiple 923 

regression analysis with independent variable and all mediators as predictor variables. 924 

This means that the indirect effect of one mediator was estimated when the other 925 

mediators are taken into account. We used bootstrapping to assess the significance of 926 

the mediation effect. After 5,000 bias-corrected bootstrapping, we estimated the 927 

distribution of the indirect effect and calculate its 95% confidence intervals (CI). If zero 928 
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does not fall between the resulting 95% confidence interval of the bootstrapping method, 929 

we confirmed the existence of a significant mediation effect (P<0.05). It should be 930 

emphasized that in the multiple mediation analysis of this study, mediators and 931 

dependent variables were measured contemporaneously, thus not allowing 932 

establishment of any causal directionality. Explained mediation effect (EME) and 95% 933 

CI were reported for moderated mediation analyses. Confounding factors were 934 

controlled in the moderated mediation model. The moderated mediation analysis with 935 

a nonparametric bootstrap method was conducted using the mediation R package77. 936 

 937 
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