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Abstract 

Fetal alcohol-spectrum disorder (FASD) is underdiagnosed and often misdiagnosed as 

attention-deficit/hyperactivity disorder (ADHD). Here, we developed a screening tool for FASD 

in youth with ADHD symptoms. To develop the prediction model, medical record data from a 

German University outpatient unit were assessed including 275 patients aged 0-19 years old 

with FASD with or without ADHD and 170 patients with ADHD without FASD aged 0-19 years 

old. We trained 6 machine learning models based on 13 selected variables and evaluated their 

performance. Random forests yielded the best prediction models with a cross-validated AUC 

of 0.92 (95% confidence interval [0.84, 0.99]). Follow-up analyses indicated that a random 

forest model with 6 variables – body length and head circumference at birth, IQ, socially 

intrusive behaviour, poor memory and sleep disturbance – yielded equivalent predictive 

accuracy. We implemented the prediction model in a web-based app called FASDetect – a 

user-friendly, clinically scalable FASD risk calculator that is freely available at 

https://fasdetect.dhc-lab.hpi.de. 
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Introduction 

Fetal alcohol-spectrum disorder (FASD) is an umbrella term for medical conditions caused by 

prenatal alcohol exposure, including fetal alcohol syndrome (FAS), partial fetal alcohol 

syndrome (pFAS), alcohol related birth defects (ARBD), and alcohol-related 

neurodevelopmental disorder (ARND). The global prevalence of FASD is estimated to be 

between 2-5% of the Western world’s population (1). Despite the prevalence rate, FASD is 

highly underdiagnosed and many patients miss out on the beneficial effects of an early 

childhood diagnosis and subsequent early intervention (2-5). 

Established diagnostic systems for FASD are based on the manifestation of growth 

deficiencies, craniofacial dysmorphia, central nervous system damage/dysfunction, and 

gestational alcohol exposure (6, 7). These neuropsychological impairments can manifest as 

deficits in intelligence, learning, memory, executive function and academic achievements, 

language and motor development and attention (8). People with FASD have a higher risk to 

develop secondary psychiatric conditions, like conduct disorder, attention-

deficit/hyperactivity disorder (ADHD) and sleep disorders, as well as to experience adverse life 

events (8-11). Hyperactivity, inattention and impulsivity are characteristically seen both in 

patients with ADHD and FASD. More than half of FASD patients suffer from comorbid ADHD 

(11). These overlapping symptoms of FASD and ADHD complicate the diagnostic process and 

can lead to misdiagnosis as well as delayed intervention for FASD. In a study conducted in 547 

children and adolescent who were adopted or in foster care and who underwent a 

comprehensive multidisciplinary diagnostic evaluation to identify FASD, 156 youth met criteria 

for FASD, but as many as 87% of them had been misdiagnosed, most commonly with ADHD, 

or had remained undiagnosed (12). The very high misdiagnosis rates underscore the 

importance of evaluating youth diagnosed with ADHD in order to detect any missed FASD 

diagnosis. 

The purpose of the present study was to (i) develop a machine learning algorithm for detection 

of FASD in patients with ADHD symptoms based on retrospectively gathered out-patient data, 

and (ii) subsequently use this algorithm to create an easy and fast as well as clinically scalable 

online screening tool. We hypothesized that we would be able to identify an algorithm with 

sufficient accuracy to differentiate youth with versus without FASD.  
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Results 

Study sample 

This study was conducted at the outpatient unit of the department of child and adolescent 

psychiatry at the Campus Charité Virchow of the Charité Universitätsmedizin Berlin, Germany. 

For the analysis, a group of consecutively assessed patients with a clinical diagnosis of ADHD 

without FASD and a group of patients with an expert diagnosis of FASD (with or without 

comorbid ADHD) was compared. Altogether, 694 patients with ADHD symptoms were 

identified consecutively from the general patient pool being potentially eligible for the study. 

256 of the 694 ADHD patients had a confirmed FASD diagnosis and therefore were excluded 

from the ADHD pool. Further, 141 patients were excluded from the ADHD group due to an 

unconfirmed ADHD diagnosis; 58 because they had a suspected but not confirmed FASD 

diagnosis; 37 due to other severe medical, psychiatric, or neurological conditions; and 32 

patients were excluded because patient records were unavailable. This yielded in total 170 

patients in the ADHD group. The consecutively enrolled FASD group was recruited from the 

specialist center and consisted of 275 youth, including 129 FASD patients with comorbid ADHD 

and 146 patients without comorbid ADHD diagnosis. These 275 patients included most of the 

256 FASD patients from the general patient pool. 

Description of the patients’ characteristics 

Tables 1-2 give an overview of the main characteristics of the n = 445 FASD and ADHD patients, 

which included 159 female (mean age at initial presentation, 9.6 years [range, 0.2–18.8 years]) 

and 286 male (mean age at initial presentation, 8.9 years [range, 0.1–19.0 years]) patients. 

139 of the FASD patients had a FAS diagnosis, 127 had a pFAS diagnosis and 9 patients were 

diagnosed with ARND. 170 patients belonged to the ADHD group (31 female; mean age at 

initial presentation, 8.7 years [range, 3.7–16.8 years]; 139 male; mean age at initial 

presentation, 8.4 years [range, 2.3–15.7 years]) and 275 patients belonged to the FASD group 

(128 female; mean age at initial presentation, 9.9 years [range, 0.2–18.8 years]; 147 male; 

mean age at initial presentation, 9.4 years [range, 0.1–19.0 years]). There were very low 

pairwise correlations between these variables, with the exception of head circumference and 

birth length (Pearson correlation coefficient of 0.57). 
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Variable All patients FASD patients ADHD patients 
 Mean  SD Mean  SD Mean  SD 
age at first presentation  9.15 4.03 9.60 4.53 8.43 2.94 
gestational age 38.57 2.39 38.58 2.21 38.56 2.68 
z-score of birth length -0.58 1.16 -0.87 1.13 -0.08 1.03 
z-score of birth weight -0.48 1.19 -0.80 1.09 0.05 1.17 
z-score of head circumference at birth -0.45 1.11 -0.70 1.11 0.07 0.93 
z-score of length at first presentation -0.27 1.17 -0.50 1.12 0.27 1.12 
z-score of weight at first presentation -0.02 1.21 -1.20 1.15 0.38 1.24 
z-score of head circumference at first 

presentation 
-1.06 1.55 -1.37 1.37 0.23 1.58 

number of mothers pregnancies 2.78 2.14 2.84 2.12 2.53 2.22 
number of mothers births 2.09 1.39 2.21 1.48 1.91 1.23 

Table 1: Mean and standard deviation (SD) of number of mothers pregnancies and births, 
gestational age, age at first presentation, length, weight, head circumference at time of birth 
and first presentation for all patients, FASD and ADHD patient groups. 
 
 

Variable All patients FASD patients ADHD patients 
 Yes  No  Yes  No  Yes  No  
male sex 286 

(64.3%) 
159 
(35.7%) 

147 
(53.5%) 

128 
(46.5%) 

139 
(81.8%) 

31 
(18.2%) 

Intelligence below 85 IQ points  119 
(34.4%) 

227 
(65.6%) 

92 
(51.4%) 

87 
(48.6%) 

27 
(16.2%) 

140 
(83.8%) 

socially intrusive behaviour 196 
(47.6%) 

216 
(52.4%) 

155 
(63.5%) 

89 
(36.5%) 

41 
(24.4%) 

127 
(75.6%) 

Impairment in memory 272 
(66.2%) 

139 
(33.8%) 

208 
(86.0%) 

34 
(14.0%) 

64 
(37.6%) 

105 
(62.1%) 

sleep disorder/disturbance 147 
(37.1%) 

249 
(62.9%) 

107 
(47.3%) 

119 
(52.7%) 

40 
(23.5%) 

130 
(76.5%) 

speech development disorder 221 
(54.2%) 

187 
(45.8%) 

145 
(60.7%) 

94 
(39.3%) 

76 
(45.0%) 

93 
(55.0%) 

psychiatric comorbidities 289 
(72.3%) 

111 
(27.8%) 

185 
(80.4%) 

45 
(19.6%) 

104 
(61.2%) 

66 
(38.9%) 

prescribed psycho-tropic 
medications 

186 
(47.7%) 

204 
(52.3%) 

64 
(29.1%) 

156 
(70.9%) 

122 
(71.8%) 

48 
(28.2%) 

Table 2: Absolute and relative frequencies for sex and cognitive, behavioral and sleep 
variables, speech development, psychiatric comorbidities and medication in all patients, FASD 
and ADHD patient groups 
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Prediction models to separate FASD and ADHD 

The statistical analysis aimed at developing and evaluating a prediction model that would be 

able to separate FASD from ADHD cases with sufficient accuracy. After data preprocessing and 

variable selection (see Materials & Methods), we tested the performance of 6 machine 

learning algorithms to predict ADHD or FASD using the 13 remaining variables on our data 

with nested cross-validation. Table 3 provides an overview of the main results for the 

prediction model based on the 13 variables number of mother’s births, gestational age, z-

scores of length, weight and head circumference at birth, z-scores of length and weight at 

initial presentation, as well as the presence of low IQ, socially intrusive behavior, speech 

development disorder, poor memory, sleep disturbance and psychiatric comorbidities. When 

predicting FASD cases among ADHD patients, an AUC of 0.92 (95% confidence interval CI [0.84, 

0.99]) was reached by the RF model. 91% of the FASD patients were correctly identified and 

overall 85% of patients received a correct classification. Of all patients that were classified as 

FASD cases, 86% were true FASD cases. The kNN and Gaussian Process classifiers both reached 

an AUC of 0.90 and accuracy of 0.84. The SVM also had a ROC AUC of 0.90 ([0.80, 0.99]), but 

recognized more positive cases with a sensitivity of 0.92, the highest among all evaluated 

algorithms. Logistic regression and GBDT both yielded an AUC of 0.91 (95% CI [0.83, 0.99] and 

0.91 [0.82, 0.99], respectively). The highest positive predictive value (0.89) was reached by the 

logistic regression model, however at the cost of the lowest sensitivity (0.84). The RF had a 

Brier score of 0.11, the other models had a Brier score of 0.12. 

Model (13 variables) AUC Accuracy Precision Recall Brier  

Logistic Regression 0.91 [0.83, 0.99] 0.84 0.89 0.84 0.12 

Support Vector Machine 0.90 [0.80 0.99] 0.85 0.85 0.92 0.12 

Random Forest 0.92 [0.84, 0.99] 0.85 0.86 0.91 0.11 

Gradient Boosting Decision Tree 0.91 [0.82, 0.99] 0.85 0.86 0.91 0.12 

kNN Classifier 0.90 [0.81, 0.99] 0.84 0.87 0.88 0.12 

Gaussian Process Classifier 0.90 [0.81, 0.99] 0.84 0.86 0.89 0.12 
Table 3: Cross-validated evaluation results of prediction with 13 variables. The best model is 
highlighted in italics. 

In all experiments and cross-validation trials, only 6 of the 13 variables were frequently 

selected in the ML pipelines. These six variables were: z-scores of body length and head 

circumference at birth, IQ below 85 IQ points, socially intrusive behaviour, poor memory and 
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sleep disturbance. When using this reduced variable set in our second set of analyses, the RF 

model had an AUC of 0.93 (95% CI [0.85, 1]) and could on average identify 91% of FASD cases 

in the test sets, with 85% of patients being classified correctly. Patients that were classified as 

FASD patients were true cases in 87%. All other algorithms separated the ADHD and the FASD 

groups similarly well with an AUC of 0.90 or 0.91 (see Table 4). Hence, the various performance 

metrics of the algorithms were very similar compared to the prediction models using 13 

variables. The results of all experiments including ROC curves can be found in Supplementary 

Figures S1-S6. 

Model (6 variables) AUC Accuracy Precision Recall Brier  

Logistic Regression 0.90 [0.81, 0.99] 0.82 0.89 0.81 0.13 

Support Vector Machine 0.90 [0.81, 0.99] 0.84 0.85 0.91 0.12 

Random Forest 0.93 [0.85, 1.00] 0.85 0.87 0.91 0.11 

Gradient Boosting Decision Tree 0.91 [0.83, 0.99] 0.84 0.87 0.87 0.12 

kNN Classifier 0.91 [0.83, 0.99] 0.84 0.87 0.88 0.11 

Gaussian Process Classifier 0.91 [0.82, 0.99] 0.83 0.86 0.88 0.12 

Table 4: Cross-validated evaluation results of the pipeline with 6 variables. The best model is 
highlighted in italics. 
 

For our screening application, we selected the RF model because of its high sensitivity, 

robustness to changes of the variable set, and its good overall performance. The probability 

score distributions of the RF model are depicted in Figure 2 and illustrate that the estimated 

probabilities of having FASD are generally high for FASD patients and low for ADHD patients. 

There are only few patients that are assigned a low risk of FASD while having a diagnosis of 

FASD or that are assigned a high risk despite having an ADHD diagnosis without FASD. The 

figure also shows the number of true and false classifications at different probability 

thresholds. For any probability threshold used for the decision whether a patient is assigned 

to the ADHD or FASD group, ADHD patients right of that threshold (i.e., that were assigned a 

higher probability by the prediction model) are false positives, FASD patients left of that 

threshold are false negatives, and all others were classified correctly. 
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Figure 2: Distributions of predicted probabilities for the random forest model with 13 variables 
(left panel) and with 6 variables (right panel). The x-axis shows the predicted probability of 
having FASD and the y-axis the number of actual ADHD/FASD cases for this probability. 

Implementation of machine learning model in FASDetect screening application 

In the final step, we developed a screening app for the detection of FASD among ADHD cases 

based on the RF algorithm. Our focus was on the target user group of medical professionals 

from different fields (e.g., pediatricians, psychiatrists). Requirements derived for the 

application included that it should be user-friendly, quick and easy-to-use and that the 

screening result is immediately visible. 

The frontend of the application was built using Vue.js/quasar, the backend using Python/flask. 

The resulting app consists of three screens and is based on the RF model of 6 variables that 

can be quickly and appropriately assessed by all possible users. The first screen contains the 

disclaimer and provides some information about the app. The next screen contains a 

questionnaire, where information about the 6 variables is obtained. The last screen shows the 

results and some context of how to interpret the screening results (see Figure 4). In order to 

facilitate quick decision making, the results are visually represented using a traffic light 

metaphor. A yellow signal is shown in FASDetect when the model estimates the FASD risk to 

be 50-74% and therefore classifies the patient as a potential FASD case. When the risk exceeds 

75%, the red signal is shown, indicating a high risk. The FASDetect app is designed in such a 

way that if all the variables are known, the data entry and retrieval of the result can be 

completed very easily in less than 1 minute. Currently, the app exists in English and German, 

but can easily be extended to include more languages. The app is available open-source and 

free-of-charge at https://fasdetect.dhc-lab.hpi.de. 
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Figure 3: Illustration of the three screens of the FASDetect app. The first screen (left) onboards 
the user, the second screen (middle) contains a questionnaire asking for input to the 6 
selected variables in the middle of which we show here one question on socially intrusive 
behaviour, and the third screen (right) shows the screening result displayed in form of a traffic 
light.  

Discussion 

Diagnosis of FASD is often challenging as well as time-consuming and the most common 

mental health diagnosis given to FASD patients is ADHD when missing the FASD diagnosis (12). 

Currently, there exists no tool to screen the risk of FASD in ADHD patients. In our study, we 

created a tool called FASDetect to detect FASD among patients with ADHD symptoms. Health 

care providers need to elicit information to answer 6 questions to receive a quick screening 

result. 

FASDetect is based on machine learning models. In our study, we compared different machine 

learning algorithms and implemented random forest in FASDetect, which performed best with 

an AUC of 0.92. This predictive accuracy is similar to previous studies using machine learning 

in ADHD. Duda et al. showed that machine learning algorithms are capable of accurately 

differentiating between patients with ADHD and autism-spectrum disorder with a similar AUC 

of 0.965 (18). Zhang et al. successfully used machine learning to distinguish between FASD 

patients and healthy controls through use of eye movement, psychometric and neuroimaging 

data with 85% classification accuracy (19). Our work emphasizes the great potential of 

machine learning to optimize screening and diagnostic procedures that can help improve 

treatment selection and outcome predictions in clinical psychology and psychiatry (20). 

The 6 most important variables that were retained for efficient FASD screening via FASDetect 

are the z-scores of birth length and birth head circumference, low IQ, social intrusiveness, 

poor memory and sleep disturbance. All of these variables are known to be medically linked 
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to FASD (21-27). Previous studies have shown that FASD patients are more likely to be 

microcephalic and remain to be microcephalic and length growth-restricted throughout life. 

They also show a lower intelligence than ADHD patients and have been found to suffer from 

memory problems. Socially intrusive behaviour and sleep disturbance are also often seen in 

FASD patients. All of this is also shown in our data, which adds face validity to the finding that 

these predictors were selected during automatic feature selection. Thus, we are optimistic 

that our results will generalize and can be replicated in other populations. 

FASDetect may represent the time-saving clinical screening application for FASD that has been 

missing until now. Such a tool is urgently needed in clinical practice. In next steps, FASDetect 

has to be evaluated prospectively and licensed for any medical use. Then, we can imagine the 

following use: If the screening result shows red or yellow, further medical examination is 

highly recommended. Child psychiatrists who specialise in FASD should examine the patient 

and investigate the presence of FASD. Experts consider additional information, such as facial 

dysmorphia or prenatal alcohol exposure that are required to meet official medical diagnostic 

criteria but were considered inapplicable for a screening tool.  

Paediatricians vastly underrecognize FASD and are often unfamiliar with the diagnostic 

criteria, leading to a higher chance for misdiagnosis and missed diagnosis (28). The risk of 

underrecognition and misdiagnosis is at least as high for child and adolescent psychiatrists. 

FASDetect could enable inexperienced medical staff to screen for FASD and direct patients to 

specialists. This can help FASD patients to be diagnosed earlier in life and be seen by 

specialists. Thus, FASDetect could help to reduce the misdiagnosis rates and aide the 

diagnostic process in busy clinical settings. The successful implementation promises an earlier 

diagnosis for FASD patients who are currently frequently incorrectly diagnosed with ADHD. 

Thus, patients who are screened using FASDetect will benefit from earlier treatment, a 

reduction of secondary conditions and eventually from improved general health.  

Limitations 

The results of this study have to be interpreted within its limitations. First, the analysis of 

archived patient records was limited by the available content of the data. Including further 

clinical variables might further improve the predictive accuracy of FASDetect. Second, we only 

examined the discriminatory power and accuracy of the FASDetect app for FASD cases among 
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a sample of patients with a primary diagnosis of ADHD. Further studies are needed that 

include a broader variety of mental health diagnoses, ideally also oppositional defiant 

disorder, autism-spectrum disorders and youth with intellectual disability/low IQ who share 

some other features of FASD than patients with ADHD. The inclusion of further variables that 

were not available such as reduced eyesight, head circumference at initial presentation and 

academic achievements are promising predictor candidates for future iterations of the model 

that are relatively easy to obtain clinically and that should therefore be assessed in future 

studies.  

Third, FASD cases were not distributed evenly within the spectrum (139 FAS, 127 pFAS, 9 

ARND), which may have aided the differentiation of the ADHD and FASD groups by the 

machine learning algorithms. Future research is needed to evaluate how well FASDetect 

identifies patients across the entire FASD spectrum. Fourth, the study was conducted in a 

university setting, and testing of generalizability to other clinical settings is further required. 

Fifth, the patient data for the FASD cases was gathered by psychiatrists specialized in FASD 

diagnosis. The ADHD cases were diagnosed by outpatient clinicians trained in child and 

adolescent psychiatry, but without a specific focus on ADHD. The high level of expertise and 

elaborate testing (e.g. intelligence testing) cannot necessarily be expected of the average user 

of FASDetect. We adapted the selection of variables that went into final screening tool 

accordingly. Nevertheless, it is possible that variables seem less distinctive to lesser 

experienced pediatricians and may be underrecognized when screening with FASDetect.  

To our knowledge, this study is the first that developed an empirically-based, machine-

learning-derived screening app that robustly differentiates between FASD and ADHD using 

parameters that can be relatively easily obtained as part of clinical care. The tool, which we 

call FASDetect, provides a green-yellow-red light rating system on the risk for FASD in ADHD 

patients calculated from easily obtainable patient data and is an efficient tool for general 

pediatric practice. The FASDetect is freely available, and we hope that future research with 

this tool can validate and extend its utility and assess to what degree FASDetect can aide 

clinical diagnosis and decision making for subjects with FASD compared to usual care. 
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Materials and Methods 

Study population 

This study was conducted at the outpatient unit of the department of child and adolescent 

psychiatry at the Campus Charité Virchow of the Charité Universitätsmedizin Berlin, Germany. 

For the analysis, a group of consecutively assessed patients with a clinical diagnosis of ADHD 

without FASD and a group of patients with an expert diagnosis of FASD (with or without 

comorbid ADHD) was compared. ADHD patients were included from the general pool of 

patients who were treated at Campus Charité Virchow of the Charité Universitätsmedizin 

Berlin between January 2019 and September 2020. FASD patients were included from two 

sources: from the general pool of ADHD patients described above, as well as from the pool of 

ambulatory patients of the FASD specialist center at the Campus Charité Virchow of the 

Charité – Universitätsmedizin Berlin who were treated between January 2019 and September 

2020. The two groups were ascertained based on the following inclusion and exclusion criteria.  

Inclusion criteria for children and adolescents with ADHD were 

a) age between 0 and 19 years, 

b) diagnosis of ADHD, combined type of inattentive type, with or without oppositional 

defiant or conduct disorder according to ICD-10 by child and adolescent psychiatrists 

at our department of child and adolescent psychiatry at the Campus Charité Virchow 

of the Charité Universitätsmedizin Berlin, 

c) diagnosis of ADHD confirmed during longitudinal assessment and care at our 

department  

Exclusion criteria for children and adolescents with ADHD were 

a) severe medical, psychiatric, or neurological conditions (such as microdeletion, 

microduplication, genetic syndromal diseases, autism-spectrum disorders or 

hydrocephalus) which can affect the youth’s behaviour 

b) suspected or confirmed comorbid FASD diagnosis 

Inclusion criteria for children and adolescents with FASD (with or without ADHD) were 

a) age between 0 and 19 years, 

b) diagnosis of FASD according to ICD-10 and the 4 digit code (7)  
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c) diagnosis of FASD confirmed as part of longitudinal assessment and care at our 

department 

Exclusion criteria for children and adolescents with FASD were severe medical, psychiatric, or 

neurological conditions. 

Of each patient, the following data were extracted retrospectively from medical records: 

height, weight and head circumference at all available time points; presence or absence of 

any psychiatric comorbidities, prescribed psychotropic medications yes versus no, fascial 

dysmorphia and malformation; the results of intelligence tests, whether or not the patient’s 

IQ was below 85 IQ points; as well as pregnancy- and birth-related data such as consumption 

of alcohol, nicotine and other drugs, number of the mother’s pregnancies and births, child’s 

gestational age at first ultrasound and at time of birth, Apgar score (13) and pH of the umbilical 

cord after birth. The presence or absence of oppositional, hyperactive and impulsive behavior, 

lack of concentration and attention, developmental disorders, sleep disorders, socially 

intrusive behavior, and impaired executive function and cognitive flexibility were also 

assessed clinically. Those symptoms were recorded during clinical assessments, history taking, 

parent and patient interviews and through behavioral questionnaires such as the child 

behavior checklist (14) or DISYPS (15). Assessed symptoms were documented as “present” or 

“absent”, no degree of severity was assessed. 

Statistical analysis 

The statistical analysis aimed at developing and evaluating a prediction model that would be 

able to separate FASD from ADHD cases with sufficient accuracy. All machine learning analyses 

were performed in Python 3.7.3. The code is publicly available at 

https://github.com/HIAlab/FASDetect. After overall data quality control steps, the training 

and evaluation of different prediction algorithms was performed in several steps. 

In a first overall quality control step, we removed variables with more than 35% missing values 

for either group (ADHD/FASD). This missing values threshold was chosen in order to include 

head circumference at birth, which had 35% missing values for ADHD patients, as an indicator 

for growth deficiencies in FASD patients that is easy to assess and well-suited for use in a 

screening application. The quality control retained 42 predictive variables, from which we 

further removed variables with redundant information, such as re-coded duplicates (20 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.12.22279880doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.12.22279880
http://creativecommons.org/licenses/by-nc/4.0/


variables), variables that would be too complex to assess for practitioners during a clinical 

screening visit (5 variables, e.g., executive dysfunction), and variables that might limit 

generalizability (8 variables). For some variables, multiple reasons for exclusion applied. From 

the resulting 13 variables, none had more than 23% missing values across both the ADHD and 

FASD groups. On average, 11% of the variable values were missing for the ADHD group and 

12% for the FASD group.  

Next, we tested the performance of 6 machine learning algorithms to predict ADHD or FASD 

using the 13 remaining variables on our data with nested cross-validation (see Figure 1). To 

initialize our machine learning pipeline, we randomly split the entire data set into 10 folds 

(outer split), where each of these folds consisted of 10% of the ADHD cases (n = 170) and 10% 

of the FASD cases (n = 275), respectively. We used these outer folds to perform 10-fold cross-

validation (CV) with nine folds for training and the remaining fold for testing. The training data 

from the outer split with 90% of the data were split again into 10 stratified folds used for 

training and 10% for validation of the hyperparameters of the pipeline (see below) using a grid 

search. After the optimized hyperparameter configuration was found in the nested 10-fold 

CV, the respective model was refit on the complete training data of the outer split (i.e. training 

and validation data of the inner split) and evaluated against the fold’s test set. The nested CV 

scheme is depicted in Figure 1.  

 

Figure 1: Overview of the 10-fold nested cross-validation procedure. The data are randomly 
split into 10 stratified folds where one fold is held out as a test set (blue). For each split, the 9 
folds are split again into 10 folds, with one fold (green) to validate the hyperparameters. The 
hyperparameters with the best average ROC AUC on the validation sets are used to fit the 
machine learning pipeline on the complete training set (i.e., the 9 outer folds framed in red) 
and tested against the test set (blue), resulting in 10 ROC AUC scores.  
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The training and testing of the different models contained the following steps which are 

described in more detail below: robust scaling, imputation, feature selection, and model 

fitting, all embedded in the 10-fold CV. To ensure that the contribution of each variable was 

similar in the prediction models, we transformed all 13 variables using robust scaling. In robust 

scaling, the median is subtracted from the value of each variable and each value is then divided 

by the interquartile range. As a second data processing step, missing values were imputed 

using k-nearest neighbours (kNN) imputation: each missing value was imputed using the 

(uniform or distance-weighted) mean value from k_i nearest neighbours found in the training 

set with non-missing values for the variable, where k_i is a hyperparameter of the pipeline. 

The distance between two points was measured by Euclidean distance, ignoring variables that 

were missing for either point. In the next step, we performed a variable selection among the 

13 selected variables based on their estimated mutual information with the target variable. 

Mutual information measures the dependency between two random variables based on 

entropy and allows to capture also non-linear relationships. Each variable is ranked based on 

its mutual information with the target variable, and the highest-ranking k_f variables are 

selected, where k_f is a hyperparameter optimized in the pipeline. Finally, based on these 

transformed and quality-controlled variables, we trained and evaluated the different machine 

learning algorithms. In particular, we tested a logistic regression (LR), support vector machine 

(SVM), random forest (RF), gradient boosting decision tree (GBDT), kNN classification and 

Gaussian process classification algorithms. We used the lightgbm package for gradient 

boosting decision trees, for all other algorithms, we used the Scikit-learn implementation. 

Optimized hyperparameters included the number of neighbours used for imputation (k_i), the 

number of variables to select (k_f) or the decision whether to average values of the neighbours 

distance-based or uniformly for imputation. Model-specific hyperparameters for the GBDT 

model included the learning rate, boosting type and number of trees. For random forests, 

optimized model-specific hyperparameters were the minimum number of samples required 

to split an internal node, and the number of trees in the ensemble. For logistic regression, the 

regularization parameter was optimized. For support vector machines and Gaussian process 

classifier, the regularization parameter and kernel type were optimized. Hyperparameters 

optimized for the kNN classifier were the distance metric, the decision whether to average the 

values of the neighbours either distance-based or uniformly and the number of neighbours.  
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The main outcome measure for the classification quality of each algorithm was the area under 

the receiver operating characteristic (ROC) curve (AUC), which was averaged across the 10 

test datasets. The reported confidence intervals for ROC AUC scores are the average interval 

boundaries of confidence intervals calculated for each CV fold according to DeLong (16). In 

addition, we assessed the accuracy, precision, recall, and the calibration measured through 

the Brier score of each model. Lower Brier scores indicate better calibration (17). 

In a follow-up analysis, our aim was to evaluate the performance of a most parsimonious 

prediction model using fewer variables, which is easier to apply in practice. To this aim, the 

pipeline was run again with a modified variable selection step, where only variables were 

selected that had been selected by at least half of the different machine learning models in at 

least 9 of the 10 CV trials. As described above, a variable was selected in a CV trial of an 

experiment with a classifier when the estimated mutual information with the target was 

among the k_f highest ranking features on the training set and the classifier with the best 

hyperparameters (including the number of variables, validated on the validation sets of this 

CV trial) used this variable. Six variables satisfied these criteria and were used to train the 

machine learning pipelines a second time. 
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Supplementary Figures 
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Figure S1. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for logistic regression (first row) and SVM (second row), based on their 
application with 13 variables. In the plot of predicted probabilities, the x-axis shows the 
predicted probability of having FASD and the y-axis the number of actual ADHD/FASD cases 
for this probability.  
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Figure S2. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for random forests (first row) and GBDT (second row), based on their 
application with 13 variables. In the plot of predicted probabilities, the x-axis shows the 
predicted probability of having FASD and the y-axis the number of actual ADHD/FASD cases 
for this probability.
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Figure S3. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for kNN (first row) and GP (second row), based on their application with 13 
variables. In the plot of predicted probabilities, the x-axis shows the predicted probability of 
having FASD and the y-axis the number of actual ADHD/FASD cases for this probability.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.12.22279880doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.12.22279880
http://creativecommons.org/licenses/by-nc/4.0/


LR 
 
 

 
 

 
SVM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for logistic regression (first row) and SVM (second row), based on their 
application with 6 variables. In the plot of predicted probabilities, the x-axis shows the 
predicted probability of having FASD and the y-axis the number of actual ADHD/FASD cases 
for this probability.  
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Figure S5. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for random forests (first row) and GBDT (second row), based on their 
application with 6 variables. In the plot of predicted probabilities, the x-axis shows the 
predicted probability of having FASD and the y-axis the number of actual ADHD/FASD cases 
for this probability.  
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Figure S6. ROC curves (left column) and plot of the distribution of the predicted probabilities 
(right column) for kNN (first row) and GP (second row), based on their application with 5 
variables. In the plot of predicted probabilities, the x-axis shows the predicted probability of 
having FASD and the y-axis the number of actual ADHD/FASD cases for this probability. 
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