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Abstract 

Physical function decline due to aging or disease can be assessed with quantitative motion 

analysis, but this currently requires expensive laboratory equipment. We introduce a self-guided 

quantitative motion analysis of the widely used five-repetition sit-to-stand test using a 

smartphone. Across 35 US states, 405 participants recorded a video performing the test in their 

homes. We found novel relationships not detectable in a clinical implementation of this test. 

Trunk angle during the sit-to-stand transition was greater in individuals with osteoarthritis and 

differed across ethnicities. In individuals 50 years of age or older, those with greater trunk 

angular acceleration had a higher mental health score. We also detected known associations 

between longer time to complete the five repetitions and lower physical health scores, higher 

BMI, and older age. Our findings demonstrate that at-home movement analysis goes beyond 

established clinical metrics to provide objective and inexpensive digital outcome metrics for 

nationwide studies. 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.22280368doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22280368
http://creativecommons.org/licenses/by-nd/4.0/


Main Text 

Physical function profoundly impacts an individual’s quality of life1, as evidenced by the 

diminishing functional health observed with aging2 and diseases such as osteoarthritis3. 

Declining physical function in older adults is associated with increased falls, medical diagnoses, 

doctor visits, medications, and days spent in a hospital2. The time required to complete five 

repetitions of the sit-to-stand (STS) transition, as measured by a stopwatch, is widely used to 

evaluate physical function. In-lab studies indicate that automated timing is more sensitive in 

detecting physical health status than manual measurement4,5, and kinematic measures are more 

sensitive than timing alone6–8. However, quantifying human movement traditionally requires an 

expensive motion-capture system and experienced laboratory personnel, severely restricting 

scalability and access.  

The rapid increase in smartphone availability9 and recent developments in video-based 

human pose estimation algorithms10–13 may allow automated motion analysis using two-

dimensional (2D) video recorded with a smartphone14,15. Yet, to date, studies analyzing motion 

from smartphone videos have been carried out in a clinical14 or laboratory setting15. In a recent 

home-based study, STS test time extracted from skeletal motion data from the Microsoft Kinect 

color camera and depth sensor correlated with participants’ laboratory-based time16. This study 

supports the feasibility of unsupervised at-home tests; however, research staff trained 

participants to conduct the test in their homes, and the requirement of owning a Kinect inhibits 

broad adoption. It remains unclear whether pose estimation from self-recorded smartphone video 

can quantify movement with sufficient accuracy to predict health and physical function. 

Here, we examine whether at-home smartphone videos of the STS test predict clinically 

relevant health measures. To do this, we developed an online tool to capture and automatically 

analyze self-collected at-home videos of the five-repetition STS test (Fig.1A and Extended Data 

Fig. 1). This tool also collected demographic and health data via surveys. We deployed the tool 

in a nationwide study and examined if the data reproduced relationships from previous 

laboratory studies. To assess the accuracy of our home-based system, we compared the STS 

parameters extracted from our web application with those calculated from a laboratory motion 

capture camera system. We then examined whether quantitative STS parameters related to 

measures of demographics, physical health, mental health, and knee or hip osteoarthritis 

diagnosis. Osteoarthritis was the primary health condition we evaluated due to its widespread 
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prevalence17 and well-documented effect on lower body strength18 and altered STS 

kinematics6,19. 

 

Fig. 1 | An overview of our web application to collect and analyze movement data. A) 

Participants perform the five-repetition sit-to-stand test while an untrained individual records the 

test using only a smartphone or tablet from a 45-degree angle to capture a combined sagittal and 

frontal view. B) The video is uploaded to the cloud and a computer vision algorithm, OpenPose12, 

computes body keypoints throughout the movement. C) Our tool computes the key transitions in 

each STS cycle (i.e., as the participant rises from the chair and returns to sitting). D) Our 

algorithms compute the total time to complete the test and several important biomechanical 

parameters, like trunk angle (see Methods for details). 

 

From 493 total videos submitted, 405 videos across 35 US states were used in the final 

analysis (Extended Data Fig. 2). Participant characteristics are described in Extended Data Table 

1. Our study had nearly 35 times the number of participants of traditional biomechanical studies 

(where the median sample size is 14.520) with minimal researcher time and resources required. 

We first examined if our tool could reproduce the results of laboratory and clinic-based 

assessments. We found that a larger maximum trunk angle was associated with a diagnosis of 

osteoarthritis (R=0.18, p<0.001; Extended Data Table 2), even when controlling for age, sex, 

BMI, and STS time (β=0.029, 95% CI=[0.006, 0.052], p=0.015; Extended Data Table 3). The 

difference in trunk angle between groups in our study (5.8 degrees) was smaller than the 

difference in trunk flexion reported by Turcot et al. (9.0 degrees), which is expected since the 

prior study only included people with advanced knee osteoarthritis. Additionally, Turcot et al. 
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measured trunk flexion purely in the sagittal plane6, while the trunk angle obtained from a 45-

degree angle in our study is affected by movement in both the frontal and sagittal planes. 

Previous lab-based studies have also found that individuals with knee osteoarthritis adopt a larger 

trunk flexion angle and greater lateral trunk lean on the contralateral side during the STS 

transition to reduce the knee joint moment, joint contact forces, or pain6, or to compensate for 

weak knee extensor muscles18,21. Our smartphone-based tool was able to capture this kinematic 

compensation (Fig. 2A). STS time was associated with osteoarthritis (R=0.18, p=0.001; Extended 

Data Table 2), but was no longer a significant predictor of osteoarthritis status when controlling 

for age, sex, and BMI (p=0.847). Thus, while time to complete the task is related to other 

measures, kinematics appear to be a more specific and sensitive measure of health and 

functioning. We found moderate to strong associations between STS parameters extracted from 

our web application and from the same or the closest analogs from motion capture (R=0.997, 

R=0.583, R=0.702, and R=0.556 for STS time, maximum trunk angle from video vs. lumbar 

flexion from motion capture, maximum trunk angle from video vs. lumbar bending from motion 

capture, and maximum trunk angular acceleration from video vs. lumbar flexion acceleration 

from motion capture, respectively; see Methods). 

Our smartphone-based tool also reproduced the significant positive associations between 

STS time and health, age, and BMI found in prior lab-based studies4,23,24. In particular, a longer 

time to complete the STS test was associated with a lower physical health score (R=-0.20, 

p<0.001), a higher BMI (R=0.20, p<0.001), and older age (R=0.35, p<0.001; Fig. 2C and 

Extended Data Table 2). Further, time was a predictor of physical health (β=-0.938, 95% CI=[-

1.610, -0.237], p=0.006) when controlling for age, sex, and BMI. All other relationships 

evaluated were not significant (Extended Data Table 2). Compared to reference STS test times, 

the average test time in our study was longer (11.4±3.4 seconds vs. 7.5±2.4 seconds reported by 

Bohannon et al.24). A similar minimum (4.3 vs. 3.924 seconds) but larger maximum (32.9 vs. 

17.624 seconds) indicates greater variation in performance, possibly due to the lack of feedback 

and test training25.  

We next explored relationships between STS parameters across varying ethnic and racial 

groups and mental health. Maximum trunk angle differed across racial and ethnic groups 

(p<0.001; Fig. 2B; Extended Data Table 4). In a comparison between the two largest ethnic 
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groups, white (N=243) vs. Asian (N=103), differences in trunk angle remained significant when 

controlling for age, sex, BMI, and physical health (β=-0.084, 95% CI=[-0.130, -0.038], p<0.001; 

Extended Data Table 5). While racial and ethnic disparities exist in the incidence and outcomes 

of musculoskeletal disease26, race and ethnicity are rarely examined in biomechanical studies due 

to the typically small study samples. Similar to the conclusions of Hill et al. who found racial 

differences in gait mechanics27, our findings suggest that we should not assume biomechanical 

similarity between different racial and ethnic groups. 

Since STS tests are most commonly performed in older adults, we also performed an 

exploratory subgroup analysis between STS parameters and physical and mental health in the 106 

individuals 50 years of age or older. We found that greater maximum forward trunk angular 

acceleration was associated with a higher mental health score (R=0.28, p=0.012; Fig. 2D; 

Extended Data Table 6), which remained significant when controlling for age, sex, BMI, and time 

(β=1.705, 95% CI=[0.376, 3.034], p=0.012; Extended Data Table 7). Psychological studies 

typically require larger sample sizes than biomechanical studies to determine significant results; 

therefore, few studies have evaluated the relationships between biomechanics and mental health. 

The large-scale of these at-home tests could allow further exploration of these relationships and, 

potentially, enable the use of one’s motion as an objective measure of mental health status. 
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Fig. 2 | Relationships between sit-to-stand parameters and survey measures. A) Trunk angle 

is larger in patients with hip or knee osteoarthritis, determined from a Pearson correlation test 

adjusted to control for the false discovery rate. B) Trunk angle differs across race and ethnicity, 

determined from a Dunn’s test with multiple comparison p-values adjusted to control for the 

false discovery rate. C) Greater trunk angular acceleration is associated with a higher mental 

health score, determined from a Pearson correlation adjusted to control for the false discovery 

rate with all 21 comparisons. D) Test completion times increase with older age, as determined by 

a t-test. In the box-and-whisker plots, the top and bottom lines of the boxes (hinges) are the first 

and third quartiles, respectively. The horizontal line is the median, and the whiskers extend from 

each hinge to the largest value no further than 1.5 times the interquartile range to the respective 

hinge. In the scatter plot, the grey shading around the blue regression line represents the 

confidence interval in the scatter plot.  
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Participants considered the protocol very easy (see Methods), suggesting real-world 

adherence to our app would be high28, but limitations remain. One key limitation is the 

inconsistency in STS test performance and environment across participants. For example, 

participants used varying types and heights of chairs and foot and arm positions, which can 

influence the STS movement25. Our study's 2D joint angle projections were likely affected by 

camera recording angle and height differences, but our large number of participants helped 

overcome this variability. Improved user interfaces could more consistently guide a participant to 

the correct position relative to the camera and reduce this variability. Future advances in 3D pose 

estimation could mitigate camera position issues and be integrated with a musculoskeletal model 

to obtain kinetic measures such as joint loading22. Another limitation was the error of the pose-

estimation algorithm when predicting joint locations (particularly the hip) for individuals with 

loose-fitting clothing, such as skirts or sweatpants, or higher BMIs. Where apparent, these videos 

were removed, but the errors with hip location estimation may have still influenced our results, 

particularly trunk kinematics. Pose-estimation algorithms are often tested on large datasets of 

individuals performing a range of activities29,30; digital tools meant for health evaluations may 

benefit from additional model training with a diverse sample of participants (i.e., varying BMIs), 

particularly those with movement conditions like osteoarthritis, performing the activity of 

interest. 

In summary, we developed a digital tool to automatically measure STS times and 

kinematics from at-home videos, deployed it in a nationwide study, and found that measurements 

from at-home videos are sensitive enough to predict physical health and osteoarthritis. The 

consistency of this study’s results with lab-based studies, including the relationship between 

trunk angle and osteoarthritis presence, and its accessibility as an open-source online tool support 

its use by researchers and clinicians to leverage biomechanics for at-home monitoring of 

physical functioning at an unprecedented scale. Further, with a large pool of participants, we 

discovered relationships between biomechanics and ethnicity and race, as well as biomechanics 

and mental health. Our web app, data set, source code, and processing code are freely available 

online, enabling other researchers to use and adapt our tools and explore our dataset for new 

research questions. For example, researchers could adapt our web app to analyze other variations 

of the STS test or different functional tests so that in the future, it may be possible to conduct an 

entire battery of functional tests at home. Our tool can also analyze previously collected video 
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data, opening the door to answering a multitude of new research questions without any additional 

data collection. Our study demonstrates the feasibility of mobile, cheap, and easy-to-use tools for 

biomechanical assessment of functional tests that may allow anyone with a smartphone to 

objectively measure their health and physical functioning. 
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Methods 

Participants and procedures. 

Participants. Across 35 US states, 493 participants (age: mean = 37.5 years, range = (18, 

96); sex: 54% female) successfully completed the entirely self-guided study. Individuals were 

qualified to participate if they currently resided in the United States, were of at least 18 years of 

age, had gotten up and down from a chair in the past week, felt safe standing up from a chair 

without the use of their arms, indicated that another person was present to monitor and record 

their test, and answered “No” to all questions of risk in the Physical Activity Readiness 

Questionnaire for Everyone (2020 PAR-Q+)31. In the sample of individuals used in the final 

analysis (N=405; participant exclusion described in the “Data Cleaning” section), the mean age 

was 37.3 ± 17.8 years, ranging from 18 to 96 years, and 53% were female (Extended Data Table 

1). To test for differences in age, gender, and BMI between participants included vs. excluded 

from the analysis, we calculated the standardized mean difference (SMD)32. We chose an SMD 

of less than 0.1 to indicate a negligible difference, a threshold recommended to determine 

imbalance33. There were no differences in age or BMI between participants included and 

participants excluded from the final analysis (SMD (95% Confidence Interval (CI)) = 0.07 (-

0.16; 0.30) and SMD (95% CI) = 0.05 (-0.17; 0.28), respectively); however, there was a larger 

proportion of female participants in the entire sample than those included in the final analysis 

(58% versus 53%, respectively; SMD (95% CI) = 0.10 (-0.13; 0.33)). 

Our team recruited participants via social media posts, fliers, word of mouth, and other 

study participant pools. By leveraging research studies focusing on aging and osteoarthritis, we 

recruited individuals of older age and with hip and/or knee osteoarthritis. Participants were 

compensated with a $30 gift card and received a link to their STS test with an overlaid 

visualization of their motion analysis. We obtained approval for the study from the Stanford 

University Institutional Review Board (IRB-59455) and digital informed consent from all 

participants. 

Procedures. Participants joined our study directly from our website (sit2stand.ai; 

Extended Data Document 1). After selecting “Join Study,” they were directed to a series of 

qualification and safety questions. If they qualified, they were presented with a digital consent 

form. Immediately after providing informed consent, participants were shown a video and 
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written instructions for the STS test. The webpage gave the option to open the individual’s 

camera to record the test or upload a previously recorded video. After upload, the participant 

reviewed their video and approved it for submission before being directed to the survey 

(Extended Data Document 2). 

Five-repetition STS test. We chose the STS test as it is a frequently used clinical test of 

physical function. The STS transition is related to the strength and power of the lower limbs24, 

such as knee extension strength34. It is one of the most mechanically demanding functional daily 

activities35. Because of this, clinicians and researchers widely use STS transitions to evaluate 

physical function. Additionally, a recent study tested the feasibility of administering the STS test 

at home and found that a self-administered, video-guided STS test was suitable for participants 

of varying ages, body sizes, and activity levels36. 

In the most common variation of STS transition tests, the five-repetition STS test37, an 

individual moves from sitting in a chair to standing five times in a row as quickly as possible 

with their arms folded across their chest (Extended Data Fig. 3). Researchers have related the 

time to complete the STS to age, height24, weight24, knee extension strength24, physical activity 

level4, vitality16, anxiety16, and pain16. STS is also a valid and reliable clinical assessment for 

various conditions, including arthritis38, pulmonary disease39, Parkinson’s disease40, and 

degenerative spinal pathologies41. Beyond timing, in-lab studies have found that one’s 

kinematics during an STS task are related to frailty7, fall risk16, and osteoarthritis status19.  

 

Survey measures. 

Participant characteristics. Participants reported, via survey, their age, sex, gender, 

height, body weight, ethnicity, education, employment, income, marital status, and state of 

residence. BMI was calculated from their reported height and weight. 

Physical and mental health. Overall physical and mental health status was assessed using 

the PROMIS v.1.2 Global Health Short Form42. The Global Health Short Form is a ten-item 

survey measuring overall physical function, fatigue, pain, emotional distress, and social health in 

healthy and clinical adult populations. Separate scores were calculated for global physical health 

(GPH) and global mental health (GMH)43. 
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Osteoarthritis status. Participants were asked (yes/no) whether they have a clinical 

diagnosis of hip or knee osteoarthritis. 

 

Video analysis. 

Automated pose estimation. We instructed each participant to record a video of the STS 

test using a smartphone placed or held vertically. We processed all videos using OpenPose (Cao, 

2018), a widely used44, and high-performing45,46 neural network-based software for pose 

estimation. For each person present in an RGB image, OpenPose returns the 2D position of 25 

body landmarks: the nose, neck, and midpoint of the hips, and bilateral shoulders, elbows, wrists, 

hips, knees, ankles, eyes, ears, first metatarsals, fifth metatarsals, and heels. 

From each video, we extracted frames using FFmpeg Version 4.2.4 and ran OpenPose on 

each video frame. In frames where the algorithm detected multiple people, we only considered 

the person closest to the camera, defined as the detection with the greatest distance between the 

feet and nose. Pose estimation processing failed for four videos, which were not included in the 

final analysis. 

Pre-processing. We derived the number of frames per second (framerate) for each video 

using ffprobe software. OpenPose failed to detect the participant’s pose in a small fraction of 

frames (< 1%). As only a single frame was ever missing in a series, we used linear interpolation 

to estimate missing keypoint positions in a given frame. We observed high-frequency, low-

magnitude noise in the OpenPose output, possibly due to the low resolution of the input for the 

OpenPose neural network. We found that a 6 Hz, fifth-order, zero-lag, low-pass Butterworth 

filter (scipy package) was the most robust when comparing low-pass filtering, spline smoothing, 

and Gaussian smoothing. While we instructed the recorder to record to the right of the 

participant, for consistency, we horizontally mirrored keypoints in cases where the participants’ 

left side was closest to the camera. To normalize the data across participants, we divided all 

coordinates by subject height in pixels, approximated as the 95th percentile of the distance 

between the right ankle and nose keypoints. For 32 participants, our algorithm detected 3 (N=1), 

4 (N=29), or 6 (N=2) STS cycles. We found the average time per cycle for these participants and 

multiplied it by five. 
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STS parameter extraction. We used the nose marker's local peaks in the vertical axis to 

determine the standing and sitting phases. We defined the STS phase as the time between a local 

minimum and the following local maximum and the stand-to-sit phase as the time between a 

local maximum and the following local minimum. We calculated the total test time as the time 

between the first and the last standing positions.  

We computed 2D joint angles in the camera projection plane for the right and left sides, 

including the knee (from the ankle-knee-hip keypoints), hip (from knee-hip-neck keypoints), and 

ankle (from the first metatarsal-ankle-knee). We defined trunk angle as the angle between a 

vector from the hip pointing vertically along the camera frame and a vector from the right hip to 

the neck. To compute marker speeds and joint angular velocities and accelerations, we used 

discrete derivatives and divided them by the frame rate. We averaged total test metrics across the 

five stand-to-sit-to-stand cycles and isolated for the sit-to-stand and stand-to-sit phases. Prior to 

analysis, we hand-selected a limited set of kinematic parameters (i.e., trunk angle and trunk 

angular acceleration during the sit-to-stand transition) based on previous literature and assessed 

their associations with the survey measures. 

Data cleaning. Out of 493 videos submitted, 489 were successfully processed with 

OpenPose. From this subset, we excluded 84 participants due to the following video recording 

errors (not mutually exclusive): use of a heavily cushioned chair (n=2); long pause between 

repetitions (n=29); too close, out of frame, or bodily obstruction (n=25); camera angle was 

planar (rather than at a 45-degree angle; n=34); use of arms to stand (n=20); large pose-

estimation error due to participant wearing a skirt (n=1).  

 

Statistical analyses. 

Descriptive statistics. Standard descriptive statistics were calculated for participant 

characteristics, outcome measures, and STS times and kinematics. 

Associations. We used Pearson correlations to evaluate associations between STS 

parameters (time, maximum trunk angle during STS, and maximum trunk angular acceleration 

during STS) and characteristics (age, sex, BMI, and ethnicity) and health measures (physical 

health, mental health, and osteoarthritis diagnosis). We accounted for multiple comparisons of 
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the Pearson correlations by controlling for the false discovery rate (Benjamini and Hochberg 

method47) with all 21 comparisons. For analyzing associations between STS parameters and 

physical and mental health in the subsample of participants over the age of 50 (N = 106), we 

accounted for multiple comparisons with six comparisons. 

To compare trunk angles among the four largest ethnic and racial groups, we performed a 

Kruskal-Wallis test, which accounted for the non-parametric distribution of the smallest two 

groups. We followed this test with a Post-hoc Dunn’s test with multiple comparison p-values 

adjusted to control for the false discovery rate. Additionally, we performed a logistic regression 

with the two largest groups (white vs. Asian), controlling for age, sex, and BMI. Significant 

associations between kinematic parameters and health measures were further evaluated with 

linear or logistic regression (for continuous or binary dependent variables, respectively), 

controlling for age, sex, BMI, and STS time. 

 

Lab-based motion capture validation 

We compared our video-based STS parameters to laboratory measurements from marker-

based motion capture. 

Participants. We collected data from eleven healthy adults (N = 11, 7 female and 4 male; 

age = 27.7 ± 3.4 [23-35] years; body mass = 67.8 ± 11.4 [54.0-92.9] kg; height = 1.74 ± 0.11 

[1.60-1.96] m; mean ± standard deviation [range]). All participants provided written informed 

consent before participation. The study protocol was approved and overseen by the Institutional 

Review Board of Stanford University (IRB00000351). 

Protocol. We measured ground truth kinematics with an eight-camera motion capture 

system (Motion Analysis Corp., Santa Rosa, CA, USA) that tracked the positions (100Hz) of 31 

retroreflective markers placed bilaterally on the 2nd and 5th metatarsal heads, calcanei, medial 

and lateral malleoli, medial and lateral femoral epicondyles, anterior and posterior superior iliac 

spines, sternoclavicular joints, acromion processes, medial and lateral epicondyles of the 

humerus, radial and ulnar styloid processes, and the C7 vertebrae. Twenty additional markers 

aided in limb tracking. Marker data were filtered using Savitzky-Golay filter with a window size 

of 0.5s and a 3rd-degree polynomial.  
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 We used OpenSim 4.348,49 to estimate joint kinematics from marker trajectories. We first 

scaled a musculoskeletal model50 to each participant’s anthropometry based on anatomical 

marker locations from a standing calibration trial using OpenSim’s Scale tool. Then we 

computed joint kinematics using OpenSim’s Inverse Kinematics tool.  

We computed the time to complete the STS test using motion capture and OpenPose. 

Since the nose marker was not collected in motion capture trials, for comparability, we used the 

peaks of the pelvis marker in both settings. We compared the video-based test time and 

kinematic measures (total trunk angle and trunk acceleration) to motion capture test time and the 

most similar kinematic parameters (lumbar flexion and bending and lumbar flexion acceleration). 

For these comparisons, we used r statistic, the square root of the coefficient of determination R2. 

 
Participant feedback.  

Participant feedback. Participants rated the difficulty of their participation with the 

question, “How easy or difficult was it for you to complete the STS test portion of this study 

(including reading the instructions, performing the test, and uploading the video)?”. An open-

ended follow-up question allowed participants to further describe any challenges or general 

feedback. 

 On average, participants found completing the study “very easy” to do (4.58 ± 0.77, N = 

493; 1 = very difficult and 5 = very easy). A thematic analysis of participant feedback uncovered 

eight themes related to the experience of participating in the study: The study was enjoyable 

(e.g., “Really enjoyed being able to participate in something from home, pretty cool!”); the study 

was easy to do (e.g., “The instructions were clear and [the] platform was easy to use”); 

participants were curious about the purpose of the study and interpretation of the results (e.g., 

“Would have been great if you could explain how my responses would help in the study”); the 

study took longer than expected, particularly the survey portion (e.g., “Survey too long”); 

participants were confused or had suggestions about the STS instructions (e.g., “The record 

button followed by more instructions was confusing”); participants were confused or had 

suggestions about the survey; (e.g., “Wording of questions a little confusing ”); participants had 

technical challenges (e.g., “Instruction video didn’t play”); and participants indicated personal 

preferences or challenges (e.g., “I prefer a computer to a phone”). 
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Extended Data 

 

Extended Data Fig. 1. Step-by-step details of the user-facing side of the web application. 
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Extended Data Fig. 2. Flowchart of data included in the final analysis. 
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Extended Data Fig. 3 | The Five-Repetition Sit-to-Stand Test. Individuals start sitting down 

with their arms crossed in front of their chest and their feet flat on the floor. They then rise to 

stand (sit-to-stand transition) and sit back down (stand-to-sit transition) five times as quickly as 

possible. 
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Extended Data Table 1. Participant characteristics. 

 

Variable 

18+ Years 

N = 405 

50+ Years 

N = 106 

Participant Characteristics   

Age (years), mean ± SD (min, max) 37 ± 18 (18, 96) 64 ± 10 (50, 96) 

Age binned, n (%)*   

18-29 years 212 (52%) - 

30-39 years 62 (15%) - 

40-49 years 25 (6%) - 

50-59 years 44 (11%) 44 (42%) 

60-69 years 35 (9%) 35 (33%) 

70 + years 27 (7%) 27 (25%) 

Sex, n (%)   

Male 191 (47%) 48 (55%) 

Female 214 (53%) 58 (45%) 

Gender, n (%)   

Male 192 (47%) 48 (55%) 

Female 209 (52%) 58 (45%) 

Non-Binary 2 (<1%) 0 (0%) 

Other 1 (<1%) 0 (0%) 
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Prefer not to answer 1 (<1%) 0 (0%) 

Height (in), mean ± SD (min, max) 67.3 ± 4.0 (55, 77) 66.5 ± 3.8 (55, 75) 

Body weight (lbs), mean ± SD (min, max) 158 ± 34 (70, 280) 164 ± 34 (70, 280) 

Ethnicity, n (%)   

White 243 (60%) 79 (75%) 

Black or African American 14 (3%) 1 (1%) 

Hispanic, Latino, or Spanish Origin 16 (4%) 2 (2%) 

Asian 103 (25%) 19 (18%) 

Mixed race 24 (6%) 2 (2%) 

Other 5 (1%) 3 (3%) 

Education, n (%)   

Less than high school 0 (0%) 0 (0%) 

High school graduate 16 (4%) 4 (4%) 

Some college 49 (12%) 11 (10%) 

College Degree or Higher 338 (84%) 89 (84%) 

Prefer not to answer 2 (<1%) 2 (2%) 

Employment, n (%)   

Employed full time (40+ hours per week) 190 (47%) 46 (43%) 

Employed part time (< 40 hours per week) 25 (6%) 9 (9%) 

Student 129 (32%) 1 (1%) 
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Unemployed 9 (2%) 3 (3%) 

Self-employed 13 (3%) 10 (9%) 

Retired 33 (8%) 33 (31%) 

Homemaker 3 (<1%) 2 (2%) 

Prefer not to answer 3 (<1%) 2 (2%) 

Income, n (%)   

< $10,000 17 (4%) 0 (0%) 

$10,000 to $24,999 12 (3%) 0 (0%) 

$25,000 to $49,999 53 (13%) 4 (4%) 

$50,000 to $99,999 98 (24%) 25 (24%) 

> $100,000 153 (38%) 48 (45%) 

Prefer not to answer 72 (18%) 29 (27%) 

State of residence (total #) 35 25 

Health Measures   

BMI (kg/m2), mean ± SD (min, max) 24.3 ± 4.1 (16.3, 41.0) 25.9 ± 4.5 (18.6, 40.2) 

Physical health (T-score), 

mean ± SD (min, max) 

54.9 ± 6.7 (32.4, 67.7) 53.3 ± 7.1 (32.4, 67.7) 

Mental health (T-score), 

mean ± SD (min, max) 

53.0 ± 7.4 (28.4, 67.6) 54.6 ± 7.0 (38.8, 67.6) 

Osteoarthritis (Knee or Hip; Yes), n (%) 30 (7%) 29 (27%) 

Hip 8 (2%) 8 (8%) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.22280368doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22280368
http://creativecommons.org/licenses/by-nd/4.0/


Knee 26 (6%) 25 (24%) 

5 STS Measures   

Total time (s) 11.4 ± 3.4 (4.3, 32.9) 13.2 ± 4.3 (5.0, 32.9) 

Maximum trunk angle during sit-to-stand 

transition (deg) 

200.5 ± 8.3 

(180.9, 239.3) 

201.9 ± 9.9 

(180.9, 239.3) 

Maximum trunk angular acceleration during sit-

to-stand transition (deg/s2) 

685.9 ± 162.7 

(297.3, 1279.4) 

678.7 ± 158.2 

(297.3, 1216.4) 

*Rounded percentages may result in sums slightly above or below 100%. 

Abbreviations: BMI, Body mass index; Physical Health, PROMIS Global-10: Global Physical 

Health; Mental Health, PROMIS Global-10: Global Mental Health; 
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Extended Data Table 2. Pearson correlations between measures and five-repetition sit-to-stand 

test time and kinematics for all participants (N = 405). P-values account for multiple 

comparisons using a false discovery rate for 21 comparisons. 

 

 Time Trunk Angle 

Trunk 

Angular 

Acceleration 

Age 0.35**** 0.15* -0.02 

Sex 0.03 0.00 0.05 

BMI 0.20*** 0.07 -0.02 

Ethnicity 0.05 0.16** 0.01 

Physical Health -0.20**** -0.01 -0.04 

Mental Health 0.02 0.06 -0.01 

Osteoarthritis 0.18** 0.18** 0.06 

* P < 0.05 

** P < 0.01 

*** P < 0.001 

**** P < 0.0001 

Abbreviations: BMI, Body mass index; Physical Health, PROMIS 

Global-10: Global Physical Health; Mental Health, PROMIS Global-

10: Global Mental Health 
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Extended Data Table 3. Logistic regression analysis on a diagnosis of knee or hip osteoarthritis 

(N=405). 

Dependent 

Variable 

Independent 

Variables 
β (SE) OR (95% CI) P 

Osteoarthritis 

(yes/no = 1/0) 

Age 0.119 (0.012) 1.126 (0.094, 0.143) <0.001 

Sex -0.020 (0.023) 0.980 (-0.066, 0.026 0.393 

BMI 0.008 (0.012) 1.008 (-0.016, 0.031) 0.528 

Time 0.001 (0.012) 0.999 (-0.025, 0.024) 0.957 

Trunk Angle 0.029 (0.012) 1.030 (0.007, 0.052) 0.012 

Abbreviations: BMI, Body mass index 
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Extended Data Table 4. Results of a Kruskal-Wallis rank sum test and posthoc Dunn’s test for 

differences in trunk angle between races and ethnicities (N=405). P-values account for multiple 

comparisons using a false discovery rate for 6 comparisons. 

Dunn’s Test Kruskal-Wallis Test 

Comparison Z P Padj χ
2 df P 

Asian – Black  -3.653 <0.001 <0.001 

25.47 3 <0.001 

Asian – Hispanic 0.172 0.864 0.864 

Black – Hispanic 2.969 0.003 0.006 

Asian – White -4.025 <0.001 <0.001 

Black – White 2.064 0.039 0.059 

Hispanic – White -2.012 0.044 0.053 
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Extended Data Table 5. Logistic regression analysis on race (NWhite=243; NAsian=103). 

Dependent 

Variable 

Independent 

Variables 
Β (SE) OR (95% CI) P 

Ethnicity 

(White = 0; 

Asian = 1) 

Age -0.043 (0.026) 0.958 (-0.094, 0.007) 0.093 

Sex 0.013 (0.047) 1.013 (-0.079, 0.105) 0.781 

BMI -0.114 (0.024) 0.892 (-0.162, -0.066) <0.001 

Time -0.018 (0.025) 0.982 (-0.068, 0.031) 0.467 

Physical Health -0.086 (0.024) 0.918 (-0.132, -0.039) <0.001 

Trunk Angle -0.084 (0.023) 0.920 (-0.130, -0.038) <0.001 

Abbreviations: BMI, Body mass index; Physical Health, PROMIS Global-10: Global 

Physical Health 
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Extended Data Table 6. Pearson correlations between measures and five-repetition sit-to-stand 

test time and kinematics for participants 50 years of age or older (N = 106). P-values account for 

multiple comparisons by controlling for the false discovery rate for 21 comparisons. 

 

 Time Trunk Angle 

Trunk 

Angular 

Acceleration 

Physical Health -0.39*** -0.21 0.09 

Mental Health -0.06 0.09 0.28* 

* P < 0.05 

** P < 0.01 

*** P < 0.001 

**** P < 0.0001 

Abbreviations: BMI, Body mass index; Physical Health, PROMIS 

Global-10: Global Physical Health; Mental Health, PROMIS Global-

10: Global Mental Health 
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Extended Data Table 7. Linear regression analysis on mental health score for individuals 50 

years of age or older (N=106). 

Dependent 

Variable 

Independent 

Variables 
β (95% CI) P 

Adj.  

R2 

F 

(P) 

Mental Health 

(T-Score) 

Age 0.803 (-0.632, 2.238) 0.270 

0.108 
3.544 

(0.005) 

Sex -1.874 (-4.492, 0.744) 0.159 

BMI -1.539 (-2.898, -0.180) 0.027 

Time -0.136 (-1.569, 1.297) 0.851 

Trunk Angular 

Acceleration 

1.705 (0.376, 3.034) 0.012 

Abbreviations: BMI, Body mass index 
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