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Abstract 

Background: There have been no published genome-wide studies of the genetics of cancer- 

and treatment-related cognitive decline (CRCD); the purpose of this study is to identify genetic 

variants associated with CRCD in older female breast cancer survivors.  

Methods: Analyses included white non-Hispanic breast cancer women with non-metastatic 

breast cancer aged 60+ (N=325) and age-, racial/ethnic group, and education-matched 

controls (N=340) with pre-systemic treatment and one-year follow-up cognitive outcomes. 

CRCD was assessed using longitudinal domain scores on neurocognitive tests of Attention, 

Processing speed, and Executive function (APE), and Learning and Memory (LM). Linear 

regression models of one-year cognition included an interaction term for SNP or gene SNP 

enrichment*cancer case/control status, controlling for demographic variables and baseline 

cognition.  

Results: Cancer patients carrying minor alleles for two SNPs, rs76859653 (chromosome 1) in 

the hemicentin 1 (HMCN1) gene (p=1.624x10-8), and rs78786199 (chromosome 2, p=1.925x10-8) 

in an intergenic region had lower one-year APE scores than non-carriers and controls. Gene-

level analyses showed the POC5 centriolar protein gene was enriched for SNPs associated 

with differences in longitudinal LM performance between patients and controls.   

Conclusion: The SNPs associated with cognition in survivors, but not controls, were members 

of the cyclic nucleotide phosphodiesterase family, which play important roles in cell signaling, 

cancer risk, and neurodegeneration. These findings provide preliminary evidence that novel 

genetic loci may drive susceptibility to CRCD.  
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INTRODUCTION 

Improved early detection and treatments for breast cancer have greatly increased the 

number of survivors1,2. However, cancer and treatment-related cognitive decline (CRCD) has 

become an increasing concern3. CRCD is of particular concern in older survivors who 

constituted 62% of the 15.5 million cancer survivors in the United States in 2016, as age is a 

risk factor for cognitive decline and dementia, suggesting that this portion of the cancer 

survivor population might be more vulnerable to CRCD1,3,4. 

Several studies have linked single nucleotide polymorphisms (SNPs) in candidate 

genes to CRCD. For example, studies have shown that the APOE e4 allele, the major risk 

factor for Alzheimer’s disease (AD), is associated with worse neurocognitive outcomes in some 

cancer patients3,5-7. More recently, there has been some evidence that APOE e2 may protect 

against CRCD in cancer survivors8. However, there have not been any published studies using 

a genome-wide analysis approach to identify loci associated with CRCD, and no genetic 

studies have focused on older survivors. Genome-wide investigation of CRCD genetic etiology 

could inform counseling and treatment of patients, as well as research on drugs targeting 

prevention and treatment of CRCD. 

The primary objective of this study was to identify genetic variants showing different 

associations with longitudinal changes in neuropsychological domain scores for Attention, 

Processing speed, and Executive function (APE) or Learning and Memory (LM) in older breast 

cancer cases and non-cancer controls. The secondary objective was to identify genes 

enriched for variants showing different associations with longitudinal changes in APE and LM 

domains in cases and controls. These analyses aimed to identify variants and genes 

interacting with breast cancer diagnosis to affect risk of CRCD. This is the largest study of 
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CRCD genetics published to date, and highlights the utility of this approach towards advancing 

the state of scientific knowledge in this field.  

MATERIALS AND METHODS 

This study was a secondary analysis of specimens and data from the Thinking and 

Living with Cancer (TLC) study. TLC recruited participants from 13 oncology practices at or 

affiliated with six national sites: Georgetown University, Memorial Sloan Kettering Cancer 

Center, Moffitt Cancer Center, City of Hope Comprehensive Cancer Center, Hackensack 

University Medical Center, and Indiana University School of Medicine. All Institutional Review 

Boards approved the protocol (NCT03451383). 

Study Population 

Participants were female breast cancer patients (stage 0-3) diagnosed at age 60+ 

years, and non-cancer controls frequency-matched on age and study site. Participants are 

followed prospectively with baseline pre-treatment/enrollment and then annual visits. For this 

study, baseline and one-year follow-up data were utilized for participants enrolled from 2010 to 

2019. The TLC study is ongoing, and has been extensively described in other publications3,7. 

Briefly, participants were excluded for a history of stroke, head injury, major Axis I psychiatric 

disorders, neurodegenerative disorders, ever previously receiving chemotherapy or hormonal 

therapy, having had active treatment for cancer within the last five years prior to enrollment, or 

having a Mini-Mental State Examination score <24 or Wide Range Achievement Test-Fourth 

Edition (WRAT4) Word Reading score less than third grade level9,10. Additional eligibility for 

this analysis included having a biospecimen for GWAS testing and one-year cognitive data. To 

avoid bias from genetic ancestry and given the small number of minority participants in the 

study, genetic analyses were limited to White, non-Hispanic participants. 
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Of the 807 participants with imputed genetic data, 142 (95 cases, 47 controls) were 

missing clinical, demographic, or cognitive data, and were not included in the final analyses.  

These excluded participants were similar in age (mean=68.13, standard deviation=6.6), 

education (mean=15.1, standard deviation=2.3) and WRAT4 score (mean=109.8, standard 

deviation=14.2) compared to participants included in the analysis. A total of 665 cases (N=325) 

and controls (N=340) with imputed GWAS data and cognitive performance domain data were 

included in the analyses (See Figure 1 CONSORT Diagram).  

Data Collection 

The baseline visit for TLC participants included collection of blood or saliva. In cases 

where a sample could not be collected at baseline, samples were collected at follow-up visits. 

Baseline assessments in patients were conducted following cancer-related surgery, but prior to 

initiation of chemotherapy, radiation, or hormone treatments. 

Thirteen neuropsychological tests were administered at each visit to obtain data for two 

per protocol pre-specified cognitive domains: Attention, Processing speed, and Executive 

function (APE), and Learning and Memory (LM) (for more detail, see Supplementary Methods). 

Raw scores were standardized using the control group mean and standard deviation at 

baseline stratified by age and education. Standardized scores were then used to calculate z-

scores for each domain for every participant, as described previously11,12. These domains were 

chosen because research has shown them to be relevant to CRCD3. WRAT4 reading scores 

were obtained at baseline9. 

Collected demographic and clinical variables included age, years of education, 

collection site, race/ethnicity, and cancer and treatment information. 
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Saliva and/or blood samples were collected. Saliva samples were collected using 

Oragene kits (DNA Genotek, Kanata, Ontario, Canada); anticoagulated whole blood was 

collected with EDTA. Frozen EDTA samples and saliva samples at ambient temperature were 

shipped to Boston University or subsequently to the Indiana University Genetics Biobank to 

extract DNA, which was shipped frozen in three batches to the Children’s Hospital of 

Philadelphia, Center for Applied Genomics, where genome-wide association study (GWAS) 

assays were performed. 

GWAS assays were performed using the Affymetrix Axiom Precision Medicine array 

(Thermo Fischer Scientific, Waltham, MA)  for the first two batches and with the Illumina Global 

Screening Array v2 (Illumina, San Diego, CA) for the third batch.  Microarray data were 

converted to PLINK format using Illumina GenomeStudio software (Illumina, Inc., San Diego, 

CA), and processed and quality-controlled with PLINK v1.913. In total, 807 White non-Hispanic 

participants had genotype data passing quality control imputed with the haplotype Reference 

Consortium (HRC) panel using the Michigan Imputation Server14,15 (see Supplemental 

Methods for more details). The final data set included 7,661,137 SNPs, >10x the original 

number of SNPs obtained from genotyping. Of the 807 participants with imputed data, 131 

participants were excluded for lack of one-year cognitive data, 4 were excluded due to missing 

covariates, and 7 were excluded from analysis as they were identified as duplicates or first 

degree siblings in the identity-by-descent analysis. 

Apolipoprotein E (APOE) genotype was also obtained separately using TaqMan assays 

of rs429358 and r7412 on a Real-Time PCR System (Life Technologies, Carlsbad, CA), and/or 

Fluidigm genotyping with a custom-designed 96-SNP microarray (Fluidigm, San Francisco, 

CA).  
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Statistical Methods and Analyses 

Genetic data was analyzed in PLINK v1.913.  Primary analyses investigated the 

interaction of cancer case/control status with genotypes on one-year cognitive performance, 

controlling for baseline performance. Linear regression was used to predict one-year APE and 

LM scores based on the main effects of SNPs, group (cancer patient/non-cancer control), and 

SNP*group interaction, controlling for baseline cognitive scores, age, WRAT4 score, and 

recruitment site. Sensitivity analysis was performed to investigate the potential influence of 

APOE e4 carrier status; all models were run with/without APOE e4 as a covariate (data not 

shown).  

SNP*case/control association analysis results were analyzed with The Functional 

Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS) program 

v1.3.6a16 (see Supplemental Methods for more information). For SNPs passing the genome-

wide significance threshold (p<5x10-8), the most significant SNP from each locus showing an 

interaction with cancer group associated with cognitive performance was run in a general 

linear model in SPSS Statistics 25 (IBM SPSS Statistics 25, IBM Corp., Somers, NY), with 

interacting term cancer group, dependent factor APE one-year visit, and covariates baseline 

APE, age, and baseline WRAT4 to calculate marginal means for cancer case/control and 

carrier groups. Study site was entered as a fixed effect. The model was run with the interaction 

term SNP*cancer group as well as main effects for all terms, using a Type III sum of squares 

model including the intercept. Results included marginal means, standard deviations, and 

upper and lower bounds for the 95% confidence interval, as well as the F statistic and p-value 

for each SNP.  
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Secondary analyses of all 10,678 genes for enrichment of SNPs within a gene showing 

interaction with cancer case/control status associated with cognitive performance were also 

performed in FUMA using the MAGMA program v1.0813,16-18. Visualization of results in FUMA 

included generation of regional SNP plots using data from CADD19 and RegulomeDB20. For 

gene-level results, significance cut-off was p<5x10-6. 

For lead SNPs at significant loci from the GWAS analyses, we also performed post-hoc 

testing of the SNPs for quantitative trait loci (QTLs) using the GTEx portal (gtexportal.org/) to 

investigate the functional consequences of each SNP on gene expression, splicing, and cell-

specific regulation of gene expression21. For the intergenic SNP identified in the GWAS 

analysis, we investigated whether this locus was a predicted binding site for any transcription 

factors using JASPAR22, a database of transcription factor binding profiles. 

 RESULTS 

Participants were, on average 68 years old (range 61 to >90), and cases and controls 

had >15 years education (Table 1). Differences in education and WRAT4 scores between 

cases and controls were not clinically meaningful. There were no significant differences 

between women with breast cancer and controls for APOE e4 allele frequency.  

GWAS and Gene Analyses 

GWAS Analyses 

Two loci, on chromosomes 1 (rs76859653, p=1.624x10-8) and 2 (rs78786199, 

p=1.925x10-8), were differentially associated with longitudinal APE performance in breast 

cancer cases compared to controls (see Figure 2A GWAS Manhattan plots for genome-wide 

analysis results, Figure 3 for plots of each SNP locus, supplementary Figure 1A for GWAS QQ 
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plots). As shown in Figure 4 and Table 2, control individuals carrying minor alleles for either 

SNP have similar or greater APE one-year mean scores compared to non-carriers controlling 

for baseline scores.  In contrast, cases carrying minor alleles for either of these SNPs have 

lower APE one-year mean scores than non-carriers controlling for baseline scores, suggesting 

that in cancer patients but not controls, carriers for either SNP have a greater risk for cognitive 

decline over time. The analysis of LM domain performance did not identify any SNPs of 

genome-wide significance (p<5x10-8, Figure 2B, supplementary Figure 1B). 

For rs76859653 and rs78786199, GTex analysis showed no significant QTLs for either 

SNP. While this analysis did not identify any genes with differential expression associated with 

these SNPs, investigation of intergenic rs78786199 with JASPAR showed that this SNP is 

within the region of predicted transcription factor binding sites for Zinc Finger Imprinted 3, 

Interferon Regulatory Factors 1, 4, 7, and 8, Signal Transducer and Activator of Transcription 

2, and Zinc Finger Protein 317. 

Analyses performed with APOE e4 carrier status as an additional covariate did not differ 

significantly (data not shown). 

Gene Analyses 

Gene analysis did not identify any genes enriched for variants significantly associated 

(p<5x10-6) with APE one-year score controlling for baseline when comparing cancer patients to 

controls (see Figure 5A for gene analysis results, supplementary Figure 2A for gene QQ plots). 

Of note, the most significant results for this analysis were phosphodiesterase 3A (PDE3A, 

p=5.77x10-6) and phosphodiesterase 4B (PDE4B, p=1.49x10-5), both of which are members of 

the cyclic AMP-specific cyclic nucleotide phosphodiesterase (PDE) family. 
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Gene analysis of LM domain performance identified one gene, POC5 centriolar protein 

(POC5), which was significantly enriched for variants associated with differences in cognitive 

performance in cases compared to controls (p=1.99x10-6, see Figure 5B for gene analysis 

results, supplementary Figure 2B for gene QQ plots). 

Analyses performed with APOE e4 carrier status as an additional covariate did not differ 

significantly (data not shown). 

DISCUSSION 

This first large-scale study of the association between genetic variation and longitudinal 

cognitive performance in older women with breast cancer and controls identified two novel loci 

and three genes of interest. The finding that women with cancer perform differently on 

cognitive assessments than controls based on minor allele carrier status suggests that genetic 

background may influence risk for CRCD, or may play a role in cognitive dysfunction following 

diagnosis and treatment. 

These analyses identified two loci differentially associated with APE performance over 

time in cases and controls. The chromosome 1 SNP rs76859653 is intronic (non-coding) in the 

HMCN1 gene. This gene encodes an extracellular protein of the immunoglobulin superfamily, 

suggesting that immune function may play a role in CRCD. The role in humans is unknown, 

but HMCN in C. elegans is involved in maintenance of cell polarity as well as cell migration and 

invasion23. Mutations in this gene have also been identified in gastric and colorectal cancers24. 

Interestingly, a mutation in HMCN1 has been linked to occurrence of age-related macular 

degeneration25,26. Age-related macular degeneration occurs with an increased risk of 

dementia27, providing a potential connection between this gene and CRCD. Computational 

analysis of potential functions for this SNP including expression quantitative trait analyses did 
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not reveal an obvious mechanism of SNP function; more work will be required to validate this 

finding and investigate the underlying molecular mechanisms for this locus in CRCD.  

The second SNP identified in this analysis, rs78786199, occurs in an intergenic region 

of chromosome 2. The closest gene to this locus is forkhead box N2 (FOXN2), which is 

ubiquitously expressed and has been shown to suppress cancer proliferation and invasion28. 

Downregulation of this gene has been shown in acute myeloid leukemia, and was correlated 

with complex cytogenetic abnormalities29. Knockdown of this transcription factor was also 

associated with increased cancer cell proliferation, an impaired DNA damage response, and 

chromosomal instability29. While FOXN2 has not been specifically identified in 

neurodegenerative disease or cognitive functional research, perturbations in these molecular 

pathways have been identified in Alzheimer’s disease as well as cancer30. Additionally, 

rs78786199 is in a predicted binding site for several transcription factors, including Zinc Finger 

Imprinted 3, Interferon Regulatory Factors 1, 4, 7, and 8, Signal Transducer and Activator of 

Transcription 2, and Zinc Finger Protein 317. These transcription factors regulate numerous 

cellular processes, including hematopoiesis, inflammation, immune responses, cell 

proliferation, regulation of the cell cycle, and induction of growth arrest and programmed cell 

death in response to DNA damage, suggesting multiple mechanisms that could connect this 

locus with cancer and CRCD31-36. The location and current lack of validation for transcription 

factor binding at this intergenic locus makes functional interpretation challenging, however; 

more work is required to investigate and validate the molecular mechanisms underlying this 

locus.  

Both SNPs show declining cognitive performance in cancer cases carrying minor 

alleles, in contrast to stable to improved performance in controls, suggesting that these loci 
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increase risk for CRCD in older women who have experienced breast cancer and its 

treatment(s). Given that these loci were identified in a fairly homogeneous cohort of older 

White, female, well-educated breast cancer survivors, it seems reasonable to postulate that 

further study with larger, more diverse cohorts may uncover additional genetic etiologies for 

CRCD, providing tools for assessment of risk of cognitive decline in cancer survivors and/or 

avenues for therapeutic research. 

Gene-level analysis identified POC5; this gene was enriched for variants differentially 

associated with LM performance change in cases and controls. There is evidence that the 

POC5 protein is involved in breast cancer cell proliferation and tumorigenesis37. POC5 is 

required for proper assembly of centrioles prior to cell division38. A study of histone 

deacetylases, dysregulation of which can result in carcinogenesis, showed that one 

mechanism of histone deacetylase action in cancer is to protect POC5 from degradation, 

resulting in cell cycle progression of cancer cells37. Mutations in POC5 have been identified in 

adolescent idiopathic scoliosis (AIS); in vitro studies of these mutations have shown that they 

alter centrosome protein interactions, induce ciliary retraction, and impair cell-cycle 

progression39. A mutation in this gene has also been associated with retinitis pigmentosa40, an 

inherited form of retinal degeneration. Inherited retinal disease has extremely heterogeneous 

genetic etiologies, and syndromic forms can manifest with other symptoms including 

neurodegeneration, again providing a connection for this gene’s association to cognitive 

dysfunction as well as cancer41. However, much work remains to validate this finding and 

investigate the molecular mechanisms underlying POC5 gene variants’ association with 

CRCD. 
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The TLC study is unique in having a larger number of individuals with genetic data, 

though still small in terms of genetics studies. Most studies of CRCD are too small to perform 

any genome-wide analyses, and are not powered to use for replication of rarer variants. 

Therefore, the ability to replicate this study is limited by the lack of well-powered studies of 

CRCD, particularly in older individuals who may be at increased risk. While there are a number 

of studies of older individuals with dementia that have cognitive data, these studies typically do 

not include well-documented cancer history or do not have sufficient populations of breast 

cancer survivors. These studies typically occur at much later time points following cancer 

diagnosis than a study of CRCD, making it difficult to meaningfully test for replication. An 

additional limitation was the exclusion of non-White participants to reduce population-driven 

genetic bias. This study was not powered to investigate the potential impact of genetic risk 

factors to CRCD in minority participants. It will be important for future studies to perform similar 

investigations in other racial and ethnic populations. Specifically, it is critical for additional 

studies to enroll larger cohorts of non-White participants, to enable the study of race-specific 

genetic factors underlying CRCD. Once enough samples/studies are available, it will be 

possible to perform meta-analyses including these data sets to investigate whether these or 

other genetic risk factors influence the risk for CRCD in minority populations. 

These findings provide preliminary evidence that novel genetic loci may drive 

susceptibility to CRCD, and highlight a critical need for well-powered studies of the genetics of 

CRCD, particularly in older individuals who also have a greater risk for neurodegenerative 

disease and dementia. As more studies are funded to investigate this critical gap in 

understanding, it will be possible to perform meta-analyses with existing studies, similar to 

efforts to increase genetic sample size in Alzheimer’s and Parkinson’s disease research42,43. 
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As larger studies become available, we expect meta-analyses to uncover additional genetic 

factors underlying CRCD, which may be used to further inform patient management and 

therapeutic research.   
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Table 1. Demographics 

Variable 

Case 

(N=325)* 

Control 

(N=340) p-value** 

Age, mean years (StDev) 68.2 (5.7) 67.9 (6.6) 0.596 

Education, mean years  (StDev) 15.3 (2.1) 15.7 (2.2) 0.012 

WRAT4 score, mean (StDev) 111.0 (15.8) 113.7 (15.4) 0.028 

Chemotherapy treatment 

number (%) 84 (25.8%) - - 

Hormone therapy 257 (79.1%) - - 

APOE e4 carrier, number (%) 81 (24.9%) 85 (25.0%) 1.000 

StDev = standard deviation; WRAT4 = Wide Range Achievement Test-Fourth Edition Word 

Reading Test; APOE = apolipoprotein E 

*84 (25.8%) of the 325 cases were treated with chemotherapy between the baseline and one-

year visits 

**p-values are italicized, with values <0.05 on ANOVA or Fischer’s Exact two-sided test shown 

in bold 
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Table 2. SNPs associated with Longitudinal Attention, Processing Speed, and Executive 

Function (APE) domain scores differentially in cancer cases vs. controls�  

SNP�  Group�  SNP MA*�  
APE 

Mean**�(StE)� 

95% CI 

Lower 

Bound�  

95% CI 

Upper 

Bound�  

F�  
p 

value**� 

rs76859653� 

Control� 0�(N=329)� 0.10 (0.02)�  0.06�  0.15�  

32.68�  <0.001�  
Control� 1�(N=9)�  0.71 (0.13)�  0.46�  0.97�  

Case�  0�(N=319)� 0.08 (0.02)�  0.03�  0.12�  

Case�  1�(N=5)�  -0.56 (0.17)�  -0.91�  -0.22�  

rs78786199� 

Control� 0�(N=322)� 0.12 (0.02)�  0.07�  0.16�  

32.27�  <0.001�  
Control� 1�(N=18)�  0.27 (0.09)�  0.09�  0.45�  

Case�  0�(N=317)� 0.08 (0.02)�  0.04�  0.13�  

Case�  1�(N=7)�  -0.77 (0.15)�  -1.06�  -0.48�  

StE�= Standard Error; CI = confidence interval.�  

*0=homozygous for major allele, 1=heterozygous for minor allele; neither of the top SNPs have 

any homozygous minor allele genotypes in the data set.  

**Results from general linear models with individual significant SNPs identified�from�GWAS 

analysis (APE one-year score ~ SNP*group + covariates); cognitive means for APE score 

calculated controlling for mean-centered covariates.  
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FIGURE LEGENDS 

Figure 1. CONSORT Diagram. 807 White non-Hispanic participants had imputed GWAS data 

passing quality control. Of these, 142 were removed due to missing longitudinal data (131 for 

missing cognitive performance data, 4 for missing demographic/clinical information, and 7 for 

duplicate or first-degree sibling status). The final data set for analysis included 665 individuals, 

325 cases and 340 controls. 

Figure 2. GWAS SNP*Cancer Interaction. A) Manhattan plot of GWAS SNP by group 

interaction associated with one-year follow-up (1Y) visit Attention, Processing speed, and 

Executive function (APE) cognitive domain score. GWAS genome-wide analysis of SNP*group 

(0/1) interaction with outcome of 1Y visit APE score, covarying for age, baseline WRAT4 

score, site, and baseline APE score. Loci on chromosomes 1 (rs76859653, p=1.624x10-8) and 

2 (rs78786199, p=1.925x10-8) have p-values of genome-wide significance (p<5x10-8). B) 

Manhattan plot of GWAS SNP by group interaction associated with 1Y visit Learning and 

Memory (LM) cognitive domain score. GWAS genome-wide analysis of SNP*group (0/1) 

interaction with outcome of 1Y visit LM score, covarying for age, baseline WRAT4 score, site, 

and baseline LM score. No loci attained genome-wide significance (p<5x10-8).  

Figure 3. Regional Plots for Lead SNPs from APE GWAS Analysis. Top panel shows the 

SNPs adjacent to the lead SNP. Top SNP is colored navy; independent significant SNPs are 

color coded by r2 scale. SNPs that are not in linkage disequilibrium (LD) with the top lead SNP 

are shown in gray. ‘Ref SNPs’, displayed at the top of the plot, are SNPs that are in LD with 

the top SNP, but which do not have a p value because they were not included in the data. 

Mapped genes are shown in red. Y-axis shows the –log10 p-value of all graphed SNPs. The 

bottom panel shows exonic SNPs (dark blue) and other SNPs (light blue), graphed for CADD 
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score (SNP deleteriousness) and RegulomeDB score (evidence for transcription factor 

function); increasing values for both indicate increasing likelihood of function. Location on the 

chromosome in base pairs is shown on the X-axis. 

A) Regional SNP Plot for rs76859653 on chromosome 1, a lead SNP significantly differently 

associated with APE cognitive domain performance at one-year follow-up (1Y) visit by group, 

covarying for age, baseline WRAT4 score, site, and baseline APE performance. B) Regional 

SNP Plot for rs78786199 on chromosome 2, a lead SNP significantly differentially associated 

with APE cognitive domain performance at 1Y visit by group, covarying for age, baseline 

WRAT4 score, site, and baseline APE performance. 

Figure 4. SNPs Differentially Associated with APE Score by Group. Boxplots depicting 

differences in APE score at one-year follow-up (1Y) visit (Y axis) by cancer case/control status 

(X-axis) and by SNP minor allele carrier status (red=carrier, blue=noncarrier). There were no 

individuals homozygous for either SNP; all carriers are heterozygous. Error bars indicate 95% 

confidence intervals. Covariates appearing in the model were evaluated at the following 

values: age = 68.05, WRAT4 = 112.33, baseline APE = 0.03, site 1 = 1.21, site 2 = 1.17, site 3 

= 1.28, site 4 = 1.14, site 5 = 1.07. A) Results for rs7659653. There were 329 control 

noncarriers, 9 control carriers, 319 case noncarriers, and 5 case carriers. B) Results for 

rs78786199. There were 322 control noncarriers, 18 control carriers, 317 case noncarriers, 

and 7 case carriers. 

Figure 5. GWAS Gene*Group Interaction. A) Manhattan plot of TLC gene by group 

interaction associated with one-year follow-up (1Y) visit Attention, Processing speed, and 

Executive function (APE) cognitive domain score. GWAS genome-wide analysis of gene*group 

(0/1) interaction with outcome of 1Y visit APE score, covarying for age, baseline WRAT4 
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score, site, and baseline APE score. No genes attained genome-wide significance (p<5x10-6). 

B) Manhattan plot of TLC GWAS gene by group interaction associated with 1Y visit Learning 

and Memory (LM) cognitive domain score. GWAS genome-wide analysis of gene*group (0/1) 

interaction with outcome of 1Y LM score, covarying for age, baseline WRAT4 score, site, and 

baseline LM score. One gene, POC5 centriolar protein (POC5), attained genome-wide 

significance (p=1.99x10-6). 

Supplementary Figure 1. GWAS QQ Plots. A) Attention, Processing speed, and Executive 

function (APE) QQ plot of –log10 p-values for GWAS analysis (APE domain one-year follow-up 

(1Y) visit ~ SNP*Cancer case/control). B) Learning and Memory (LM) QQ plot of –log10 p-

values for GWAS analysis (LM domain 1-year follow-up (1Y) visit ~ SNP*cancer case/control). 

Dotted red lines depict 1:1 correlation of observed:expected p-values. 

Supplementary Figure 2. Gene QQ Plots. A) Attention, Processing speed, and Executive 

function (APE) QQ plot of –log10 p-values for gene-level analysis (APE domain one-year 

follow-up (1Y) visit ~ Gene*Cancer case/control). B) Learning and Memory (LM) QQ plot of –

log10 p-values for gene analysis (LM domain 1Y follow-up (1Y) visit ~ Gene*cancer 

case/control). Dotted red lines depict 1:1 correlation of observed:expected p-values. 
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