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Abstract 21 

Usually, it takes quite some time until new insights from basic or clinical research are ultimately 22 

transferred into clinical routine. On the other hand, there are still many hurdles to directly 23 

provide and use routine data in the context of basic and clinical research. Specifically, no 24 

coherent software solution is available that allows a convenient and immediate bidirectional 25 

transfer of data between concrete treatment contexts and research settings. 26 

Here, we present a generic framework that integrates health data (e.g., clinical, molecular) and 27 

computational analytics (e.g., model predictions, statistical evaluations, visualizations) into a 28 

clinical software solution which simultaneously supports both patient-specific healthcare 29 

decisions and research efforts, while also adhering to the requirements for data protection and 30 

data quality. Specifically, we emerge from a recently established generic data management 31 

concept, for which we designed and implemented a web-based software framework that 32 

integrates data analysis, visualization as well as computer simulation and model prediction 33 

with audit trail functionality and a regulation-compliant pseudonymization service. Within the 34 

front-end application, we established two tailored views: a clinical (i.e., treatment context) 35 

perspective focusing on patient-specific data visualization, analysis and outcome prediction, 36 

and a research perspective focusing on the exploration of aggregated, but pseudonymized 37 

data. 38 

We illustrate the application of our generic framework by two use-cases from the field of 39 

haematology/oncology. Our implementation demonstrates the feasibility of an integrated 40 

generation and backward propagation of data analysis results and model predictions at an 41 

individual patient level into clinical decision-making processes. 42 

Author summary 43 

Patient-oriented research is based on comprehensive, quality-assured medical data that is 44 

visualized and analysed to gain knowledge. Based hereon, computer models can be 45 
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developed, which e.g., calculate risk scores or predict treatment success. Such approaches 46 

can be used for risk staging or for selecting the optimal therapy for a specific patient. In recent 47 

years, a lot of efforts have been made to develop generic concepts for data processing and for 48 

providing the data in the research context. What has been missing so far is a suitable software 49 

infrastructure to facilitate the direct backward propagation of scientific results into everyday 50 

clinical practice to support the treating clinicians in their decision-making processes. To close 51 

this gap, we designed a generic software framework into which, in principle, any computational 52 

model or algorithm can be integrated. For demonstration purposes, we developed a web 53 

application that integrates two mathematical models from the field of haematology, specifically 54 

relating to chronic myeloid leukaemia (CML). Both models calculate the leukaemia recurrence 55 

probability of a specific patient, after the intended stopping of the applied therapy. The 56 

particular prediction is based on patient-specific molecular diagnostic data and can be used 57 

for personalized treatment adaptation. 58 

59 
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Introduction 60 

Mathematical models and computational algorithms have already proven useful in analysing 61 

data, explaining functional relationships of (patho-)physiological mechanisms, and guiding 62 

clinical research. Along this line, also computational applications (“apps”) are increasingly used 63 

to support clinical decision-making (1-3). Prominent examples are risk scores, which provide 64 

patient-specific risk estimates by integrating relevant clinical parameters based on 65 

mathematical/statistical models (4-6). Furthermore, mathematical models and computer 66 

simulations for disease progression and treatment response have been developed for several 67 

diseases (7-14). As these models are intrinsically based on clinical data, there is an increasing 68 

need to provide such data in a structured and secure way. To fully realize the translational 69 

potential of both, models and data, it is necessary to establish interfaces that allow the 70 

integration of clinical data and corresponding model predictions and provide them in a hospital 71 

setting. 72 

In our previous work (15) we focused on how patient-specific model predictions can be 73 

provided to clinicians within a particular clinical information system (CIS), while we have not 74 

considered the full life cycle of clinical and simulation data. However, due to privacy and 75 

security aspects, we need to ask how health data from multiple decentralized data sources 76 

can be consistently integrated and made available for computer simulations and analytics in 77 

general and how analytic and simulation results, e.g., generated to predict an individual 78 

patient’s future behaviour, can be transferred back to the routine clinical practice. Currently, 79 

we are missing technically applicable concepts to integrate the results of data analyses as well 80 

as computer simulations and mathematical model predictions in a hospital setting to support 81 

decision-making at an individual patient level. Therefore, we here describe a generic concept 82 

of integrating data analysis as well as computer simulation results and mathematical model 83 

predictions for scientific research and to support decision-making at an individual patient level 84 

in a common hospital setting. The described implementation goes beyond our previously 85 

published framework (15), specifically in terms of centralised and privacy-compliant 86 
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management of patient-identifying and medical data and thus for simultaneous use in clinical 87 

and research settings. 88 

Based on the conceptional works on data integration in scientific research (16), we investigated 89 

how quality-control, data protection, and ethical requirements can be guaranteed when 90 

integrating medical data in the research and clinical context in parallel. We took advantage of 91 

the fact that hospitals implement data management concepts for the efficient and legally 92 

compliant provision and use of health data with permanent traceability of all data sources with 93 

a clear origin, time stamp and authorship. For this purpose, many hospitals are establishing 94 

Research Data Management Systems for data pre-processing, storage and provision, 95 

sometimes coupled with an Independent Trusted Third Parties (TTP) to centrally regulate 96 

personal identifying data and to manage consents, revocations, and pseudonym assignments. 97 

Fig 1 shows an example of a generic configuration of data management components from the 98 

primary data sources to the applications in patient-oriented research. 99 

 100 

Fig 1. Example of a generic configuration of data management from the primary data sources to the applications: Patient 101 

data from various, decentralized, and heterogeneous data sources (Primary Data Sources) are extracted, transformed to 102 
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harmonized data and loaded into a Data Warehouse (Extract-Transform-Load (ETL): Data Integration). Data transfer points 103 

pseudonymize these data and make them available for analysis and specific applications (ETL: Data Distribution). The 104 

identifying data, consents, and the pseudonym linkages are managed by an Independent Trusted Third Party or another 105 

pseudonymised service/provider. This institution/service also verifies the existence of the required consent before any 106 

processing of personal data. Our specific application “Integration of computational models and analytics”, which is 107 

additionally connected to a Model and Simulation Server, is intended to be used in clinical research (A) and also in clinical 108 

practice (B). Both components (outlined in bold red) complement the existing concept of data management in scientific 109 

research. 110 

Such a typical configuration comprises the selective extraction of heterogeneous patient data, 111 

which are stored in various primary data sources, the transformation into a unique target 112 

structure, and the loading into a Data Warehouse (cf. Fig 1 “ETL: Data Integration”). This 113 

procedure is often denoted as ETL (Extract-Transform-Load) process. The TTP verifies the 114 

existence of informed consent for the usage of the required data and provides application-115 

specific pseudonyms. This ensures that the pseudonymized medical data do not allow any 116 

conclusions about a patient's identity. Eventually, data transfer points (cf. Fig 1 “ETL: Data 117 

Distribution”) provide the pseudonymized medical data requested for specific applications, 118 

which can be used by authorized researchers (e. g. clinical scientist, data analyst, modeler). 119 

In contrast to other tools and workflows that have been already developed to provide health 120 

data for research (e.g. (17), (18)), the main focus of our approach is on the backward 121 

propagation of research findings and data analysis results into the clinical process, illustrated 122 

as the “B” arm in Fig 1. Specifically, we investigated how patient-specific predictions based on 123 

mathematical models and corresponding computer simulations can be integrated directly into 124 

the clinical workflows to support actual clinical decision-making for treatment optimizations. 125 

Our work emerges from a previously established demonstrator software (15) that integrates 126 

time course data of residual disease levels for CML patients to provide estimates of their future 127 

behaviour. While the focus on CML is a particular example application, the demonstrator itself 128 

is flexible to integrate other types of data and underlying models. The application is primarily 129 

intended to be used by clinicians as a clinical decision support tool, complementary to existing 130 
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primary data sources to optimize treatment strategies on a patient-specific level (see Fig 1B). 131 

In addition, it can also be used by researchers in the context of scientific projects (see Fig 1A). 132 

For both use cases, the software application has to fulfil the following criteria: 133 

1. Collection, processing, and provision of quality-assured pseudonymized data 134 

compliant with Data Protection Laws. 135 

2. Provision of mathematical model predictions and data analyses. 136 

3. Permanent traceability of all data and computational results with a unique origin, time 137 

stamp, and authorship (i.e., audit trail functionality). 138 

4. Interactive visualization of medical data and simulation results. 139 

5. Assignment of individual clinical data and model predictions and/or analyses to 140 

individual patients in clinical practice (reidentification of pseudonymized data). 141 

6. User and access control by role-based right management. 142 

In the following, we describe our generic software framework (see Fig 2) that ensures all the 143 

specified requirements. We illustrate how algorithmic results (e.g., model predictions, analytic 144 

results) can be made available to researchers and clinicians directly in their working 145 

environment in an accurate, privacy compliant and transparent way. Finally, we present a 146 

newly developed web application (cf. the resulting demonstrator) to exemplify the generic 147 

software framework for a particular clinical application from the field of haematology/CML.  148 

149 
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Results 150 

Generic overall design and data flows  151 

Based on the generic concept of data management in patient-oriented research (c.f. Fig 1), we 152 

developed a software framework that demonstrates how mathematical model predictions, and 153 

- in a broader context - any algorithmic/computational procedure can be integrated into clinical 154 

practice to support decision-making. Most importantly, our solution strictly complies with 155 

standards for data security and pseudonymization and allows audit trail compatible 156 

reconstruction of all of the provided analysis results/predictions (i.e., full transparency). To 157 

demonstrate the functionality of the software framework, we use the newly developed web 158 

application (the resulting demonstrator) as a particular computational application. It is 159 

complemented by a model and simulation server, a TTP/pseudonymization server, and an 160 

interface to the (Research) Data Management of the hospital. Fig 2 shows the overall design 161 

of the framework and illustrates the processes of data provision and access, that are described 162 

below.  163 
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 164 

Fig 2. Data provision and access of the generic software framework: The Application Database contains exclusively 165 

pseudonymized medical data transferred by the data transfer point of the hospital’s (Research) Data Management (I) and 166 

pseudonymized model predictions of particular computational models calculated by a model and simulation server for 167 

modelling and analysis (II) through scheduled tasks. Authorized researchers can retrieve the pseudonymized medical data and 168 

model predictions (A). For authorized clinicians, who have to be able to retrieve identifying medical data and model predictions 169 

(B) in clinical practice, a reidentification step (III) through the Trusted Third Party has been integrated. 170 

Medical data, as input for data analysis and the calculation of model predictions, are provided 171 

by a (Research) Data Management (cf. Figs 1 and 2I). This can be any database or data 172 

warehouse storing medical data from (various) primary data sources, or also the primary data 173 

source itself (cf. Fig 1). Only a suitable data distribution has to be established. Here, the 174 

(Research) Data Management transfers exclusively pseudonymized data. No patient-175 

identifying data is stored in the Application Database. After the provision of new or updated 176 
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medical data, new computer simulations are scheduled periodically or event-driven. The 177 

results are provided by the Model and Simulation Server and transferred to the Application 178 

Database (Fig 2II). In this way, we ensure that the Application Database contains up-to-date 179 

simulation results/model predictions based on the most recent pseudonymized medical data. 180 

The data access is regulated by a role-based Access and Rights Management to establish 181 

different views on the data, e.g., trial-specific roles or department-specific roles. Members of 182 

the trial-specific roles can survey a whole spectrum of pseudonymized patients from one or 183 

more specific clinical trials, potentially involving different sites (see section Research view).  184 

Members of the department-specific role (e.g., haematology) have permission to access to the 185 

full data set of his/her patients treated in the particular center (see section Clinic view). In the 186 

treatment context, the reidentification of pseudonymized medical and simulation data is 187 

performed by the TTP (Fig 2III). 188 

The resulting demonstrator  189 

To demonstrate the generic software framework (cf. Generic overall design and data flows), 190 

we: 191 

a) integrated a specific implementation of a model and simulation server (termed MAGPIE (19)) 192 

to manage and execute computational models. 193 

b) equipped MAGPIE with two mathematical models from the field of haematology (chronic 194 

myeloid leukemia, CML). 195 

c) integrated the MOSAIC TTP server for identity, consent and pseudonym management. 196 

d) added fictitious patients to the identity management module (E-PIX) of the MOSAIC TTP server 197 

for illustration purposes. 198 

e) equipped the consent management module (gICS) of the MOSAIC TTP server with informed 199 

consents for various CML trials (Research view) and the data usage within the haematological 200 

treatment context (Clinic view). 201 
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f) generated pseudonyms for each informed consent form using the pseudonym management 202 

module (gPAS) of the MOSAIC TTP server. 203 

g) designed ETL processes for transferring the medical data into the “Application database” that 204 

are needed for the specific analyses and model predictions. 205 

h) implemented a role-based user and access management and established roles for the “Clinic 206 

view” and “Research view” presentation. 207 

The resulting demonstrator is available at https://tu-dresden.de/med/demoserver. A detailed 208 

description of the demo server can be found in the following sections and the demo server 209 

walkthrough video (S1 File). 210 

Access control 211 

The demonstrator offers a role-based user and access management and can be adjusted to 212 

reflect department-specific roles (e.g., to be accessible for the Haematology Department) and 213 

trial-specific roles (to be limited to units involved in a given clinical trial e.g., the “Demonstrator 214 

CML Test Trial”). Each role corresponds to a consent implemented in the gICS module of the 215 

MOSAIC TTP server. This ensures that only data from patients who gave their written consent 216 

to the respective use are finally provided. Depending on the specific role, the user interface 217 

menu provides access to patient-specific data within a treatment context (here within the 218 

haematological treatment context; see section Clinic view) and/or to pseudonymized data of 219 

particular trials (see section Research view). For testing purposes, the resulting demonstrator 220 

provides guest accounts with the ability to switch between the department specific and the 221 

trial-specific roles. 222 

Clinic view 223 

Depending on the user role and the corresponding consent of the gICS module of the MOSAIC 224 

TTP server, the user can search for identifying patient data via a particular search form. For 225 

testing and demonstration purposes, the identity management module of the MOSAIC TTP 226 
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server is equipped with a selection of fictitious patients, inspired by but not identical to patient 227 

time courses from the DESTINY trial (NCT01804985, (20)). 228 

Once a particular patient had been identified, the gPAS module of the MOSAIC TTP server 229 

provides the pseudonym, which is then used to retrieve the medical data and/or the computer 230 

simulation results from the Application Database (re-identification, see Fig 2III). 231 

The “Clinic view” (Fig 3) presents the current medical data (D) and the latest model predictions 232 

(E) of the requested patient visualized in a dashboard (C1). The prediction of the recurrence 233 

probability after stopping the TKI treatment based on the model “Molecular monitoring during 234 

dose reduction” (cf. Computational models and analytics of the resulting demonstrator), is 235 

presented in a simplified and optionally in an expert view (E1 and E2). The current medical data 236 

can be also retrieved and downloaded in form of a table view (Fig 3C2). Finally, the complete 237 

history of calculated computer simulation/model prediction can be followed (Figs 3C3 and 4), 238 

which allows an audit trail functionality of the computational results. Fig 4 shows a model-239 

predicted immune classification based on the “Estimation of immunological leukaemia control” 240 

(cf. Computational models and analytics of the resulting demonstrator). For further details 241 

about the computational models see section Materials and Methods and the implementation 242 

of the demo server at https://tu-dresden.de/med/demoserver. 243 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.10.22280912doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.10.22280912
http://creativecommons.org/licenses/by/4.0/


 244 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.10.22280912doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.10.22280912
http://creativecommons.org/licenses/by/4.0/


Fig 3. Clinic view: After searching for a patient by identifying data (A) and re-identification (B) of the pseudonymized medical 245 

data and simulation results, the latest medical data (D) and model predictions (E) are visualized as simplified and/or expert 246 

view (E1 and E2) in a dashboard (C1). Furthermore, the current medical data can be displayed and downloaded in table form 247 

(C2) and all previous predictions can be retrieved, too (audit trail compatibility, (C3) and Fig 4). 248 
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 249 

Fig 4.: Audit trail functionality: Availability of every executed computer simulation/model prediction 250 
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Research view 251 

Controlled by the access management, the resulting demonstrator additionally offers the ability 252 

to access pseudonymized data (e.g., from clinical trials) and corresponding, aggregated 253 

analyses and simulation/model results (see Fig 5). The demo server yields clinical data sets 254 

from several trials from the field of haematology, specifically recent CML trails. Depending on 255 

the particular permission status, the user can or cannot access the detailed information of a 256 

given clinical trial. 257 

  258 

Fig 5. Research view – List of collected trials: Dependent on permission, the user can retrieve the detailed information of a 259 

trial, here the guest researcher is only able to retrieve the pseudonymized data and computer analyses of the “Demonstrator 260 

CML Test Trial”. 261 

The “Detail View” of a specific clinical trial, here the “Demonstrator CML Test Trial” (see Fig 262 

6), provides general information (A), the ability to access and download the pseudonymized 263 

medical data (B) and finally, the summary statistics and graphical illustrations for aggregated 264 

data (C). Further information about the analyses is provided in the section Example statistics. 265 

We wish to emphasized that the specific data analytics serve as an example to demonstrate 266 

the general ability of the framework, which can be flexibly extended or adapted to other 267 
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further/different computational analytics and graphical representations according to the needs 268 

of the physician and/or researcher. 269 

 270 
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Fig 6. Research view – Details of a trial: This detailed view consists of general information (A), the ability to retrieve and 271 

download the current pseudonymized medical data (B) and the visualization of particular medical data and analysis on 272 

aggregated data (C). 273 

Materials and Methods 274 

Software environment of the demonstrator 275 

We used the high-level Python Web framework Django (21, 22) to build the frontend web 276 

application. Django provides robust security features, a user authentication system, and a fully 277 

featured admin interface. 278 

The computer simulations (e.g., model predictions) are generated using an instance of the 279 

model and simulation server MAGPIE, which is a software framework, designed for publishing 280 

and executing computational models. MAGPIE also offers a full reproducibility of the calculated 281 

model predictions (i.e., audit trail functionality). For parameterization and execution of 282 

computational models and simulations, the “MAGPIE-API-R” package (19) is used. For a 283 

detailed description of the MAGPIE framework and implementation, we refer to Baldow et al. 284 

2017 (23). 285 

The Python framework Plotly/Dash (24) is used to build the interactive visualizations of medical 286 

and simulation results, which are seamlessly embedded in the frontend application. 287 

For identity, consent, and pseudonym management, which are accomplished by the TTP, the 288 

MOSAIC Toolbox (25), consisting of E-PIX (Identity Management Module), gICS (Consent 289 

Management Module), gPAS (Pseudonym Management Module) and the TTP dispatcher 290 

(TTP Workflow Manager Module) developed within the MOSAIC project (26) are used. The 291 

reidentification of pseudonymized data is performed by accessing the TTP Dispatcher (18) 292 

using the representational state transfer protocol (REST). 293 

The demonstrator is based on an Apache HTTP Server (27) and uses PostgreSQL (28) as a 294 

database backend. 295 
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Computational models and analytics of the demonstrator 296 

In the described demonstrator, two mathematical models for predictions on a patient level and 297 

a statistical analysis on aggregated data (see below for details) have been implemented for 298 

demonstration purposes. The framework itself is not restricted to these two particular models. 299 

It allows the deployment of different mathematical models and other algorithms, as long as 300 

they are registered in the MAGPIE model database, and feeding generated model predictions 301 

into the described workflow. There is no general restriction, neither on the model type nor on 302 

the particular implementation/programming language. 303 

Example model 1: Molecular monitoring during dose reduction in CML patients 304 

The DESTINY trial (#NCT01804985) investigated whether a reduction of tyrosine kinase 305 

inhibitor (TKI) dose in CML patients prior to treatment stop can lead to better treatment-free 306 

remission rates compared to full dose treatment (29). Based on a reanalysis of these molecular 307 

response data, we showed that an increasing BCR-ABL level during the dose reduction phase 308 

is indicative for CML recurrences after TKI stop and can be used to risk-stratify patients prior 309 

to treatment cessation (5). Given the individual molecular monitoring data during dose 310 

reduction, the statistical model implemented within the resulting demonstrator calculates the 311 

local slope parameter of the BCR-ABL dynamics and provides a prediction of the patient-312 

specific recurrence probability (5). 313 

Example model 2: Estimation of immunological leukaemia control 314 

We also developed a mathematical model of CML-immune interaction (30), which can be fitted 315 

to available time course data of TKI-treated CML patients and after therapy stop. We showed 316 

that qualitatively different dynamic treatment response patterns can be characterized in the 317 

context of a mathematical model by different stable steady states, describing the individual 318 

immune response (31). The different steady states can be interpreted as “immune classes”. 319 

Specifically, we distinguish between an insufficient immune response (class A) for which a TKI 320 

stop does not seem to be appropriate, a sufficient immune response for which one can expect 321 
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leukaemia control after a TKI stop (class B), and a weak immune response (class C) for which 322 

the effectiveness of the immune response cannot be clearly predicted. For a given set of data 323 

(as provided within the demonstrator framework), this model can be used to infer patient-324 

specific immune parameters and, therefore, to estimate a probability for his/her assignment to 325 

the three immune classes. As the estimated immune parameter are correlated with the 326 

patients’ recurrence behaviour after treatment cessation, this classification can be used to 327 

support the decision-making with respect to TKI stopping. 328 

Example statistics: Estimating median time courses 329 

To evaluate particular patient-specific disease dynamics e.g., in comparison with an overall 330 

response pattern (e.g., across different studies), one can aggregate data from patient groups 331 

or trials. As an example, we calculate and visualize the median and interquartile ranges of the 332 

quantitative molecular measurements at different time intervals during treatment (see (32)). 333 

This feature is based on pseudonymized data and can be used also outside the treatment 334 

context (research view) for all data that are accessible for the particular user (cf. access 335 

control). 336 

337 
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Discussion 338 

We have investigated how data analytics, specifically mathematical model predictions and 339 

computer simulation results can be integrated into a clinical routine environment to support 340 

clinical decision-making at an individual patient level and, simultaneously, support scientific 341 

research at the level of pseudonymized data. In particular, we examined how quality-assured 342 

and harmonized health data from multiple decentralized clinical data sources can be provided 343 

to multiple users (in different contexts) for analyses processing (e.g., modelling/simulation) and 344 

how analytic results (e.g., mathematical model predictions) can be returned for direct 345 

application in clinical practice, ensuring data protection and ethical requirements. 346 

As a result, a generic software framework (c.f. Fig 2) was designed that allows for seamless 347 

integration of computational applications into a common concept of Data Management in 348 

hospitals. Specifically, we demonstrate the integration and use of a particular application, 349 

denoted as “Integration of computational models and analytics”. The application can also be 350 

regarded as a generic “container” of a variety of different computational sub-351 

application/algorithms. 352 

In our particular example, we integrated two mathematical models, which provide different 353 

simulation-based predictions for disease and treatment dynamics in individual patients, in the 354 

context of TKI-treated CML. Our approach assumes that the data needed for these particular 355 

models are available in a (Research) Data Management System. In our specific examples, 356 

these are BCR-ABL/ABL time courses as molecular diagnostic data as well as TKI therapy 357 

information. We also assume that a pseudonymization service is established to provide and 358 

manage the particular patient-identifying data, application-specific consents and pseudonyms. 359 

Our work continuous earlier efforts to demonstrated how mathematical model predictions and 360 

analytics can be integrated into a specific clinical information system (CIS) (15). In contrast to 361 

these previous studies, we are now presenting a stand-alone Clinical Decision Support System 362 

(CDSS) that is intrinsically connected to a (Research) Data Management System (c.f. Fig 1) 363 
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to retrieve all required medical data. The novel aspect of our current approach lies in the 364 

simultaneous provision and usage of health data in both clinical and research contexts 365 

(depending on the particular user context). It is not limited to the outlined molecular time course 366 

data but can be used for a wide range of health data (e.g., from various CIS, laboratory 367 

systems, biobanks) to be integrated for joined analyses, simulations and visualizations. This 368 

simultaneous usage is particularly beneficial for clinician scientists in the treatment context 369 

since all relevant medical information is available from various primary data sources within a 370 

unified and dedicated framework. Our general concept is also flexible in terms of the 371 

computational models to be integrated. Future research should therefore investigate what 372 

content and requirements are necessary for a user-friendly CDSS within a medical speciality. 373 

Furthermore, usability studies can be used to improve the layout and functionalities.  374 

Another important advancement of the presented framework is the integration of an 375 

independent Trusted Third Party/pseudonymization service as a core element of the research 376 

data management infrastructure. Like others (17, 18, 33), we illustrate how health care data 377 

can be used for scientific research compliant with data protection. However, to our knowledge, 378 

this is the first example to illustrate that this service can also be used to provide patient-specific 379 

findings in a backwards manner to directly support clinical decision-making. As of now we are 380 

only aware of two pseudonymisation services (25, 34) while only one of them (the MOSAIC 381 

Tools) offers the necessary functionalities within our framework (i.e. identity, consent and 382 

pseudonym management). Advantages of other pseudonymization services should be 383 

addressed in future research projects. 384 

In summary, this paper illustrates and describes how data analytic results, particularly in silico 385 

predictions, can be seamlessly integrated into workflows for simultaneous use in research and 386 

clinical care routines. We believe that the presented software framework is an ideal basis for 387 

further, even commercial developments and the transfer into clinical practice. While we 388 

extensively discussed the joined provision of both data and models in a clinical context, we did 389 

not elaborate on how the model predictions can actually be compared with future treatment 390 
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outcomes. Such comparison is another step that iteratively contributes to the validation and 391 

continuous improvement (possibly automated by artificial intelligence) of the models. 392 
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