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Nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by 
subsequent vaccination.  
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Summary 
 
Background 
Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into 
mucosal defences that prevent viral replication and onward transmission. We studied nasal and 
plasma antibody responses one year after hospitalisation for COVID-19, including a period when 
SARS-CoV-2 vaccination was introduced.  
  
Methods 
Plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for 
COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID 
consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) 
variants were measured by electrochemiluminescence and compared with plasma neutralisation data.  
  
Findings 
Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained 
elevated for nine months. Nasal and plasma anti-S IgG remained elevated for at least 12 months with 
high plasma neutralising titres against all variants. Of 180 with complete data, 160 were vaccinated 
between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all 
SARS-CoV-2 variants, although the change in nasal IgA was minimal. Samples 12 months after 
admission showed no association between nasal IgA and plasma IgG responses, indicating that nasal 
IgA responses are distinct from those in plasma and minimally boosted by vaccination. 
 
Interpretation 
The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent 
vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited 
effects of vaccination on transmission. These findings highlight the need to develop vaccines that 
enhance nasal immunity. 
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Research in context 
  

Evidence before the study 
While systemic immunity to SARS-CoV-2 is important in preventing severe disease, mucosal 
immunity prevents viral replication at the point of entry and reduces onward transmission. We 
searched PubMed with search terms “mucosal”, “nasal”, “antibody”, “IgA”, “COVID-19”, “SARS-
CoV-2”, “convalescent” and “vaccination” for studies published in English before 20th July 2022, 
identifying three previous studies examining the durability of nasal responses that generally show 
nasal antibody to persist for 3 to 9 months. However, these studies were small or included individuals 
with mild COVID-19. One study of 107 care-home residents demonstrated increased salivary IgG 
(but not IgA) after two doses of mRNA vaccine, and another examined nasal antibody responses after 
infection and subsequent vaccination in 20 cases, demonstrating rises in both nasal IgA and IgG 7 to 
10 days after vaccination.  
  
Added value of this study 
Studying 446 people hospitalised for COVID-19, we show durable nasal and plasma IgG responses 
to ancestral (B.1 lineage) SARS-CoV-2, Delta and Omicron (BA.1) variants up to 12 months after 
infection. Nasal antibody induced by infection with pre-Omicron variants, bind Omicron virus in 
vitro better than plasma antibody. Although nasal and plasma IgG responses were enhanced by 
vaccination, Omicron binding responses did not reach levels equivalent to responses for ancestral 
SARS-CoV-2. Using paired plasma and nasal samples collected approximately 12 months after 
infection, we show that nasal IgA declines and shows a minimal response to vaccination whilst 
plasma antibody responses to S antigen are well maintained and boosted by vaccination.  
  
Implications of all the available evidence  
After COVID-19 and subsequent vaccination, Omicron binding plasma and nasal antibody responses 
are only moderately enhanced, supporting the need for booster vaccinations to maintain immunity 
against SARS-CoV-2 variants. Notably, there is distinct compartmentalisation between nasal IgA and 
plasma IgA and IgG responses after vaccination. These findings highlight the need for vaccines that 
induce robust and durable mucosal immunity. 
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Introduction 
 
Intramuscular (i.m.) vaccines are remarkably effective in preventing severe COVID-19, their use 
being associated with declining hospitalisation.1,2 However, current vaccines provide only transient 
protection against respiratory viral replication, onward transmission and continuing emergence of 
variants. 3–5 By contrast, respiratory infection with SARS-CoV-2 induces mucosal immune defences 
that can inhibit viral replication and transmission, though the correlation between nasal and systemic 
immunity is inexact.6,7 To date, there have been few longitudinal studies of nasal antibody durability 
and those that exist give diverse results – suggesting that nasal antibody may persist for anywhere 
between 3 and 9 months.8–10 There is a clear need for additional studies of mucosal and systemic 
immunity in those recovered from severe disease. 
 
Although i.m. vaccination transiently reduces transmission, vaccinees with breakthrough infections 
have peak nasopharyngeal viral loads similar to those in unvaccinated individuals. 4,5 Some studies 
have shown that viral loads decline more rapidly in vaccinees,5 but it is unclear whether this effect is 
mediated by passive transudation of plasma antibody into the mucosa, or whether vaccination can 
recall mucosal responses primed by infection (as observed after i.m. influenza vaccination following 
an intranasal (i.n.) priming).11 Serum IgA and IgG is mostly monomeric and produced in the bone 
marrow, whereas nasal IgA is polymeric and can be synthesized locally by mucosal plasma cells. It is 
polymeric nasal IgA that is critical for efficient neutralisation of virus in the upper respiratory tract, 
and so passive transudation of plasma antibody into the mucosa is unlikely to provide durable 
sterilizing immunity.6  Understanding whether i.m. vaccination after COVID-19 can recall nasal IgA 
responses is an important step towards developing vaccines which prevent infection and transmission. 
 
During worldwide circulation of SARS-CoV-2, multiple successive variants have evolved, driven by 
enhancements in transmissibility as well as immune evasion. The Omicron subvariants appear less 
susceptible to vaccine-induced immunity and show high reinfection rates.12,13 It seems that immunity 
induced by successive infection and vaccination may provide superior protection against Omicron 
compared with either alone;14,15 and vaccination regimes which combine i.n and i.m. administration in 
mice induce enhanced mucosal protection against SARS-CoV-2 variants.16 This suggests that priming 
the nasal mucosa is required to induce effective local antibody responses that might provide enhanced 
immunity against current and future variants. However, the cross-reactivity of nasal antibody after 
infection with pre-Omicron virus is unknown.  
 
We here report the results of a large multicentre longitudinal study of nasal and plasma antibody 
responses approximately a year after COVID-19, aiming to understand the longevity of nasal antibody 
responses after COVID-19 and the effect of subsequent vaccination. We demonstrate durable nasal 
and plasma IgG responses to ancestral (B.1 lineage) SARS-CoV-2, Delta and Omicron variant that are 
enhanced by i.m. vaccination. However, nasal IgA responses did not mirror those in plasma, waned 
after 9 months and were not substantially boosted by vaccination (Figure S1). 
 
Methodology 
 
Study design and participants  
Clinical data, nasosorption and plasma samples were collected from hospitalised cases of COVID-19 
within the ISARIC4C and PHOSP-COVID multicentre studies of UK adult patients (figure S2). 17,18  

 
Adults hospitalised during the SARS-COV-2 pandemic were recruited into the International Severe 
Acute Respiratory and Emerging Infection Consortium (ISARIC) World Health Organization Clinical 
Characterisation Protocol UK (IRAS260007 and IRAS126600). Written informed consent was 
obtained from all patients. Ethical approval was given by the South Central–Oxford C Research 
Ethics Committee in England (reference: 13/SC/0149), Scotland A Research Ethics Committee 
(20/SS/0028) and World Health Organization Ethics Review Committee (RPC571 and RPC572l; 25 
April 2013). 
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After hospital discharge patients >18 years old who had no co-morbidity resulting in a prognosis of 
less than 6 months, were recruited to the PHOSP-COVID study. Written informed consent was 
obtained from all patients. Ethical approvals for the PHOSP-COVID study were given by Leeds West 
Research Ethics Committee (20/YH/0225).  
 
Samples and data were collected on day 1 to 9 of admission and/or at intervals during convalescence 
(approximately 1 to 14 months after discharge). Disease severity was classified according to the WHO 
Clinical Progression score.19 

 

See supplementary materials for full methods. 
 
 
Procedures and immunoassays 
Nasal samples were collected via nasosorption. Nasal and plasma IgA and IgG responses to Spike (S), 
Nucleocapsid (NP) and the Receptor-Binding-Domain of Spike (RBD) antigens of ancestral SARS-
CoV-2 were measured using MSD (Mesoscale Diagnostics, Rockville, Maryland, USA) V-PLEX 
COVID-19 Coronavirus Panel 2 Kits. Antibody responses to RBD antigen of Delta and Omicron 
(BA.1) variants were measured using MSD V-PLEX SARS-CoV-2 panel 22. Nasal samples were 
diluted 1 in 50 and plasma 1 in 5000 prior to analysis. Nasosorption and plasma samples collected 
from 25 healthy participants prior to the emergence of SARS-CoV-2 were used as a control group. 
Plasma neutralisation of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants was measured 
using a pseudotype neutralisation assay, as previously described at a dilution of 1 in 50.20 Samples 
with neutralising activity >90% were titrated to establish the titre resulting in 50% reduction in 
infectivity (PRNT50).  
 
Data analysis and Outcomes measured 
Analyses were conducted using the Outbreak Data Analysis Platform (ODAP). Statistical analyses 
used R version 4.2.0. All tests were two-tailed and statistical significance was defined as a p-
value<0.05 after adjustment for false discovery rate. Sample size calculations are detailed in 
supplementary materials.  
 
Nasal antigen-specific IgA and IgG (AU/mL) was normalised to total isotype (pg/mL) accounting for 
concentration of sample obtained and matrix effects. Plasma and normalised nasal data were log2 
transformed. The data were confirmed to be non-parametrically distributed using quantile Vs quantile 
plots. To understand the durability of antibody responses, comparisons between timepoints were made 
using the optimal pooled t-test, which performs well in non-parametric partially paired data.21 To 
estimate the effect of vaccination on antibody trajectories, a LOESS regression curve was fitted to 
data from repeated and cross-sectional samples taken from those who were known to be vaccinated. 
To understand the relationship between compartments, disease severity and age, paired plasma and 
nasal responses taken from the same individuals were analysed in a correlation matrix measuring the 
Spearman rank correlation coefficient between variables. The variables in the correlogram were 
hierarchically clustered using Ward’s minimum variance. To further explore the relationship between 
nasal IgA and plasma IgA and IgG responses, unsupervised clustering was performed with Ward’s 
minimum variance and the results were visualised in a heatmap, which was subsequently annotated 
with age, disease severity and vaccination status to determine factors associated with cluster 
formation.  
 
Control samples were used to define a nasal antibody threshold. The threshold was equivalent to the 
geometric mean titre (GMT) + 2 SD of controls and validated against standardized WHO BAU/mL 
thresholds converted into MSD AU/mL.22  
 
Results 
A total of 446 adults, hospitalised between February 2020 and March 2021, were recruited and 569 
plasma samples were collected, of which 338 represented samples taken from the same individual at 
sequential timepoints. In addition, 356 nasal samples were collected, of which 143 were taken from 
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the same individual at sequential timepoints. 174 individuals had paired plasma and nasal samples 
taken at a given time point. Patient characteristics are shown in Table 1. The 6 and 12 month samples 
were collected between September 2020 and March 2022, covering the start of the UK vaccination 
campaign (figure S2). 
 
Plasma antibody responses are more durable than nasal responses after COVID-19 
Nasal anti-S and anti-NP IgA appeared within 4 weeks after symptom onset but waned after 9 months 
to levels equivalent to pre-pandemic controls (p<0·0001) (figure 1). Anti-S IgG appeared within 14 
days of symptom onset (p<0·0001) and rose 2181-fold after 9 months (p<0·0001) but unlike IgA 
responses, remained above pre-pandemic controls thereafter (p<0·0001) (figure 1 A–B). Both nasal 
IgA and IgG anti-S titres rose after 10 months, though the median change was only 1·46-fold in the 
case of IgA (p=0·011). Anti-NP IgA and IgG responses remained low after 9 months (p<0·0001) 
(figure 1 E–F).  
 
Pre-pandemic controls allowed a threshold value for nasal antibody to be established, equivalent to 
the GMT+2SD (figure S3). Applying the same method to plasma samples, we found that the threshold 
value performed similarly to that of the WHO standards, confirming the validity of this method 
(figure S4). Using this threshold, we found that the nasal IgA GMT to S and NP fell below threshold 
after 9 months (Figure S3 A–B) whilst the nasal IgG GMT was durable and remained above threshold 
for both antigens at 12 months (Figure S3 F–G).  
 
Plasma IgG anti-S and anti-NP responses developed within 14 days of symptom onset and remained 
elevated at 12 months (p<0·0001) (figure 1D and H). Notably, the trajectories of plasma IgA and IgG 
responses differed to that of nasal IgA. Whilst nasal responses peaked between 6 to 9 months for S 
and between 3 to 5 months for NP, plasma responses peaked within 4 weeks before waning (figure 1). 
Notably, plasma anti-NP responses plateaued after 10 months and all individuals were seropositive for 
both antigens at the final time point, indicating durable plasma responses after COVID-19 (figure 1D, 
G and H).  
 
Only 2 of 446 individuals showed serological evidence of re-infection (whereby a rise in both anti-NP 
and anti-S IgG was observed between 103 and 308 days after infection for the first individual and 
between 238 and 463 days for the second). Furthermore, in 33 individuals where vaccination status 
was known and from whom samples were taken before and after vaccination anti-S titres rose 
(p<0·0001) whilst anti-NP titres declined (p=0·00019), as expected, indicating a low prevalence of re-
infection in our cohort (figure S5 A–B). These data therefore demonstrate that nasal and plasma IgG 
responses are durable after COVID-19, whilst nasal IgA responses last only 9 months. 
 
Responses during vaccination campaign 
Given the timing of vaccination in most of our cohort (median 20th February 2021) and the timing of 
the 6 to 9 month visit (median 16th March 2021), we reasoned that the increases in anti-S IgA and IgG 
seen in both nasal and plasma samples after 9 months were predominantly due to vaccination (figure 1 
and S2). Of those with known vaccination status (n=180), 89% of individuals from whom plasma 
samples were collected and 95% of individuals from whom nasal samples were collected, received 
their first SARS-CoV-2 vaccination during the study. All vaccinations occurred between December 
2020 and March 2022. Of these, 64.7% received ChAdOx1 nCoV-19 as the first dose (table 1). Since 
vaccines contain only S protein, NP responses are not induced by vaccination, and these responses 
remained low after 9 months (figure 1 E–H). 
 
We confirmed the effect of vaccination by comparing S and NP antibody titres in individuals known 
to be vaccinated before and after their first vaccination (figure 2). Outliers who had samples taken 
>500 days after symptom onset were removed from this analysis to avoid modelling with insufficient 
data. Although the analysis was limited by the small number of nasal samples collected pre-
vaccination (n=4), there were clear differences in the nasal IgA and IgG responses to S and NP after 
vaccination (figure 2 A– B). Although nasal anti-S IgA responses appeared elevated relative to anti-
NP responses 100 days after vaccination, the difference in trajectories was small and the 95% CIs 
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overlapped. By contrast, nasal IgG anti-S responses rose after vaccination and peaked approximately 
150 days after vaccination, whilst the anti-NP trajectory declined. There was no overlap between the 
95% confidence intervals (CI) of the regression curve for anti-S and anti-NP IgG responses after 
vaccination indicating distinct trajectories (figure 2B). Notably, the nasal IgG responses mirrored that 
of plasma IgA and IgG (figure 2 C–D). Thus, in keeping with the threshold analysis (figure S3), 
changes in nasal IgA titres after vaccination are minor compared to nasal and plasma IgG which are 
substantially boosted, suggesting that vaccination cannot fully recall mucosal antibody responses.  
 
Responses to Delta and Omicron (BA.1) variants  
All participants were admitted to hospital prior to the emergence of Omicron variant and 71.1%  
(n=317) were admitted before 10th May 2021 when Delta variant became the dominant strain in the 
UK.4,12 However, nasal IgA and IgG responses binding both Delta and Omicron RBD were present 
within 28 days of symptom onset and remained elevated for at least 9 months (figure 3 A–F). Nasal 
IgA binding Omicron appeared the most short-lived; the GMT only reached the threshold for 
positivity between 3 and 9 months (figure S3E). Furthermore, at its peak median titre, Omicron 
binding nasal IgA was only 10-fold above controls (p<0·0001), compared to nasal IgA binding 
ancestral SARS-CoV-2 RBD which was 28-fold higher (p<0·0001) (figure 3A and C). Plasma IgG 
responses to Delta and Omicron also developed within 14 days and were sustained for 12 months 
(figure 3 G–I).  
 
To understand the degree of cross-reactivity between compartments we compared the ratio of 
antibody binding RBD of Omicron virus and ancestral SARS-CoV-2 (figure S6). There was no 
difference in the median ratio between nasal IgA (0·10) and nasal IgG (0·12, p=0·67).  However, the 
nasal IgG ratio was higher than that of plasma IgG (0·09, p=0·020) and the nasal IgA ratio was higher 
than that of plasma IgA (0·08, p=0·00059). These data indicate that infection with pre-Omicron 
SARS-CoV-2 can induce nasal and plasma antibody that binds Omicron RBD, and that nasal antibody 
may have greater cross-binding potential. However, despite this, Omicron-binding nasal IgA is slow 
to reach positive levels and is transiently maintained. 
 
Responses to Delta and Omicron (BA.1) variant after vaccination 
 
The nasal IgA trajectory did not appear substantially different after vaccination (figure S7A) though a 
small rise in the Omicron- and Delta-binding nasal IgA GMT was seen between 10 and 12 months, 
when most individuals with known vaccination status had been vaccinated (figure 3 and S3). 
However, this difference was small and did not reach the positive threshold. Nasal IgG responses to 
Omicron and Delta variant rose after vaccination (figure S7B), although Omicron-binding responses 
did not reach the level of those to Delta and ancestral SARS-CoV-2 despite vaccination.  
  
Plasma IgG responses to Delta and Omicron variants also rose after vaccination (figure 7 C–D). To 
study the effect of vaccination specifically, we identified 33 individuals from whom pre- and post-
vaccination plasma samples were collected; these were taken at a median of 54 days (IQR 25·6–68·8) 
before the first vaccination dose and 176 days (IQR 113–212) after (figure S5). Vaccination 
substantially boosted Omicron-binding plasma IgG in these individuals, which rose 8·7-fold 
(p<0·0001). However, no significant difference in Delta-binding titres was seen, as antibody was 
boosted in some individuals but declined in others (figure S5D). This pattern may relate to a rapid rise 
and wane of vaccine-boosted antibody, given that samples were taken a median of 168 days after first 
vaccination and Delta-binding plasma IgG responses were observed to wane approximately 75 days 
from first vaccination (figure S7D). The subsequent rise in Delta-binding plasma IgG 150 days after 
vaccination likely results from individuals receiving their second vaccination dose during the study 
(table 1). These data suggest that vaccination can boost Omicron- and Delta-binding nasal and plasma 
IgG but enhancement of Delta responses may be short-lived after one vaccine dose. Meanwhile, 
Omicron- and Delta-binding nasal IgA responses are not significantly affected by vaccination. 
 
Plasma neutralising antibody to SARS-CoV-2 variants. 
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Plasma neutralising titres against ancestral, Delta and Omicron variants of SARS-CoV-2 remained 
substantially elevated compared with controls between 3 and 12 months (figure S8). However, 
neutralising titres against Omicron were generally lower: at 10 to 12 months, 76·2% had neutralising 
antibody against Omicron, compared to 92·5% against ancestral SARS-CoV-2. Neutralising titres 
against all three variants were boosted during the vaccination campaign (p<0·0001) indicating that 
i.m. vaccination after COVID-19 can enhance neutralising antibody levels to homologous and 
heterologous variants.  
 
As expected, neutralising antibody titres correlated with plasma RBD (R=0·82, p<0·0001) and S IgG 
(R=0·81, p<0·0001) (figure S9). Notably, plasma neutralising antibody correlated with nasal anti-RBD 
IgG (R =0·59, p<0·0001) and anti-S IgG (R=0·56, p<0·0001) but not nasal IgA (anti-RBD R = 0·1, 
p=0·39). This finding, alongside the boosting of nasal IgG after vaccination indicate that nasal IgG 
responses reflect that of plasma, whilst the nasal IgA response is distinct and compartmentalised 
(figure 2 and S9).  
 
Discordance between plasma and nasal antibody responses. 
To characterise the relationship between compartments, paired nasal and plasma samples from 175 
individuals were examined. Samples were divided into those taken at approximately 6 months (3–9 
months) and 12 months (>10–12 months) after infection (figure 4). At 6 months nasal anti-S IgA 
responses correlated strongly with nasal anti-NP IgA responses (R=0·71, p<0·0001) but showed a 
weaker association with nasal anti-S IgG (R =0·57, p<0·0001) and plasma anti-S IgA responses (R 
=0·50, p<0·0001) (figure 4A). There was no association between nasal IgA responses and plasma IgG 
response to either S (p=0·38) or NP (p=0·56). Nasal anti-NP IgA did not correlate with either nasal or 
plasma anti-NP IgG and correlated weakly with plasma anti-NP IgA (R=0·40, p=0·0021). Nasal IgG 
responses correlated with plasma IgG responses to the corresponding antigen, (anti-S R=0·47, 
p<0·0001 and anti-NP R=0·6, p<0·0001). A similar degree of compartmentalisation was observed at 
12 months when the association between nasal and plasma anti-S IgA was even weaker (R =0·35, 
p<0·0001) and the association between nasal and plasma anti-S IgG was marginally stronger (R=0·51, 
p<0·0001) (figure 4B). Age and disease severity showed no association with nasal responses at both 
time points.  
 
We considered the role of vaccination in driving the compartmentalisation between nasal IgA and 
plasma responses. At 6 months, 27 of 31 individuals with known vaccination status had received their 
first vaccination and 10 had received both doses. The median time from first vaccination was 81 days 
(IQR 20–105). Meanwhile at 12 months, 58 of 63 individuals with known vaccination status had 
received both vaccinations and the median time from second vaccination was 171 days (IQR 103–
246). Thus, we reasoned that the increased compartmentalisation between these time points may result 
from vaccination; whereby plasma responses are enhanced but nasal IgA is minimally affected.   
 
To explore the relationship between nasal IgA and plasma antibody responses after first vaccination, 
we performed hierarchical clustering of anti-S/RBD responses from paired samples collected at 6 
months (median 81 days after vaccination). Compartmentalisation of nasal IgA from plasma 
responses was observed with 4 distinct clusters forming (figure 4C). The first cluster exhibited 
patients with robust nasal IgA and plasma responses. Patients with the weakest plasma IgA and IgG 
responses were present in cluster 2 whilst patients with the weakest nasal IgA responses were in 
cluster 4. Although not statistically significant, there was a tendency towards more recent vaccination 
in cluster 1 compared with cluster 4 (figure S10A). The date of vaccination was not available for any 
members of cluster 2. Cluster 1 also contained a higher proportion of individuals receiving BNT162b2 
vaccination (44%) compared with cluster 4 (27%), although the difference in proportions did not 
reach statistical significance due to the number of participants with complete vaccination data (figure 
S10B). There was no association between disease severity or age and cluster membership (figure 4C). 
Thus, we concluded that the clusters resulted from transient boosting of nasal IgA responses after 
recent vaccination, with divergence between the nasal IgA and plasma responses with increasing time 
from vaccination. Given the insubstantial and transient effect of vaccination on nasal IgA responses 
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relative to plasma responses, we suggest that i.m. vaccination after COVID-19 is unable to adequately 
recall mucosal responses.   
 
Discussion 
We demonstrate durable nasal and plasma IgG responses to ancestral (B.1 lineage), Delta and 
Omicron variants of SARS-CoV-2 in 446 adults hospitalised with COVID-19, who were infected with 
pre-Omicron virus and the majority of whom were subsequently vaccinated. However, we found that 
nasal virus-specific IgA levels fell back to pre-COVID levels after 9 months and Omicron-binding 
nasal responses were particularly short-lived. Our results reveal that nasal IgA responses are 
compartmentalised from systemic responses after vaccination, which boosted nasal and plasma IgG 
but not nasal IgA. 
 
The durability of nasal antibody responses has hitherto been unclear. Whilst a Dutch study of 
healthcare workers found that nasal antibody lasted 9 months after mild infection, others 
demonstrated rapid waning after 3 months.8,9 Neither study examined a large cohort of hospitalised 
patients, and our findings confirm that COVID-19 can induce durable mucosal immunity. We also 
found that disease severity and age did not impact the longevity of the nasal responses in keeping with 
a recent study of 26 unvaccinated individuals.10  
 
By calibrating nasal antibody levels with pre-COVID samples, we demonstrate that on average, nasal 
IgA responses disappear after 9 months and Omicron-binding IgA is particularly short-lived. Nasal 
IgA is the most abundant mucosal antibody and provides an important first-line defence against 
respiratory infection. The importance of nasal IgA in mediating immunity to SARS-CoV-2 is 
highlighted by a recent study where nasal IgA but not IgG correlates with nasal neutralisation after 
COVID-19.10 The short-lived nasal IgA response demonstrated here may explain the high rates of 
infection with Omicron variant, despite vaccination, and are in-keeping with real-world data reported 
in preprint, showing that infection with pre-Omicron virus has minimal influence on the risk of 
Omicron infection at 15 months.13,23  
 
Whilst we found that i.m. vaccination can boost nasal IgG, it had limited effects on IgA, in keeping 
with a previous study of salivary antibody in 107 care home residents.24 We demonstrated correlations 
between nasal IgG, plasma IgG and plasma neutralisation, whilst nasal IgA responses were 
compartmentalised, suggesting that the rise in nasal IgG after vaccination could derive from plasma. 
Notably, we demonstrate that those exhibiting more robust nasal IgA responses had been recently 
vaccinated and a higher proportion had been vaccinated with BNT162b2 vaccine. Although this 
analysis was limited by small sample size, our findings suggest that vaccination only transiently 
boosts nasal IgA, and the type of vaccination received may influence the strength of response. mRNA 
vaccines tend to induce stronger circulating antibody responses than those using adenoviral vectors, 
and this may also apply to nasal responses.25,26 Taken together, these findings suggest that i.m. 
vaccination after COVID-19 cannot recall mucosal responses.  
 
The concept of independent mucosal and systemic immunity is supported by recent studies showing 
that SARS-CoV-2 naïve individuals (whose mucosa have not been primed) do not produce nasal 
antibody after i.m. vaccination, highlighting that an independent response must occur at mucosal 
sites.9,27 Moreover, previous work has demonstrated that transudation of plasma antibody makes 
minimal contribution to total antibody concentrations in the mucosa, even in cases of 
paraproteinaemia where plasma concentrations are extremely high.28 This would explain why i.m. 
vaccination has had only transient effects on transmission,4 since the enhancement of nasal IgG that 
we observe, while measurable, is unlikely to have a considerable effect on mucosal susceptibility to 
infection. Future vaccines will need to substantially boost nasal IgA if they are to fully prevent 
infection and transmission. To date, intranasal and aerosolized vaccines have shown the most promise 
in doing so.27,29,30 It is therefore essential to prioritise development of mucosal vaccines which can 
provide better protection against respiratory infections. 
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Study limitations 
 
Although 338 individuals had samples taken from more than 1 time point after hospital discharge, 
given the circumstances and scale of this study we were not able to collect longitudinal samples from 
each participant. However, given that most individuals follow similar antibody kinetics, where 
longitudinal samples were missing, data were compared to cross-sectional samples taken from 
individuals in the acute and early convalescent phase of illness.   
 
We did not have vaccination data for all cases, preventing direct comparison of pre- and post-
vaccination nasal antibody titres. However, we demonstrated differences in nasal anti-S and anti-NP 
responses during the period of vaccination, enabling inferences to be drawn. Notably we estimated a 
peak of nasal anti-S IgG titres 150 days after vaccination which is considerably slower than peak 
circulating antibody responses after vaccination (28–42 days).31 Future studies using longitudinal data 
collected at fixed intervals before and after vaccination will better capture the peak of nasal antibody 
titres after i.m. vaccination. 
 
Conclusions 
This is the first study to demonstrate durable but compartmentalised nasal IgA and plasma antibody 
responses to SARS-CoV-2 after infection and subsequent vaccination. We show enhancement of nasal 
and plasma IgG responses to ancestral SARS-CoV-2, Delta and Omicron variants after vaccination. 
However, nasal IgA responses, especially those to Omicron, are more short-lived and are not 
substantially affected by vaccination. Our results explain the lack of long-term sterilising immunity 
after previous infection and/or vaccination and highlight the need for mucosal vaccines that target 
nasal IgA responses. By enhancing nasal antibody responses, mucosal vaccines might prevent 
infection and transmission more effectively, enabling greater control of the pandemic and limiting the 
emergence of variants. 
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Table 1. 
 
Demographics (n=446) Missing data  

Age at admission, years 
59 (51–67) 28 (6.3) 

Sex at birth 
Female 164 (39·1) 27 (6.0) 
Male 255 (60·9) 

Ethnicity 

White 259 (82·0)  
 

130 (29.0) 
South Asian 22 (6.9) 

Black 20 (6·3) 
Mixed 5 (1·6) 
Other 10 (3·2) 

Clinical characteristics (n=446) Missing data 

Disease severity 

WHO Class 3-4 60 (14·6) 

34 (7.6) 

WHO Class 5 193 (46·8) 

WHO Class 6 101 (24·5) 

WHO Class 7-9 48(11·6) 

WHO Class 10 10 (2·4) 

BMI ≥ 30 
164 (62·1) 183 (40.9) 

Co-morbidities  

None 66 (20·8) 129 (28.8) 

1 69 (21·8) 

≥2 183 (57·4) 

First vaccination received 
during the study  

Yes  160 (89·9) 266 (59.4) 

No  20 (11·1) 

Second vaccination received 
during the study  

Yes  114 (65·5) 272 (60.7) 

No  60 (34·5) 

Type of first vaccination   

Oxford/ AstraZeneca 
(ChAdOx1 nCoV-19) 

101 (64·7) 290 (64.7) 

Pfizer/Bio-N-Tec 
(BNT162b2) 
 

55 (35·3) 

Moderna 0 

Type of second vaccination   

Oxford/ AstraZeneca 
(ChAdOx1 nCoV-19) 
 

65 (58·0) 334 (74.6) 

Pfizer/Bio-N-Tec 
(BNT162b2) 

46 (40·1) 

Moderna 1 (0·9) 
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Table 1. Summary of clinical and demographic data. Data are n (%) or median (IQR). Percentages 
were calculated after exclusion of missing data. Disease severity is classified according to the WHO 
Clinical Progression score: 3–4=no continuous supplemental oxygen needed; 5=continuous 
supplemental oxygen only; 6=continuous or bi-level positive airway pressure ventilation or high-flow 
nasal oxygen; 7–9=invasive mechanical ventilation or other organ support; and 10=did not survive. 
BMI=body-mass index. 
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Figure legends 
 
Figure 1. Nasal IgA (A), nasal IgG (B), plasma IgA (C) and plasma IgG (D) responses to S from 
ancestral SARS-CoV-2, 12 months after symptom onset and compared to pre-pandemic control 
samples (grey). Nasal IgA (E), nasal IgG (F), plasma IgA (G) and plasma IgG (H) responses to NP of 
ancestral SARS-CoV-2, 12 months after symptom onset and compared to pre-pandemic control 
samples. The blue and red lines indicate the trajectory of median titres across each timepoint. The 
horizontal dashed line indicates the WHO threshold for a seropositive titre. * = p<0·05, ** = p<0·01, 
*** = p<0·001, **** = p<0·0001. 
 
Figure 2. Trajectory of nasal IgA (A), nasal IgG (B), plasma IgA (C) and plasma IgG (F) anti-S and 
anti-NP responses before and after first vaccination. Trajectories have been modelled using a LOESS 
regression curve and 95% confidence intervals are shown in grey. The vertical dashed line indicates 
the time of first vaccination.  
 
Figure 3. Nasal IgA (A–C), nasal IgG (D–G) and plasma IgG (G–I) responses to RBD of ancestral 
SARS-CoV-2, Delta, and Omicron (BA.1) variants 12 months after symptom onset compared to pre-
pandemic control samples (grey). Nasal antibody titres have been normalised to total isotype content 
of sample. The blue and red lines indicate the trajectory of median titres across each timepoint. The 
horizontal dashed line indicates the WHO threshold for a seropositive titre. * = p<0·05, ** = p<0·01, 
*** = p<0·001, ****= p<0·0001. 
 
Figure 4. Correlogram of nasal and plasma IgA and IgG responses to S and NP, disease severity and 
age at 6 months, when 27 of 31 individuals with known vaccination status had received their first 
vaccination (A) and 12 months, when 58 of 63 individuals with known vaccination status had 
received both vaccinations (B). All statistically significant correlations are denoted with *. The 
variables were hierarchically clustered. Heatmap (C) of nasal IgA, plasma IgA and plasma IgG 
responses to S and RBD at 6–9 months. Rows are annotated with vaccination status, age and disease 
severity according to the WHO clinical progression score: 3–4 = no continuous supplemental oxygen 
needed; 5=continuous supplemental oxygen only; 6=continuous/bi-level positive airway pressure 
ventilation or high-flow nasal oxygen; 7–9=invasive mechanical ventilation or other organ support. 
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Supplementary figure legends  
 
Figures S1. Graphical abstract. Plasma and nasal samples collected at serial intervals from 446 adults 
hospitalised for COVID-19. Plasma and nasal IgG responses are durable and boosted by vaccination. Nasal IgA 
responses are compartmentalised from plasma IgG responses and are minimally affected by vaccination. This 
image was created with BioRender.com 
 
Figure S2. Schematic of study design. Clinical data, plasma and/or nasal samples were obtained during hospital 
admission and/or 1 to 3 visits during convalescence. The 6 to 9 month visit coincided with the start of the UK 
vaccination campaign. Vaccination dates are shown as median (range) for individuals where vaccination status 
was known. Dates in which all study participants attended their 6 to 9 month and >12 month visit are shown in 
median (range).  
 
Figure S3. Nasal IgA (A-B) and Nasal IgG (F-G) geometric mean titre (GMT) to S and NP from ancestral 
SARS-CoV-2. Nasal IgA (C-E) and IgG (G-I) GMT to RBD of ancestral SARS-CoV-2, Delta and Omicron 
BA.1 variant are also shown. The horizontal dotted line indicates the threshold titre derived from GMT+2SD of 
pre-pandemic samples.  
 
Figure S4. Geometric mean titre (GMT) of plasma anti-S IgG (A) relative to a threshold defined by GMT+2SD 
of pre-pandemic samples (horizontal dotted line). This has been compared to the WHO threshold titre for 
seropositivity (horizontal dashed line) (B). The same comparison is shown for anti-NP plasma IgG responses 
(C–D). 
 
Figure S5. Paired plasma IgG responses to S (A), NP (B) and RBD of Omicron BA.1 (C) and Delta (D) variant, 
taken before and after vaccination. 
 
Figure S6. Ratio of binding titre to RBD of Omicron BA.1 variant and ancestral SARS-CoV-2 across nasal and 
plasma compartments.  
 
Figure S7. Trajectory of Nasal IgA (A), nasal IgG (B), plasma IgA (C) and plasma IgG (D) responses to RBD 
of Omicron (BA.1) and Delta variant before and after vaccination. Responses to NP and RBD of ancestral 
SARS-CoV-2 are also shown for comparison. Trajectories have been modelled using a LOESS regression curve 
and 95% confidence intervals are shown in grey. The vertical dashed line indicates the time of vaccination.  
 
Figure S8. Plasma neutralising titres between 3 and 12 months after infection. Neutralisation of ancestral 
SARS-CoV-2 (A), Delta variant (B) and Omicron variant (C) are shown. The red line indicates the trajectory of 
the median titre across each time bin. * = p<0·05, ** = p<0·01, *** = p<0·001, **** = p<0·0001. 
 
Figure S9. Correlation between plasma neutralising titre and plasma IgG (A–B) and IgA (C–D) binding titre to 
RBD and S. The correlation between plasma neutralising titre and nasal IgG (E–F) and IgA (G–H) binding titre 
to RBD and S. A regression line has been fit to the data for which the 95% confidence intervals are shown in 
grey. R=Spearman-rank correlation coefficient. PRNT50 = serum dilution resulting in >50% reduction in 
infectivity. 
 
Figure S10. Time from vaccination (A) in cluster 1, 3 and 4 derived from unsupervised, hierarchical clustering 
analysis of nasal IgA, plasma IgA and plasma IgG anti-S and anti-RBD responses at 6 months from symptom 
onset. Date of vaccination was not available for any individual in cluster 2. Proportion of individuals vaccinated 
with either Pfizer/Bio-N-Tec (BNT162b2) or Oxford/ AstraZeneca (ChAdOx1 nCoV-19) vaccine (B) in each 
cluster.  
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