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ABSTRACT 

Objective Colorectal cancer survival has been linked to the microbiome. Single organism 

analyses suggest Fusobacterium nucleatum as a marker of poor prognosis. However, in situ 

imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the 

role of these polymicrobial communities in survival, we performed an untargeted study of the 

microbiome in late-stage colorectal cancer patients. 

 

Design We conducted a nested case-control study in late-stage cancer patients undergoing 

resection for primary adenocarcinoma. The microbiome of paired colorectal tumor and adjacent 

tissue samples was profiled using 16S rRNA sequencing; we used compositionally aware 

ordination and differential ranking to profile the microbial community. 

 

Results. We found a consistent difference in the microbiome between paired tumor and adjacent 

tissue, despite strong individual microbial identities. Tumors had higher relative abundance of 

genus Fusobacteria and Campylobacter at the expense of members of families Lachnospriaceae 

and Rumminococeae. Furthermore, a larger difference between normal and tumor tissue was 

associated with prognosis: patients with shorter survival had a larger difference between normal 

and tumor tissue. We found the difference was specifically related to taxa previously associated 

with cancer. Within the tumor tissue, we identified a 39 member community statistic associated 

with survival; for every log2 fold increase in this value, an individual’s odds of survival 

increased by 20% (OR survival 1.20; 95% CI 1.04, 1.33). 
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Conclusion Our results suggest that a polymicrobial tumor-specific microbiome is associated 

with survival in late-stage colorectal cancer patients.  
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INTRODUCTION 1 

 2 

Globally, colorectal cancer (CRC) is the second most common cause of cancer-related death  and 3 

CRC-related mortality has been increasing since 2000 (1,2). One potentially modifiable area of 4 

interest in CRC survival is the gut microbiome. In a healthy gut, the intestinal microbiome 5 

contributes to homeostasis through epithelial cell renewal, maintaining gut barrier integrity, and 6 

immune modulation (3,4). However, CRC patients have demonstrated a consistently altered gut 7 

microbiome compared to healthy controls, including a higher relative abundance of organisms 8 

more commonly found in the oral cavity (5,6). Meta-analyses using targeted analyses show high 9 

levels of Fusobacterium nucleatum (F. nucleatum) in tumor tissue are detrimental to survival 10 

(7,8).  11 

 12 

Fewer studies have explored the relationship between the gut microbiome and CRC prognosis 13 

using untargeted sequencing. Untargeted techniques can better characterize the bacterial 14 

community, and the ways in which potentially pathogenic organisms might interact with a host’s 15 

unique, stable, microbiome (9–11). In situ microscopy shows that tumor tissue is colonized by a 16 

polymicrobial biofilm including Fusobacteria, Proteobacteria, Bacteroidetes, and 17 

Lachnospriaceae; monoculture biofilms have not been observed (12). Biofilms are also 18 

frequently localized to tumors, and paired normal tissue samples are rarely colonized, suggesting 19 

a localized effect and potential difference between tumor and adjacent tissue (12). 20 

 21 

Previous untargeted studies of the gut microbiome and colorectal cancer survival have either 22 

focused exclusively on the tumor tissue (13) or have treated the tumor and adjacent tissue as 23 
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identical (14). Paired biopsy studies provide clues about whether local and global regulation of 24 

the microbiome drives tumorigenesis, although many paired studies have failed to account for 25 

survival (12,15–19), and in some cases, struggled to characterize the microbiome due to 26 

technical (19) or analytical (13–17) issues. 27 

 28 

To address the gaps in knowledge, we followed 101 late-stage CRC patients recruited from a 29 

hospital in southern Sweden who underwent surgical resections of primary adenocarcinoma 30 

between 1997-2017. Patients were categorized into short- or long-term survivors based on their 31 

relapse free survival (less than two years or five or more years, respectively). We examined the 32 

relationship between the microbiome of colorectal tumors and adjacent normal tissue and 33 

survival, accounting for clinical covariates. 34 

 35 

METHODS 36 

 37 

Study Population 38 

Patients were recruited from all consecutive CRC patients (n=540) who underwent surgical 39 

resection for primary colorectal adenocarcinoma at the Department of Surgery, Ryhov County 40 

Hospital, Region of Jönköping County, Jönköping, Sweden between 1997 and 2017. Patients 41 

with tumor-node-metastasis (TNM) stage III and IV cancer who had matched biopsies from 42 

normal and tumor tissue (n=116) were selected. Patient characteristics, including demographic, 43 

surgical, pathological information, and outcome were determined from a review of medical 44 

records.  45 

 46 
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The final study cohort included patients with paired high quality microbiome samples (n=101). 47 

Fifteen individuals were excluded due to insufficient sequencing depth in the tumor (n=8) or 48 

normal (n=7) tissue sample. There was no difference in the survival status in the samples with 49 

insufficient sequencing depth. Our final cohort included matched tumor- and normal tissue 50 

samples (≥10 cm apart from tumor tissue) from 51 long- (≥5 year survival) and 50 short-term (≤2 51 

year survival) survivors. 52 

 53 

 The study was approved by the Regional Ethical Review Board in Linköping, Linköping, 54 

Sweden (98113, 2013/271-31); a written informed consent was obtained from each patient.  55 

 56 

There was no patient or public involvement in this retrospective study. 57 

 58 

Statistical Analysis of patient characteristics 59 

A multivariable logistic regression was used to assess the predictive impact of the following 60 

patient, cancer and treatment related characteristics: age (categorized as <60, 60-69, 70-74, ≥75 61 

years), sex (female or male), American Society of Anesthesiologists physical status (ASA) score 62 

(I-healthy, II-mild, III-IV-severe; patients with V-VI were not eligible for surgery); localization 63 

of tumor (colon right, colon left, rectum), TNM stage (III or IV), grade of differentiation (from 64 

low differentiation to high differentiation, with the latter more closely resembling non-cancer 65 

histology); radical surgery (yes or no); period of surgery (1997-2005; 2006-2010; 2011-2017).  66 

All results are expressed as Odds Ratios (ORs) and 95% Confidence Intervals (CIs) and the 67 

calculations were conducted with Stata MP14 (Stata Corp, Texas).  68 

 69 
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Microbiome Sequencing 70 

Paired tumor and normal tissue samples were collected during surgery. Tissue samples were 71 

frozen directly and stored at -80˚C until use. Samples were processed as previously described 72 

(20). Briefly, DNA was extracted from tissue samples using physical and chemical lysis for 73 

extraction. The 16S rRNA amplicon library was amplified with 341F/805R primers 74 

(CCTACGGGNGGCWGCAG, GGACTACHVGGGTATCTAAT) using a program with 20 75 

cycles (21). The samples were sequenced with a 2x300 approach using an Illumina MiSeq (San 76 

Diego, CA, USA). 77 

 78 

The demultiplexed reads were denoised using the DADA2 algorithm (v1.13.1) in R (22). After 79 

reads were demultiplexed and primers were trimmed, forward reads were trimmed to 265 80 

nucleotides (nt) and reverse reads were trimmed to 225nt; the error rate model was trained on 81 

15% of the reads. Reads were joined with at least 30nt overlap, and anything shorter than 380nt 82 

after joining was discarded. Taxonomic assignment was performed using the naïve Bayesian 83 

classifier implemented in DADA2 against the Silva 128 database (23,24). The amplicon 84 

sequence variant (ASV) table from DADA2, taxonomy, and representative sequences were 85 

imported into QIIME 2 (v. 2020.11) for further processing (25). A phylogenetic tree was built 86 

using fragment insertion using the SEPP algorithm into the Silva 128 backbone with q2-87 

fragment-insertion (24–26). The table and sequences were filtered to exclude any ASV without 88 

phylum level annotation or which could not be inserted into the phylogenetic tree.  89 

 90 

Microbiome Community Characterization 91 

Between sample (beta) diversity 92 
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For paired sample analysis, we calculated unweighted UniFrac (27), weighted UniFrac (28), and 93 

binary Jaccard (29) distances and Bray-Curtis dissimilarity (30) on a feature table rarified to 94 

2500 sequences/sample (31). Aitchison distance was calculated on unrarefied data with a 95 

pseudo-count of 1 (32,33). Beta diversity metrics were calculated using the q2-diversity plugin in 96 

QIIME 2 (25). 97 

 98 

Compositional Tensor Factorization ordination 99 

To account for subject-specific effects on ordinations, we used compositional tensor fraction 100 

(CTF) for paired samples using the Gemelli qiime2 plugin (0.7.0) (34). Features were filtered to 101 

exclude those present in fewer than 20 samples or less than 100 total counts. The distance in CTF 102 

subject space was calculated as the Euclidean distance between subject coordinates. The 103 

difference in intra-individual CTF space between normal and tumor tissue (ΔPC) were compared 104 

using the subject-state coordinates and feature-state coordinates, respectively. 105 

 106 

Robust Principal Components Analysis 107 

For each tissue type, we examined beta diversity using a Robust Principal Components Analysis 108 

(rPCA) using the DEICODE algorithm (v. 0.2.4) (35). For a given sample set, we filtered 109 

filtering features present in less than 10% of samples (n=10) or with fewer than 10 total counts. 110 

The auto-rPCA function was used to select the appropriate number of principle components 111 

(PCs) for the data. The PCs were divided into quartiles and dichotomized along the median 112 

value. 113 

 114 
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For tissue types where there was a significant association between a component and survival, we 115 

selected features which might be associated with outcome. Communality was calculated as the 116 

square root of the sum of squares across all PC. Features with a communality value of at least 117 

0.01 were selected as candidates for the additive log ratio (ALR) calculation (n=130). A 118 

pseudocount of 1 was added before the ALR calculation. The ALR was calculated as the log2 119 

ratio of features more extreme that the fourth quartile of samples over feature more extreme than 120 

the first quartile. Continuous ALR values or ALR divided into tertials were used for regression. 121 

 122 

Differential Ranking 123 

 We performed hypothesis generating differential abundance testing between tumor and normal 124 

tissue using a modified differential ranking (DR) technique (36,37). We first filtered the table to 125 

remove any feature with a relative abundance of less than 1/1000 in fewer than 10% of samples, 126 

leaving 243 features for testing. We then used a modified Bayesian method for DR testing. ASV 127 

counts were modeled through a negative binomial process. We started with naive priors of a 128 

between 0-and 5-fold change in a ASV and fit the model using 4000 iterations. The data was fit 129 

to a linear mixed effects model using subject as a random intercept, modeling either for tissue or 130 

for the intersection between tissue and survival. Modeling was done with pystan (v 3.4.0) within 131 

the QIIME 2 2021.11 conda environment (38,39).  132 

 133 

We used the ranks to identify “extreme” features. Starting from the feature with the strongest 134 

signal associated with each possible value for a variable (e.g. normal vs tumor, short vs long 135 

survival), we added features until every sample contained at least one of the extreme features. A 136 
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pooled ALR was calculated as the sum of all normal-tissue associated features over the tumor-137 

associated features. 138 

 139 

Statistical Analysis 140 

Paired distances were extracted as the distance between an individual’s tumor and adjacent 141 

normal tissue. Interindividual distance was compared to the interindividual distance to samples 142 

of the same tissue type, anatomical location, and survival group with a permutative two sample t-143 

test with 999 permutations.  144 

 145 

Associations with per-subject CTF coordinates were checked by calculating the Euclidean 146 

distance between samples and applying a permanova test with 999 permutations in scikit-bio (v. 147 

0.5.6) (40). The change between tissue types in CTF coordinate space were modeled with a 148 

paired sample t-test was used to determine if there was a global difference between tumor and 149 

normal tissue along either PC; the effect of change on survival was compared using a 150 

permutative Welch’s t-test looking at the difference between groups with 999 permutations. ALR 151 

interactions were evaluated using a linear mixed effects model with individual as the grouping 152 

factor.  153 

 154 

Survival was modeled using logistic regression. Models were fit using a crude (unadjusted) 155 

model and a model adjusted for age, sex, ASA score, tumor location, surgery period, TNM stage, 156 

radical surgery, and differentiation grade.  157 

 158 

For all analyses, a p-value of 0.05 was considered significant.  159 
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 160 

Modeling was performed using statsmodels (v 0.11.1), scipy (v 1.4.1), and numpy (v 1.18.5) in 161 

python (v. 3.6) (41–43). Figures were plotted using with matplotlib (3.2.2) and seaborn (0.10.1) 162 

The dendrogram was plotted using Empress (q2-empress v.0.0.1-dev, commit b705358) (44); 163 

three dimensional ordinations were rendered using Emperor (v. 1.0.3) (45). Taxonomic colors 164 

come from the microshades colorblind friendly palette (46). Figures were assembled in Adobe 165 

Illustrator 2021 (Adobe Inc, San Jose, CA, USA). 166 

  167 
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RESULTS 168 

 169 

In our nested case-control study of late-stage colorectal cancer patients, the 51 long-term 170 

survivors were more likely to be younger, male, and healthier compared to the 50 short-term 171 

survivors (Table S1). The short-term survivors presented with metastatic tumors and lower 172 

differentiation than long-term survivors, and fewer received radical surgery. We found that age, 173 

TNM stage and tumor differentiation were strong predictors of long-term survival (Table 1). 174 

Individuals aged between 70-74 years were 14 times more likely to be short-term survivors (OR 175 

14.24; 95% CI 1.21, 167.40) than those younger than 60. TNM-stage IV was associated with an 176 

almost 50 times higher risk of being a short-term survivor (OR 49.32; 95% CI 5.86, 415.12) 177 

compared to TNM stage III (Table 1). 178 

 179 

Following sequencing, quality filtering, and denoising to ASVs, we retained 202 paired tumor 180 

and adjacent normal tissue samples. The broad pattern in the overserved microbiome reflect 181 

those seen in previous studies of Swedish adults (Figure S1) (47). We found the patient was the 182 

strongest predictor of microbiome composition, and that an individual’s paired samples were 183 

more similar to each other than tissue samples from patients with similar characteristics (Figure 184 

S2), reflecting what appears to be a common pattern in CRC patients and beyond (10,18,48). 185 

  186 
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Table 1. Risk factors for short-term survival 

 
Crude risk Adjusted risk 

  
Model 11 Model 22 

 OR (95% CI) OR (95% CI) OR (95% CI) 

Patient characteristics at time of surgery 
  Age, years    

<60 1.00 (ref) 1.00 (ref) 1.00 (ref) 
60-69 0.87 (0.24-3.09) 2.45 (0.26-22.72) 2.59 (0.28-24.38) 
70-74 2.40 (0.65-8.81) 12.55 (1.06-149.26) 14.24 (1.21-167.40) 
≥75 1.96 (0.56-6.91) 8.68 (0.79-95.19) 10.55 (0.99-112.75) 

Sex    
Female 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Male 0.76 (0.35-1.67) 0.47 (0.14-1.56) 0.44 (0.13-1.41) 

ASA score    
I (healthy) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

II (mild) 0.80 (0.32-2.02) 2.29 (0.45-11.78) 2.69 (0.56-12.96) 
III-IV (severe or worse) 2.01 (0.65-6.19) 4.10 (0.60-27.92) 4.99 (0.79-31.45) 

Pre-operative treatment    
None 1.00 (ref) 1.00 (ref) - 

Radiotherapy 1.17 (0.74-1.84) 0.71 (0.12-4.15) - 

Tumor characteristics    
Localization    

Colon right 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Colon left 0.47 (0.16-1.32) 0.78 (0.16-3.82) 0.76 (0.16-3.63) 

Rectum 0.72 (0.28-1.84) 2.03 (0.33-12.63) 1.61 (0.36-7.21) 

Mucinous cancer    
no 1.00 (ref) 1.00 (ref) - 

yes 0.83 (0.24-2.93) 0.50 (0.05-5.39) - 

TNM stage    
III 1.00 (ref) 1.00 (ref) 1.00 (ref) 
IV 10.8 (3.68-31.72) 44.67 (5.53-360.63) 49.32 (5.86-415.12) 

Grade of differentiation    
Low 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Medium 0.20 (0.07-0.54) 0.23 (0.05-0.98) 0.24 (0.06-1.00) 
High 0.21 (0.05-0.97) 0.09 (0.01-1.24) 0.10 (0.01-1.27) 

Surgical characteristics    
Period of surgery    

1997-2005 1.00 (ref) 1.00 (ref) 1.00 (ref) 
2006-2010 0.54 (0.21-1.37) 0.44 (0.10-1.92) 0.44 (0.10-1.89) 
2011-2017 0.59 (0.21-1.65) 1.19 (0.22-6.47) 1.08 (0.22-5.36) 

Radical operation    
no 1.00 (ref) 1.00 (ref) 1.00 (ref) 

yes 0.05 (0.01-0.41) 0.13 (0.01-1.51) 0.12 (0.01-1.34) 
1 Adjusted for all variables 

2 Adjusted for all other variables except for preoperative treatment and mucinous cancer 
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The microbiome of tumor and normal tissue differ 187 

To address individual microbial identities, we applied a  subject-aware compositional tensor 188 

factorization (CTF) technique (34). The approach integrates feature-based information from each 189 

sample to build both a subject-specific profile, and to describe changes within subjects and 190 

features across a gradient. We did not find a statistically significant association between a 191 

sample’s position in CTF space and survival (unadjusted permanova R2=0.012; p=0.296, 999 192 

permutation, Figure S3, Table S2). However, we found differences between normal and tumor 193 

tissue, with a consistent shift between paired samples in CTF space, primarily along principal 194 

component (PC) 2 and PC 3 (Figure 1A-D).  195 

 196 

Given evidence of consistent, community-level changes in the microbiome between the tissue 197 

types, we looked for features, which might be driving these differences. We used an individual-198 

aware differential ranking technique, which first ranked the features with the greatest differences 199 

associated with tissue type, and then we selected a subset of these features to build an additive 200 

log ratio (ALR), a summary of taxa which likely describe the difference (Figure 1E, Table S3, 201 

Files S1). We found tumor tissue was associated with a higher relative abundance of 202 

Fusobacteria, Porphyromonas, Granulicatella, and Campylobacter at the expense of members 203 

of genus Blautia, and Ruminococcus. Tumor tissue had a 1.78 (95% CI 1.50, 2.18, p < 1x10-12) 204 

log2-fold increase in the features selected by DR compared to normal tissue, suggesting a tissue-205 

specific signature (Figure 1F). 206 

  207 
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Figure 1. There is a difference in the microbiome between tumor and normal tissues 
We found a global pattern separating tumor and normal tissue can be seen in CTF ordination space. (A) 
Plotting the change between normal tissue and tumor tissue in PC 2 and PC 3 as a vector with normal 
tissue as the center demonstrates a clear directional pattern. The difference between normal and tumor 
tissue can also be seen along individual components: (B) PC 1, (C) PC 2, and (D) PC 3. Ticks and dashed 
zero-lines along PC 2 (B) and PC 3 (D) match the two-dimensional axes in (A). All boxplots are shown 
with a Cohen’s d effect size statistic for a one-sided t-test and p-values from a permutative one sample t-
test, 999 permutations. (E) Differential ranking of 300 abundant features identified normal tissue-
associated features (light pink) and tumor-tissue associated features (dark pink). The inset shows selected 
features in each group, colored by family, colors are defined in the legend. (F) The change in the ALR 
between normal and tumor tissue. Coefficient from linear mixed effect model comparing the change 
based on tissue type; p < 1x10-12. 
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Differences between normal- and tumor-associated microbiome are associated 
with survival 
 208 

Since we saw consistent differences between tumor and normal tissue, we wondered if there 209 

might be a relationship between the magnitude of the difference and survival. We found that 210 

tumor and normal tissue were more similar in long-term survivors than short-term, a difference 211 

primarily driven by changes in abundance (Table S4). Additionally, long-term survivors showed 212 

a larger change along PC 2 compared to short-term survivors (Cohen’s d 0.40, p=0.016, 999 213 

permutations; Figure 2). This suggested enough of a community-level change in the microbiome 214 

to motivate looking for features which might explain the differences. 215 

 216 

Therefore, we applied a subject-aware differential ranking technique looking at the interaction 217 

between tissue type and survival to further refine the features (Figure 2E-G). We used an 218 

interaction model to identify features that changed in tumor tissue based on survival group. 219 

Based on the tissue associated taxa associated with long-term survival, we defined an ALR 220 

where tumor tissue was associated with ASVs from genus Fusobacterium, Campylobacter, and 221 

Escherichia/Shigella. We found members of genus Butyricicoccus, Roseburia, and Streptococcus 222 

associated with both normal and tumor tissue (Table S5, File S2). There was a higher relative 223 

abundance of the tumor-associated organisms in both survival groups, and the overall relative 224 

abundance was higher in short-term survivors (Figure 2F). However, the magnitude of the 225 

change did not differ between the two groups.  226 

  227 
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Figure 2. The magnitude of the difference between tumor and normal tissue is associated with 
survival 
There is a difference in the magnitude of change between long-term and short-term survivors. (A) In two 
dimensions, the change along PC2 and PC3 is visualized as a vector from normal tissue to tumor issue. 
Short-term survivors (<2 year) are shown in light blue. Long term survivors (≥5 years) are shown in dark 
blue. The corresponding relationships can be visualized along the individual components: (B) PC 1, (C) 
PC 2, and (D) PC 3. Ticks along PC 2 (C) and PC 3 (D) match the two-dimensional axes in (A). All 
boxplots are shown with a Cohen’s d effect size, and p-value from a permutative Welch’s t-test with 999 
permutations, comparing the two survival groups. (E-H) A differential ranking model was fit to consider 

18
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the interaction between survival and tissue. The ranks associated with (E,F) tumor tissue in long-term 
survivors and (G,H) tumor tissue in short survivors (interaction) are show. (E,F) The relative associated 
with the model, insets highlight ASVs associated with the extremes of each group. Taxonomic 
assignments are provided in the legend. (F,H) The additive long ratio associated with the ranks. Paired 
differences are connected by a line between normal (N) and tumor (T) tissue. The effect was modeled 
using a linear mixed effects model, treating the individual as random. *p < 0.05, **p ≤ 0.01, ***p≤0.001.  
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In contrast, the interaction term identified a set of taxa, which were significantly different 228 

between the tissue types in short-term survivors but not among long-term survivors (Figure 2G, 229 

Table S6, File S2). Once again, we found tumor tissue in short-term survivors to be strongly 230 

associated with an ASV from Fusobacteria and as well as a few members of family 231 

Veillonellaceae, although again, there were not clear taxonomic patterns in other families, such 232 

as family Lachnospiraceae or Rumminococeae. These results indicate the survival-associated 233 

changes in the microbiome may be largest in tumor tissue and help to identify specific set of 234 

organisms responsible for these changes.  235 

 236 

The tumor microbiome is associated with survival 237 

Based on our observation that differences in tissue types were more pronounced in short-term 238 

survivors, and since past work focused on tumor tissues, we also chose to further interrogate the 239 

tumor-specific microbiome. A rPCA approach showed separation in the microbiomes between 240 

short- and long-term survivors (Figure 3A, D) (34). After adjustment for confounders and both 241 

PCs, patients with larger values for PC 1 had 3.5 lower (OR 0.29; 95% CI 0.08, 0.97) odds of 242 

short-term survival, while those with higher values for PC 2 were five times less likely to be 243 

short-term survivors (OR 0.19; 95% CI 0.05, 0.80). Individuals in the quadrant defined by these 244 

two extremes in the data were at least 7.5 times more likely to survive than any other group in 245 

the ordination (Figure S4).  246 

  247 
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Figure 3. The tumor-associated microbiome is associated with survival 
(A) Robust Principal Components Analysis (rPCA) ordination colored by short- (light) or long-(dark) 
term survival. Marginal axes show the distribution of points along each PC. The ordination is centered at 
the median distribution of points in each axis. (B) Phylogenetic tree showing the ASVs with PC 1. The 
tips and first heatmap are colored with taxonomic information. Heatmaps from left to right show the 
taxonomic assignment, mean central log ratio (CLR) relative abundance (viridis), the mean difference in 
CLR between long- and short-term survivors; whether the feature was used in the additive log ratio 
(ALR) calculation for PC 1 (teal - left; brown - right); the feature loading along PC 1; whether the feature 
was used in the PC 2 ALR calculation (green - bottom, purple top); the feature loadings along PC 2, 
coordinates to the top on the left; and whether the feature was included in the tumor survival index (light 
pink - lower value, dark pink - higher value). (C,D) Boxplot of the ALR of most extreme ranked taxa 
along selected based on (C) PC 1 and (D) PC 2. Axes are labeled to indicate the directionality of the log 
ratio calculation, label colors match panel (B). (E) Log odds of survival based on separation along the 
median of the PCs or grouping in the ALR shown in Light gray values are crude, dark gray are adjusted 
for age, sex, surgery year, tumor location, ASA score, differentiation grade, TNM stage. PC weights are 
adjusted for the position along the other PC; ALRs are not co-adjusted.  
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We found 37 features associated with separation along PC 1. To the left of PC 1, we found 248 

members of genus Fusobacterium, Parvimonas and Porphyromonas, and other common oral 249 

genera like Gemella and Dialster (Figure 3B). In contrast, higher values along PC 1 (to the right) 250 

were correlated to more common gut taxa, including members of families Lachnospiraceae and 251 

Rumminococceae. We defined the log2 fold ratio between the organisms separating PC 1 as a 252 

tumor-survival index (Table S7, File S3). For every 2-fold increase in this index in tumor tissue, 253 

the odds of survival increased by 20% (adjusted OR 0.80; 95% CI 0.67, 0.96). There were no 254 

clear patterns in the taxa separating along PC 2, beyond the association between 255 

Escherichia/Shigella and short-term survival (Table S8, File S3), although there was a significant 256 

relationship between these selected taxa and survival (OR 0.64; 95% CI 0.41, 0.98 for every log2 257 

increase). 258 

 259 

DISCUSSION 260 

 261 

Our results show a clear and consistent difference between normal and tumor tissue once we had 262 

accounted for individual microbiome effects. Across all patients, tumors carried a higher 263 

proportion of ASVs mapped to genus Fusobacterium, Gemella, Dialster and Campylobacter at 264 

the expense of genera like Blautia and Allistipes. The tumor-associated features reflect 265 

organisms found more commonly in CRC patients compared to healthy controls, whereas the 266 

organisms associated with normal tissue belong to clades commonly associated with short chain 267 

fatty acids and widely believed to be beneficial (5,6,49–51). Further, we are among the first to 268 

show that the magnitude of the difference between the two tissue types can be associated with 269 

prognosis. Our differential ranking analysis identified a set of 38 ASVs, which changed between 270 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.22279353doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.16.22279353


 

 23

the tumor and normal tissue in short-term survivors, but not long-term survivors. This suggests 271 

survival may be associated with localized changes in the microbiome. 272 

 273 

We are among the first to report differences a different between tumor and normal tissue in 274 

paired samples, let alone an association between the degree of dissimilarity and survival. Drewes 275 

et al (12) demonstrated clear difference between paired tumor and normal tissue samples using 276 

microscopy, although their 16S analysis did not explicitly test paired samples.  These results 277 

seemingly conflict with much of the existing literature (15–18,48). Several previous studies 278 

reported no difference in the microbiome between the two tissue types, let alone an intra-279 

individual difference associated with survival. Like the past studies, we observed and described a 280 

strong intraindividual similarity. A personal microbial signature is a normal feature of the 281 

microbiome seen in a variety of settings including population-based studies (10), dietary 282 

interventions (52), and among CRC patients (15–18,48). However, unlike prior work, the 283 

statistical models we selected accounted for this strong intra-individual similarity. Re-analysis of 284 

prior publications using subject aware methods may identify the same patterns we found: strong 285 

individual microbial signatures with a difference between the tissue types. Our results indicate 286 

that the tumor-specific microenvironment, rather than the overall microbiome, is important for 287 

understanding CRC pathology. At a minimum, future sequencing survey studies will need to 288 

account for tissue-specific effects in their analysis, and studies treating tumor and non-tumor 289 

biopsy samples as identical may need to check for biases.  290 

 291 

Based on the difference in the microbiome between tissue types, we specifically focused on the 292 

relationship between the tumor microbiome and survival. Two previous studies have explored 293 
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the relationship between the tumor microbiome and survival using untargeted sequencing. In that 294 

study of 67 Irish patients, Flemer and colleagues defined microbiome groups using a non-295 

compositional abundance-based clustering approach (14). They found a higher relative 296 

abundance of a cluster defined by members of genus Bacteriodetes, Blautia, Roseburia, 297 

Rumminococus, and an unclassified member of family Lachnospiracae was associated with 298 

shorter survival, while higher abundance of a cluster characterized by Streptococcus, 299 

Fusobacterium, and unclassified family Enterobacteraceae was associated with longer survival. 300 

These groupings are contradictory to the features associated with survival in our tumor tissue 301 

results. In contrast, our tumor survival index, defined by an ALR of features along PC 1, showed 302 

a decrease in the relative abundance in Fusobacterium among our long-term survivors, who were 303 

characterized by a higher relative abundance of Blautia, Roseburia, among others. It is likely this 304 

disagreement is due to differences in methods used for differential abundance (36,53). Our 305 

results are more in line with results from a Chinese cohort (13). In that study, a higher 306 

untransformed relative abundance of genus Fusobacterium, or higher relative abundance of reads 307 

mapped to Bacteriodetes fragilis were associated with an increased hazard of death, while a 308 

higher relative abundance of genus Faecalibacterium was protective. We find similar trends in 309 

our tumor survival index, where short-term survival was associated with ASVs mapped to genus 310 

Fusobacterium and a Bacteriodetes ASV, while longer survival was associated with 311 

Faecalibacterium. Our results and those of the Chinese cohort suggest that a more normal (gut-312 

like) microbiome is associated with long-term survival, while a more disrupted (oral) 313 

microbiome led to a poor prognosis.  314 

 315 
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Our conclusions are supported by our nested case-control design, which helps establishing 316 

temporality: changes in the local tumor microbiome at the time of surgery are associated with 317 

future outcomes, increasing the probability that the observation is a real phenomenon, rather than 318 

a change in the microbiome in response to disease state. Our analysis used statistically 319 

appropriate methods, which accounted for analytical challenges in describing the microbiome, 320 

decreasing the possibility of false positives, especially among the identified taxa (36,54). Our 321 

analysis has also addressed confounders, which may affect the microbiome and survival, 322 

including the strong individual microbiome signature.  323 

 324 

However, our study has some limitations. First, our results focus on late-stage cancer patients in 325 

northern Europe, and therefore may not be broadly generalizable. There are reports of 326 

differences in the tumor microbiome between early and late stage CRC patients (55), and 327 

differences in the healthy microbiome between countries (56). However, past work has suggested 328 

that CRC is characterized by a set of organisms similar to the ones we identified, and our work 329 

overlaps with the results of a Chinese cohort, despite methodological differences (5,6,13). 330 

Additionally, we did not characterize our specific taxonomic profiles in a validation cohort, 331 

meaning the taxa separating tissue types and the tumor survival index may be specific features of 332 

our cohort, rather than able to predict survival in a broader population of late-stage CRC patients. 333 

Finally, we profiled the microbiome using 16S rRNA sequencing, with all the assumptions, 334 

benefits, and limitations of the technique. Our work is predicated on the assumption that 335 

phylogenetic similarity correlates to genetic and niche similarity. Without robust functional 336 

prediction and the ability to assemble genome units, we are limited in our mechanistic insight. 337 

However, our 16S sequencing is, in many cases, able to capture species or sub-species level 338 
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resolution as the amplicon sequence variant ID, even if the name cannot be inferred accurately 339 

(57,58).  340 

 341 

CONCLUSION 342 

We performed a nested case-control of the role of the microbiome in relapse free survival 343 

following primary resection in late-stage CRC patients. We identified clear differences in the 344 

microbiome between normal and tumor tissue and that a larger difference between tissue types 345 

was associated with poor prognosis. We found the tumor microbiome was associated with 346 

survival. This suggests a need to focus microbiome-based interventions at the tumor-specific 347 

community, rather trying to modify prognosis by changing the gut microbiome overall.  348 

 349 
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