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Abstract 45 

Self-reported nutrition intake (NI) data are prone to reporting bias that may induce bias in estimands in 46 

nutrition studies; however, they are used anyway due to high feasibility. We examined whether applying 47 

Goldberg cutoffs to remove “implausible” self-reported NI could reliably reduce bias compared to 48 

biomarkers for energy, sodium, potassium, and protein. Using IDATA data, significant bias in mean NI was 49 

removed with Goldberg cutoffs (120 among 303 participants excluded). Associations between NI and 50 

outcomes (weight, waist circumference, heart rate, systolic/diastolic blood pressure, and VO2 max) were 51 

estimated, but sample size was insufficient to evaluate bias reductions. We therefore simulated data based on 52 

IDATA. Significant bias in simulated associations using self-reported NI was reduced but not eliminated by 53 

Goldberg cutoffs in 14 of 24 nutrition-outcome pairs; bias was not reduced for remaining cases. 95% 54 

coverage probabilities were improved by applying Goldberg cutoffs in most cases but underperformed 55 

compared with biomarker data. Although Goldberg cutoffs may achieve bias elimination in estimating mean 56 

NI, bias in estimates of associations between NI and outcomes will not necessarily be reduced or eliminated 57 

after application of Goldberg cutoffs. Whether one uses Goldberg cutoffs should therefore be decided based 58 

on research purposes and not general rules. 59 

Impact Statement: Elimination of extreme reporters using Goldberg cutoffs does not always produce 60 

unbiased estimates of associations between nutrition intakes and health outcomes.   61 
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INTRODUCTION 62 

Measuring nutrition intake plays a pivotal role in obesity and nutrition studies. However, objectively 63 

measuring nutrition intake is not easy. Under natural settings with less restriction, two approaches are often 64 

used: self-report and biomarkers. Biomarker approaches are considered more accurate compared with self-65 

report; however, they are typically expensive and require special equipment for each nutrient. Self-report 66 

approaches are less expensive and do not require special laboratory equipment or techniques, and can be 67 

applied to the measurement of any nutrition components from macronutrients (i.e., carbohydrates, fat, and 68 

protein) to micronutrients (i.e., minerals and vitamins); however, self-reported data are known to be fraught 69 

with bias (1, 2). 70 

Consider the example of biomarker versus self-report energy intake. Energy intake (EI) is defined as 71 

a sum of the total metabolizable energy content of consumed foods and beverages (3). EI can be measured 72 

using biomarkers, especially by energy balance approaches in which respiratory gas analysis or doubly 73 

labeled water (DLW) are used for the calculation of energy expenditure (EE) (4). EI can be calculated using 74 

EE accounting for change in energy stores (i.e., body composition) during the period of measurement. The 75 

respiratory gas analysis typically requires the participants to wear a gas mask or stay in a metabolic chamber 76 

(5), which restricts participants’ behavior; thus, the measured EI using the respiratory gas analysis may not 77 

reflect EI from habitual eating behavior. DLW requires the participants to visit the laboratory to drink 78 

labeled water enriched with stable hydrogen and oxygen isotopes and collect urine for measurement of 79 

isotope levels. It is considered to reflect habitual eating behavior and widely accepted as a standard and 80 

reliable approach in measuring EI in free-living individuals (6-8). However, given the high cost of isotopes 81 

and laboratories to analyze collected urine, DLW is not practical in large-scale epidemiological surveillance 82 

(9).  83 

EI measured using self-report approaches (EISR) is computed by summing up the energy intake from 84 

foods and beverages reportedly consumed during the period of measurement, which can commonly range 85 

from a day to a year depending on approaches (e.g., 24-hour recall, food diary, and food frequency 86 
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questionnaire) (10-12). Given that self-report approaches are low cost and scale-up relatively easily, EISR is 87 

still widely used in epidemiological studies. However, EISR is biased compared with the EI measured by 88 

biomarker such as DLW (EIBIO) (1) and is discouraged from use to estimate actual EI (2). The mechanism 89 

behind the reporting bias in EISR has been argued elsewhere. For example, EISR is computed from the 90 

information of reported foods and beverages using tables of food and beverage nutrients, composed of 91 

weights, calories, and the amount of macro- and micronutrients. Compositions of foods and beverages are 92 

different among brands, stores, and seasons (13), and thus nutrient databases cannot be exhaustive. 93 

Consequently, EISR using such databases may not be accurate (14).  Further factors, including social 94 

desirability (i.e., people do not want to be seen as a “big eater” in general) (15) and weight/social status (15-95 

19), are known to be associated with reporting bias. Thus, the difference between EIBIO and EISR is due to 96 

systemic biases rather than a random error. 97 

Despite concerns about the accuracy of self-report approaches, they have been predominantly used in 98 

large scale nutrition epidemiology due to their high feasibility. Approaches to mitigate the bias in EISR have 99 

been argued, including commonly used approaches to exclude the data of EISR that are considered unreliable. 100 

For example, one approach is to exclude those reporting EISR out of the range considered by the researchers 101 

to be plausible, such as from 500 to 3500 kcal/day (9). However, this rule does not consider individual 102 

variability and is not appropriate for those whose intake is truly above 3500 kcal/day, such as elite athletes 103 

or those whose body size is large and requires more than 3500 kcal/day to maintain their weight (20, 21). 104 

Other approaches are to use EE prediction equations to account for individual variability in EI (22-105 

28). If the EE predicted considering various factors (e.g., age, weight, sex) is far from EISR, those individuals 106 

are considered under/overreporting their actual EI. Indeed, such an approach has evidently reduced 107 

misclassification (29). Among proposed approaches, the Goldberg cutoffs (30) have been used in nutrition 108 

epidemiology to assess nutritional status in specific populations and investigate the association between 109 

nutritional status and health and socioeconomic outcomes (25-28, 31). Note that nutritional status in this 110 

context means dietary intakes in general; not only EI but also nutritional constituents (vitamin, fish oil, etc.) 111 

and dietary styles (Mediterranean, vegan, etc.) (32-36). Therefore, the rationale of using the Goldberg 112 
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cutoffs (and other similar approaches) to exclude data from individuals considered to have unreliable EISR is 113 

based on an assumption, “if total EI is underestimated, it is probable that the intakes of other nutrients are 114 

also underestimated” (37). The corollary for overestimation may also be true. 115 

Bias-correcting approaches like the Goldberg cutoffs are frequently used in nutrition studies. By bias, 116 

we are referring to the difference between the estimates and their true values. Here we focus on two typical 117 

estimands in nutrition epidemiology: the mean of nutrition intake, and the associations between nutrition 118 

intake and health outcomes in a population. However, whether the Goldberg cutoffs reduce bias has not been 119 

proved theoretically or empirically. In our previous study, we demonstrated that the Goldberg cutoffs do not 120 

necessarily eliminate the bias in estimating the associations between EI and various health outcomes (38). 121 

Extending our previous study, we consider nutritional intake beyond EI to include biomarkers of sodium, 122 

potassium, and protein with the primary goal to examine if the Goldberg cutoffs eliminate or reduce the bias 123 

using a single dataset.  124 

Evaluating the performance of the Goldberg cutoffs solely depending on a single empirical dataset is 125 

limited because the dataset is a single realization from an unobserved data-generation process. Further, if the 126 

dataset is too small, conclusions may be limited because of issues related to power to detect bias in 127 

associations or the power to detect reductions in bias. Therefore, in addition to the empirical data analyses 128 

above, we also generated data through simulation and analyzed those generated data that preserve the 129 

characteristics of the empirical data. The simulation further enables us to assess the impact of sample size on 130 

the performance of the Goldberg cutoffs.  131 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.16.22281148doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281148
http://creativecommons.org/licenses/by/4.0/


 

7 
 

RESULTS 132 

1. Statistical data analysis on IDATA 133 

The list of variables, equations, and metrics is available in Table 1. Abbreviations are summarized in 134 

Supplemental Table 1. 135 

The impact of the Goldberg cutoffs on the reporting bias in nutrition intake 136 

Table 2 summarizes the data included in the analyses (n=303). More than 90% of the participants are 137 

non-Hispanic whites, and their mean age was 63. The mean BMI was 27.7 kg/m2, and 30% had obesity 138 

(BMI≥30). There was significant mean underreporting in which the biomarker nutrition intakes (NIBIO) was 139 

greater than the self-reported nutrition intakes (NISR) in all four types of nutrition intake (Table 2). 140 

By the Goldberg cutoffs, 120 among 303 participants were excluded (40%) (Table 3). There was 141 

significant underreporting in the rejected cases, whereas reporting bias (NISR - NIBIO) was not significant in 142 

the accepted cases in all four NI. Further, the difference in the biases between the accepted and the rejected 143 

cases was significant. The mean NISR in the accepted cases was significantly larger than that in the rejected 144 

cases in all four NI. NIBIO was significantly larger in the rejected cases in sodium intake (SI), whereas it was 145 

comparable between those groups in energy intake (EI), potassium intake (PoI), and protein intake (PrI). To 146 

further understand the dependency of the bias on NIBIO and the impact of the Goldberg cutoffs on the bias, 147 

the individual data were plotted (Figure 1). The bias was significantly and negatively correlated with NIBIO 148 

(Figure 1 top panels). The means of accepted cases of NISR correspond to the mean of NIBIO better than the 149 

mean of NISR in the rejected cases (Figure 1 bottom panels).  150 

These findings suggest that the Goldberg cutoffs reduce (and may eliminate) the bias in mean NISR 151 

by identifying predominantly underreporting individuals. The difference in self-reported nutrition intake 152 

between accepted and rejected cases is predominantly from differences in reporting and less so from 153 

differences in actual biomarker-measured intake. However, statistically significant differences in biomarker-154 

measured intake remained between accepted and rejected cases in SI. 155 
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 156 

Associations between nutrition intake and health outcomes 157 

The associations between EIBIO, SIBIO, and PrIBIO and WC were statistically significant (Supplemental 158 

Figures 1 and 2 and Supplemental Table 2). PoIBIO was significantly associated with VO2. Assuming that 159 

the biomarker-based health outcome associations ( 𝛽ேூಳ಺ೀ,ுை ) and self-report-based health outcome 160 

associations (𝛽ேூೄೃ,ுை) are different, the associations of health outcomes with self-report after applying the 161 

Goldberg rule (𝛽ேூಸ,ுை) are expected to be between raw self-report and biomarker-based exposures. In other 162 

words, the Goldberg cutoffs are supposed to reduce the bias: 𝛽ேூಳ಺ೀ,ுை < 𝛽ேூಸ,ுை < 𝛽ேூೄೃ,ுை or 𝛽ேூಳ಺ೀ,ுை >163 𝛽ேூಸ,ுை > 𝛽ேூೄೃ,ுை). We first tested whether bias exists for each nutrition-health outcome pair, and, if so, 164 

whether the bias is overestimation or underestimation, using percent bias (𝑏). The percent bias (𝑏) was 165 

significantly below 0% (underestimation) in only limited cases (EI and BW, and EI and WC) and we could 166 

not conclude whether the bias exists or not for the rest of the cases. Significant overestimation (𝑏 > 0) was 167 

not observed in any cases (the left panel in Figure 2 and Supplemental Table 2). Note that significant 168 

underestimation from self-report was observed in the cases with significant associations in nutrition intake 169 

estimated from biomarkers and health outcomes. Second, we tested whether the bias remains after applying 170 

the Goldberg cutoffs, and, if so, whether it is overestimation or underestimation, using the percent remaining 171 

bias (𝑟). The bias was reduced (|𝑟| < 100) but remained (𝑟 ≠ 0) for the association between EI and BW, 172 

and between EI and WC. We could not again conclude whether the bias exists or not after applying the 173 

Goldberg cutoffs for the rest of the cases. 174 

From the above data analyses, we could not conclude that the Goldberg cutoffs do or do not remove 175 

the bias in most cases, because of the wide confidence intervals, which could be partially due to the sample 176 

size of the data and weak associations between some combinations of NI and HO. 177 

 178 

2. Simulation 179 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.16.22281148doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281148
http://creativecommons.org/licenses/by/4.0/


 

9 
 

To strengthen the arguments on the performance of the Goldberg cutoffs, we also generated and 180 

analyzed data which preserve the characteristics of the IDATA. The simulation was designed to overcome 181 

the sample size limitations of IDATA, but keep the structure and nature of the IDATA. 182 

Performance metrics (bias, MSE, and coverage probability) for all the combinations between NI and 183 

HO are shown in Figure 3. For each performance metric, the mean across the 1,000 simulation replicates is 184 

shown. We confirmed the generated biomarker data were consistent with the IDATA (Supplemental Figure 185 

3). The bias for all biomarker simulations was close to 0 (red squares in Figure 3). For all four NI, the 186 

associations with HR were negative and those with the other outcomes were positive (Supplemental 187 

Figures 1 and 2). For the cases with positive correlation, the positive bias in 𝛽ேூೄೃ,ுை was observed, and for 188 

the cases with negative correlation, the negative bias in 𝛽ேூೄೃ,ுை  was observed, suggesting that the self-189 

reported data cause attenuation bias (i.e., ห𝛽ேூೄೃ,ுைห < ห𝛽ேூಳ಺ೀ,ுைห) as observed in many studies (51). After 190 

application of the Goldberg cutoffs, the bias was reduced in 14 among 24 combinations of NI and HO. 191 

Notably, the bias was reduced in all six outcomes and reduction was large when EI is used as a predictor. 192 

When SI, PoI, and PrI are used as predictors, the bias was not much changed by applying the Goldberg 193 

cutoffs. In most cases, the MSE was also smaller for NIBIO compared with NISR, and the MSE for NISR 194 

became smaller after applying the Goldberg cutoffs (Figure 3). The coverage probabilities (cp) were close 195 

to 95% when NIBIO was used as a predictor, as was expected, whereas it was mostly lower than 95% when 196 

NISR was used. The coverage probability increased by applying Goldberg cutoffs; however, it is still lower 197 

than 95% in most cases. We repeated the simulation for other values (𝑛 = 50, 100, 200, and 300) of sample 198 

size and all cases showed similar results (Supplemental Figure 4). We ran sensitivity analyses varying 𝜂, 199 

an error term for the regression between NI and HO, and 𝜎, the standard deviation of the reporting bias 200 

(Supplemental Figure 5). Biases were not affected by varying 𝜂 for the range of values we considered, 201 

suggesting that error in health outcomes (or variance in health outcomes which cannot be explained by 202 

variance in biomarker-based nutrition intake) does not influence NI-HO association estimations where NI is 203 

used as an independent variable. Bias was negative when self-reported data (𝑁𝐼ௌோ or 𝑁𝐼 ) were used under 204 

the default value of σ, and the magnitude of bias increased as σ increased (i.e., the association was 205 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.16.22281148doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281148
http://creativecommons.org/licenses/by/4.0/


 

10 
 

attenuated). However, when the error is extremely small (e.g., σ=0.25 in Supplemental Figure 5), the bias 206 

becomes positive, which is because the mean error function (𝜇) was negative at low NI and positive at high 207 

NI, thus the association was intensified. Whether or not the bias becomes positive or negative is determined 208 

by the balance between the mean error function and random error. 209 

 210 

DISCUSSION 211 

 Dietary self-reporting is a basic component of nutrition epidemiology, particularly for studies of 212 

nutrition-health relationships. However, reporting bias in nutrition intake is perhaps one of the greatest 213 

impediments to understanding the true effect of nutrition on disease. Failure to account for this bias in self-214 

reports can affect the analysis and interpretation of studies designed to assess the influences of nutrition on 215 

health. Correlation or regression coefficients estimating associations between self-reported nutrition intakes 216 

and health outcomes can be subject to substantial error (52, 53). To address such reporting bias issues, there 217 

has been increased interest in the use of statistical models in conjunction with biomarker data (54, 55).  218 

In this study, reporting bias in self-reported nutrition intake was demonstrated using both empirical 219 

data analysis and a simulation study. We first examined whether the bias in mean nutrition intake and the 220 

bias in the associations between nutrition intake and health outcomes are reduced by applying the Goldberg 221 

cutoffs to an empirical dataset, IDATA. We confirmed the bias in mean self-reported nutrition intake was 222 

eliminated by applying Goldberg cutoffs to exclude extreme reporters (mostly under-reporters). This bias 223 

can be mostly explained by differences in reporting between the accepted and rejected cases rather than a 224 

difference in actual nutrition intake between the accepted and rejected cases. We further tested whether the 225 

associations between health outcomes and nutrition intake are biased when self-reported data are used, and 226 

whether the bias is reduced by applying the Goldberg cutoffs. The significant bias for the associations 227 

between EI and BW and the association between EI and WC were reduced but remained after applying 228 

Goldberg cutoffs. We did not observe significant bias in associations for other nutrition-outcome pairs, and 229 
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therefore cannot make conclusions regarding the utility of applying the Goldberg cutoffs to reduce bias for 230 

these associations in the empirical data. 231 

To overcome the limitations of the data (i.e., sample size and weak associations among many 232 

nutrition-outcome pairs), we generated and analyzed data preserving the characteristics of the IDATA for 233 

the assessment of the Goldberg cutoffs. We confirmed the existence of bias in estimated associations when 234 

the self-reported data were used, and these biases were reduced, but not eliminated, by applying the 235 

Goldberg cutoffs in general. We also confirmed large MSE and low coverage probability when self-reported 236 

data were used; MSE and low coverage probability were improved by using Goldberg cutoffs, but were not 237 

recovered to the levels of biomarker data. Overall, the empirical data analyses and the simulation study 238 

suggest that the Goldberg cutoffs improve the estimates in nutrition-health outcome associations; however, 239 

the biases were not completely removed.  240 

This study has several strengths. First, although energy intake has traditionally been studied more 241 

with respect to Goldberg cutoffs, herein we also investigated three other nutrition intakes: sodium, 242 

potassium, and protein. In our previous study, we used only energy intake as a predictor (38). However, 243 

given that the Goldberg cutoffs are believed to reduce the bias in nutrition intake broadly, we expanded the 244 

approach to these other nutrition intakes, which can be measured by biomarkers (37). Second, we conducted 245 

the simulation in addition to empirical data analyses. There are two advantages of the simulation design. 1) 246 

The data generation process was based on the IDATA dataset. Thus, we were able to simulate datasets 247 

reflective of those that would be seen in the real world. Both the sample size of the generated dataset and the 248 

variables that we considered are reflective of what is often observed in nutrition studies. 2) Simulation can 249 

consider different models for the data-generating process. Although our objective was not to disentangle the 250 

underlying data generation mechanisms, we were able to generate data that preserve the characteristics of 251 

the IDATA. 252 

The limitations of this study are worth noting. In the analysis of IDATA, we used only bivariate 253 

associations for nutrition-health outcomes. It is possible that including various covariates or different models 254 
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may influence the existence or lack of bias in nutrition-health associations. In the data-generation process for 255 

the simulations, assumptions were made on parameter settings. The reporting bias was set to be normally 256 

distributed. Modeling the bias using other distributions (such as a heavier tailed distribution that may be 257 

more consistent with a zero-bounded intake) may improve model fit, and thus generated more realistic data. 258 

We simulated the bias with constant variance, consistent with the apparent stability of variance across the 259 

intake quantiles in Supplemental Figure 6 and Supplemental Table 4; however, modeling the variance as 260 

a function of intake quantile may alter the data-generating process. We used the self-reported nutrition 261 

intake reported by ASA24, as it reflects recent dietary intake. The bias we observed in this study may be 262 

different for other self-report methods. Finally, the simulation approach, although based on the IDATA, was 263 

nonetheless generated from a limited sample size. We are not aware of thresholds for sufficient sample size 264 

for empirical-data-based simulation, and we have had success with smaller plasmode based sampling in the 265 

past(56, 57); however, it is possible a larger, more representative, or more robust empirical data set may 266 

influence both the empirical and simulated results. Further as the data was from a single population in which 267 

white and relatively older people are predominant, generalizability of the study finding should be carefully 268 

considered. 269 

In conclusion, we found that the Goldberg cutoffs reduce and eliminate the bias in mean nutrition 270 

intake in the IDATA dataset; however, the bias in the associations between nutrition intake and health 271 

outcomes, when they exist, can sometimes be reduced but not eliminated by the Goldberg cutoffs in both 272 

empirical and simulated results. Investigators considering excluding extreme reporters in epidemiological 273 

studies should consider whether such approaches are likely to be helpful in answering their specific research 274 

questions, as our study has shown that such cutoffs are more useful in estimating mean nutrition intakes than 275 

in studies of associations between nutrition intake and health outcomes.  276 
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 277 

MATERIALS AND METHODS 278 

We conducted a set of empirical analyses to assess the reporting bias due to self-report and examine 279 

whether the Goldberg cutoffs reduce reporting bias using the data from The Interactive Diet and Activity 280 

Tracking in the American Association of Retired Persons (IDATA) study (39). The reporting bias in the 281 

mean of nutrition intakes and the associations (regression coefficients) between nutrition intakes and health 282 

outcomes were assessed. We also conducted a simulation study to investigate the performance of Goldberg 283 

cutoffs using the results from the empirical analyses as ground truth. Note that in data analyses, we assumed 284 

the estimates from biomarkers are the true values, since the true values (i.e., population parameters) are 285 

unobservable.  286 

Among various nutrition intakes (NI), we considered sodium intake (SI), potassium intake (PoI), and 287 

protein intake (PrI) in addition to energy intake (EI). These NI were selected because they can be measured 288 

by urine samples as well as self-reports. We denote self-reported NI by NISR: EISR, SISR, PoISR, and PrISR. 289 

We denote biomarker-based NI by NIBIO: EIBIO, SIBIO, PoIBIO, and PrIBIO. The NISR data remaining after 290 

applying the Goldberg cutoffs (hereafter, we call those ‘accepted cases’) are denoted by NIG: EIG, SIG, PoIG, 291 

and PrIG. Health outcomes (HO) that may be associated with NI were selected from the data dictionaries; 292 

body weight (BW), waist circumference (WC), heart rate after fitness test (HR), resting systolic blood 293 

pressure (SBP), resting diastolic blood pressure (DBP), and VO2 max (VO2). The estimated regression 294 

coefficients are denoted by the subscript of the explanatory variables and the health outcomes (e.g., 𝛽ாூೄೃ,,஻ௐ 295 

represents the association between self-reported EI and body weight).  296 

Goldberg cutoffs 297 

The Goldberg cutoffs are an approach to identify those who report low or high energy intake that, if 298 

sustained across long periods of time, would be implausible to sustain life (for underreporting) or present 299 

weight (for overreporting), by comparing the reported EI and the energy expenditure (EE) predicted from 300 

body composition and physical activity level (30). First, EE is predicted as a product of physical activity 301 
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level (PAL) and basal metabolic rate (BMR): EE=PAL*BMR. PAL is assumed to be 1.75 (40). BMR is 302 

predicted using fat-free mass (41): BMR = 370 + 21.6 * FFM. Second, the ratio of EISR and predicted EE is 303 

computed and examined whether it is in a reasonable range: 𝑒ିଶ∗ ೄభబబ<EIௌோ: EE < 𝑒ଶ∗ ೄభబబ, where 𝑆 is defined 304 

as: ට஼௏ೢ ಶ಺మௗ + 𝐶𝑉௪஻ଶ + 𝐶𝑉௧௉ଶ . 𝐶𝑉௪ாூ, 𝐶𝑉௪஻, and 𝐶𝑉௧௉ are the within-subject variation in EISR, the within-305 

subject variation in BMR, and the total variation in PAL, and 𝑑 is the number of days of diet assessment. 306 

We set 𝐶𝑉௪ாூ = 23 (%), 𝐶𝑉௪஻ = 8.5 (%), 𝐶𝑉௧௉ = 15 (%), and 𝑑 = 7 following the previous study (42). 307 

Finally, if individuals are not in the range, they were considered under- or overreporters and were excluded 308 

from further analyses. 309 

 310 

Data 311 

Overview of IDATA 312 

The IDATA study was designed “to evaluate and compare the measurement error structure of diet 313 

and physical activity assessment tools against reference biomarkers.” (39) The study participants “were 314 

recruited from a list of AARP [American Association of Retired Persons] members aged 50-74 years 315 

residing in and around Pittsburgh, Pennsylvania” (39) and were screened for eligibility by phone interview 316 

or clinic visit. The eligibility criteria were speaking English, having internet access, having no major 317 

medical issues (such as diabetes, renal/heart failure, and any conditions affecting fluid balance), having no 318 

mobility issues, and having BMI between 18.5 and 40.0 (kg/m2). The participants “visited the study center 319 

three times and also completed assigned activities at home over a 12-month period” (39) from early 2012 320 

through late 2013 (39, 43). Self-reported dietary/physical activity information, biomarker data to estimate 321 

dietary intake, and the data from physical objective monitors to estimate physical activity were collected. In 322 

addition, demographic information (age, sex, race/ethnicity) and anthropometric measurements (weight, 323 

height, and waist circumference) were obtained at a clinical visit or phone screening.  324 

Self-reported nutrition intake: NISR 325 
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For self-report dietary assessment (EISR, SISR, PoISR, and PrISR), four different approaches were used 326 

in IDATA: Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) (44), Diet History 327 

Questionnaire (DHQ-II), 7-day food checklist, and 4-day food record. These SR approaches were conducted 328 

at different times during the IDATA study. We used the data of ASA24 in our analyses because they were 329 

collected closest in time to the DLW measurements. ASA24 is an online self-administered recall system 330 

asking about a 24-hour dietary recall for the previous day, from midnight to midnight, using a dynamic user 331 

interface.  332 

Biomarker-based nutrition intake: NIBIO 333 

Three approaches were used for biomarker assessment of NI: DLW, urine, and saliva (not used 334 

herein). EIBIO was computed from DLW data, and SIBIO, PoIBIO, and PrIBIO were calculated from 24-hour 335 

urine samples. EIBIO was estimated as a sum of daily total energy expenditure estimated from DLW and 336 

daily change in energy stores during the DLW period. Total energy expenditure was calculated using the 337 

approach proposed by Schoeller et al. (6), where the respiratory quotient was assumed as 0.86. Daily change 338 

in energy stores during the DLW period (about 2 weeks) was computed from the average daily weight 339 

change during the period assuming the energy density of body weight was 2380 kcal/kg (45). The urinary 340 

values obtained from 24-hour urine samples were converted into nutrition intakes assuming that 81%, 80%, 341 

and 86% of consumed nitrogen, potassium, and sodium are excreted in the urine, respectively. Dietary 342 

protein was calculated assuming that 16% of protein is nitrogen. A more comprehensive explanation of 343 

measuring EIBIO, SIBIO, PoIBIO, and PrIBIO is reported elsewhere (46). 344 

Health outcomes 345 

From health outcomes (HO) available in IDATA, we selected objective variables that were 346 

potentially associated with nutrition intake. BW (kg) and WC (cm) were obtained at clinical visits; HR 347 

(beat/min after fitness test), SBP (mmHg), DBP (mmHg), and VO2 max (L/min) were obtained by the 348 

modified Canadian Aerobic Fitness Test (mCAFT) (47). 349 

Summary of the data 350 
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In IDATA, NISR, NIBIO, and HO were repeatedly measured at different time points. For fair 351 

comparison among them, we selected the data measured in the same month; thus, the data of Month 0 and 352 

Month 11 were used from Groups 1&3 and Groups 2&4, respectively (39). From 1,082 participants, we 353 

excluded 779 participants because we did not have information necessary to apply the Goldberg cutoffs (no 354 

fat-free mass information [n=725] or NISR [n=240]) or there was no urine-based nutrition intake data 355 

[n=231]. The remaining 303 participants’ data were analyzed. 356 

IDATA data were accessible through the Cancer Data Access System 357 

(https://biometry.nci.nih.gov/cdas/idata/; downloaded 11/22/2017) after our project proposal was reviewed 358 

and approved by the National Cancer Institute (https://biometry.nci.nih.gov/cdas/approved-projects/1702/). 359 

Statistical analysis of IDATA 360 

Whether the bias in the mean NISR compared to NIBIO (e.g., calculated as EISR - EIBIO) would be 361 

reduced by the Goldberg cutoffs was tested. We first tested whether the mean bias in each NISR is 362 

significantly different from zero. Then, we repeated the same test for the data of the accepted cases for each 363 

NIG (e.g., EIG - EIBIO). We further tested whether the mean NISR are different between those who were 364 

removed (rejected cases; NISR excluding NIG) and the accepted cases (NIG). 365 

Further, we tested whether the bias in the estimates of associations between NI and HO would be 366 

reduced by the Goldberg cutoffs. We computed regression coefficients (𝛽ேூ,ுை) between HO and each of the 367 

three different NI measuring approaches: NIBIO, NISR, and NIG. Note that we did not adjust the analyses for 368 

any other covariates, because the purpose of this study is to understand if the Goldberg cutoffs could reliably 369 

reduce bias rather than to refine associations accounting for covariates. To comprehensively assess the 370 

reporting bias and bias reduction in different outcomes with different units, we used standardized metrics for 371 

reporting bias and bias reduction, which was originally proposed in our previous study (38). In brief, we 372 

used the percent bias (𝑏) for the assessment of the magnitude of the bias and the percent remaining bias (𝑟) 373 

for the assessment of the magnitude of the bias remaining after applying the Goldberg cutoffs, which are 374 

defined as follows: 375 
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𝑏 = 𝛽ேூೄೃ,ுை − 𝛽ேூಳ಺ೀ,ுை𝛽ேூಳ಺ೀ,ுை ∗ 100 (%) 

𝑟 = 𝛽ேூಸ,ுை − 𝛽ேூಳ಺ೀ,ுை𝛽ேூಳ಺ೀ,ுை ∗ 100 (%) 

A more in-depth interpretation of the metric is available in our previous study (38). Jackknife 376 

estimation (leave-one-out) (48) was used to compute 95% CIs of those metrics. All analyses were performed 377 

separately for each combination of nutrition intakes and outcomes. Two-tailed Student’s t test was used to 378 

test whether mean of a single variable is different from zero. Two-tailed independent Welch’s t test was used 379 

to test the mean difference of a single variable from two independent groups. The jackknife method was 380 

used to test the mean difference of a single variable from two non-independent groups (i.e., whole data vs 381 

the data of accepted cases). The type I error rate was fixed at 0.05 (2-tailed). 382 

Simulation 383 

To strengthen the arguments on the performance of the Goldberg cutoffs, we also generated and 384 

analyzed data that preserve the characteristics of the IDATA. 385 

Data generation  386 

We generated data composed of four variables: NIBIO (biomarker), NISR (self-reported), HO (health 387 

outcomes: BW, WC, HR, SBP, DBP, and VO2), and FFM (fat-free mass). NIBIO and FFM were resampled 388 

from the IDATA. HO is computed using a linear model using NIBIO as a predictive variable: 389 

𝐻𝑂 = 𝑎଴ + 𝑎ଵ𝑁𝐼஻ூை + 𝜖, 𝜖~𝑁(0, 𝜂ଶ), 
where 𝑎଴, 𝑎ଵ, and 𝜂ଶ are the model parameters estimated from the IDATA. NISR is generated by adding an 390 

error term (i.e., reporting error), 𝑒, to NIBIO, adapting the approach proposed by Ward et al. (49): 391 

𝑁𝐼ௌோ = 𝑁𝐼஻ூை + 𝑒, 
where 𝑒 is determined by the percentile of NIBIO in the empirical distribution, 𝑝(𝑁𝐼஻ூை). The reporting error 392 𝑒 is assumed to follow a normal distribution parametrized by percentile-specific mean, 𝜇(𝑝(𝑁𝐼஻ூை)), and a 393 
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constant standard deviation, 𝜎: 𝑒~𝑁(𝜇, 𝜎ଶ).  𝜇 and 𝜎 were estimated by fitting polynomial models to the 394 

IDATA: 𝜇൫𝑝(𝑁𝐼஻ூை)൯ = ∑ 𝑚௞𝑝(𝑁𝐼஻ூை)௞௄௞ୀ଴ , where K is the order of the polynomial. The order of the 395 

polynomial function was varied from 1 to 5 and we selected the value of K that yields the smallest  MSE  . 396 

We used k-fold cross-validation with 10 folds to calculate the test MSE for each model. This resulted in 397 𝐾 = 1,  3,  3,  5 for EI, SI, PoI, and PrI, respectively (Supplemental Table 3 and Supplemental Figure 6). 398 

For example, assuming 𝐸𝐼஻ூை is 3000 kcal, which corresponds to 90.4 percentile, the mean of the reporting 399 

error, 𝜇, was -749.6 and the standard deviation of the reporting error, 𝜎, was 759.1. Therefore his/her 𝑒 is 400 

randomly sampled from the normal distribution: 𝑁(−749.6,759.1). We further confirmed our assumption of 401 

homoskedastic 𝜎 is reasonable by the Goldfeld Quandt test(50) (Supplemental Table 4). The Goldfeld 402 

Quandt test compares variance in high and low values of a variable; we discarded the middle 20% of the 403 

total observations (eliminated the center 61 observations among 303 in total) to define the high and low 404 

groups. The simulated data were truncated so that NISR>0. The variable NIG was generated by applying the 405 

Goldberg cutoffs to EISR using FFM (thus, NIG is a subset of NISR). The above process was repeated for each 406 

NI. We generated 𝑛 = 100 individuals, and the data generation was repeated 1000 times, leading to 1000 407 

replicates. The data generating process is summarized in Figure 4. 408 

Measurement of the performance of the Goldberg cutoffs 409 

The point estimates of the regression coefficients for an NI and an HO from the 𝑖th simulation are 410 

denoted as 𝛽መேூ,ுை,௜ (e.g., 𝛽መாூೄೃ,஻ௐ,௜ is the 𝑖th regression coefficient for self-reported energy intake and body 411 

weight). The performance of the Goldberg cutoffs was assessed by three metrics: bias, mean squared error 412 

(MSE), and coverage probability: 413 

𝐵𝑖𝑎𝑠ேூ,ுை = ൭1𝑛 ෍ 𝛽መேூ,ுை,௜௡
௜ୀଵ ൱ − 𝛽ଵ, 

𝑀𝑆𝐸ேூ,ுை = 1𝑛 ෍ ൭𝛽መேூ,ுை,௜ − 1𝑛 ෍ 𝛽መேூ,ுை,௜௡
௜ୀଵ ൱ଶ௡

௜ୀଵ + ቌ൭1𝑛 ෍ 𝛽መேூ,ுை,௜௡
௜ୀଵ ൱ − 𝛽ଵቍଶ, 
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𝑃ேூ,ுை = ∑ 𝐼ൣ൫𝛽መேூ,ுை,௜,௟௢௪ < 𝛽ଵ൯ ∩ ൫𝛽ଵ < 𝛽መேூ,ுை,௜,௛௜௚௛൯൧௡௜ୀଵ 𝑛 , 
where 𝑁𝐼 = {𝐸𝐼ௌோ, 𝐸𝐼஻ூை, 𝐸𝐼 , 𝑆𝐼ௌோ, 𝑆𝐼஻ூை, 𝑆𝐼 , 𝑃𝑜𝐼ௌோ, 𝑃𝑜𝐼஻ூை, 𝑃𝑜𝐼 , 𝑃𝑟𝐼ௌோ, 𝑃𝑟𝐼஻ூை, 𝑃𝑟𝐼 } , 𝐻𝑂 =414 {𝐵𝑊, 𝑊𝐶, 𝐻𝑅, 𝑆𝐵𝑃, 𝐷𝐵𝑃, 𝑉𝑂2}, 𝐼(⋅) is an indicator function, 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ represent the lower and upper 415 

95% confidence intervals, and 𝛽ଵ is the true parameter value, which we define as the point estimate from the 416 

IDATA. Note that bias is used differently here than in the empirical analysis because the parameters remain 417 

unknown in the empirical analysis whereas we define the parameters in the simulation. 418 

Sensitivity analyses were performed varying the sample size and two other parameters: error term for the 419 

regression between health outcome and biomarker-based nutrition intakes (𝜼), and the standard deviation of 420 

the reporting error (𝝈). All simulations and analyses were performed using the statistical computing software 421 

R (version 4.0.1); code book and analytic code are publicly and freely available without restriction at 422 

http://doi.org/10.5281/zenodo.7013204. The variables, data generation models, and metrics of performance 423 

of the Goldberg cutoffs are summarized in Table 1. STROBE guideline was followed, and the statement is 424 

available as supplementary material. 425 

 426 

 427 
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Tables 

Table 1. Variables, data generation models, and metrics of performance of the Goldberg cutoffs 

Variables and parameters Description 𝑁𝐼ௌோ 
Self-reported nutrition intake, where NI can be energy intake 
(EI), sodium intake (SI), potassium intake (PoI), or protein 
intake (PrI)𝑁𝐼஻ூை Biomarker nutrition intake 𝑁𝐼  Self-reported nutrition intake accepted by the Goldberg 
cutoffs 

𝐻𝑂 

Health outcomes, where HO can be body weight (BW), waist 
circumference (WC), heart rate after fitness test (HR), resting 
systolic blood pressure (SBP), resting diastolic blood 
pressure (DBP), and VO2 max (VO2) 𝛽ேூ,ுை Estimated coefficients in the regression model using 𝑁𝐼 and 
HO as a dependent and an independent variables. 𝛽ଵ True coefficients, the point estimate from the IDATA (used 
in simulation) 

Data generation models Description 𝐻𝑂 = 𝑎଴ + 𝑎ଵ𝑁𝐼஻ூை + 𝜖 𝜖 is the error of health outcomes ~𝑁(0, 𝜂ଶ) 𝑁𝐼ௌோ = 𝑁𝐼஻ூை + 𝑒 𝑒 is the reporting error ~𝑁(𝜇, 𝜎ଶ) 𝜇൫𝑝(𝑁𝐼஻ூை)൯ = ෍ 𝑚௞𝑝(𝑁𝐼஻ூை)௞௄
௞ୀ଴  𝜇 is the mean error function, determined by a polynomial 

function of percentiles of 𝑁𝐼஻ூை 

Metrics of performance of the Goldberg 
cutoffs (data analysis) Description 𝑏 = 𝛽ேூೄೃ,ுை − 𝛽ேூಳ಺ೀ,ுை𝛽ேூಳ಺ೀ,ுை ∗ 100 Percent bias (%) in the estimation of NI-HO association 

when using 𝛽ேூೄೃ,ுை. 𝑟 = 𝛽ேூಸ,ுை − 𝛽ேூಳ಺ೀ,ுை𝛽ேூಳ಺ೀ,ுை  Percent remaining bias (%) in the estimation of NI-HO 
association when using 𝛽ேூಸ,ுை instead of 𝛽ேூೄೃ,ுை. 

Metrics of preference of the Goldberg cutoffs 
(simulation) Description 𝐵𝑖𝑎𝑠ேூ,ுை = ൭1𝑛 ෍ 𝛽መேூ,ுை,௜௡

௜ୀଵ ൱ − 𝛽ଵ Bias in the estimation of NI-HO association.  𝛽መேூ,ுை,௜ is the 
point estimate from the 𝑖th simulation 

𝑀𝑆𝐸ேூ,ுை = 1𝑛 ෍ ൭𝛽መேூ,ுை,௜ − 1𝑛 ෍ 𝛽መேூ,ுை,௜௡
௜ୀଵ ൱ଶ௡

௜ୀଵ+ ቌ൭1𝑛 ෍ 𝛽መேூ,ுை,௜௡
௜ୀଵ ൱ − 𝛽ଵቍଶ

 

Mean Squared Error in the estimation of NI-HO association. 

𝑃ேூ,ுை= ∑ 𝐼ൣ൫𝛽መேூ,ுை,௜,௟௢௪ < 𝛽ଵ൯ ∩ ൫𝛽ଵ < 𝛽መேூ,ுை,௜,௛௜௚௛൯൧௡௜ୀଵ 𝑛 Coverage probability in the estimation of NI-HO association. 𝛽መேூ,ுை,௜,௟௢௪ and 𝛽መேூ,ுை,௜,௛௜௚௛ are lower and upper 95% 
confidence intervals. 

  593 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.16.22281148doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.16.22281148
http://creativecommons.org/licenses/by/4.0/


 

24 
 

Table 2. Baseline characteristics of the analyzed data# 

Variable IDATA P-value 

Total Number 303 

Age (years) 63.0 ± 5.9 

Male 124 (40.9%) 

Race 

Non-Hispanic White 283 (93.4%) 

African American 19 (6.3%) 

Asian 1 (0.3%) 

Weight (kg) 79.4 ± 17.1 

Height (cm) 168.8± 9.0 

Waist circumference (cm) 92.0± 14.2 

BMI (kg/m2) 27.7 ± 4.7 

Fat-free mass (kg) 48.9 ± 10.9 

Daily EI estimated from ASA24 (EISR; kcal/day) 2048.0± 783.4 

Daily EI estimated from DLW (EIBIO; kcal/day) 2400.3 ± 492.8 

Reporting bias in EI (EISR - EIBIO) -352.3 ± 811.0 <0.001 

Daily SI estimated from ASA24 (SISR; mg/day) 3457.9 ± 1440.8 

Daily SI estimated from urine (SIBIO; mg/day) 4015.0 ± 1995.7 

Reporting bias in SI (SISR - SIBIO) -557.0 ± 2075.2 <0.001 

Daily PoI estimated from ASA24 (PoISR; mg/day) 2931.4 ± 1136.9 

Daily PoI estimated from urine (PoIBIO; mg/day) 3210.9 ± 1253.9 

Reporting bias in PoI (PoISR - PoIBIO) -279.5 ± 1404.8 <0.001 

Daily PrI estimated from ASA24 (PrISR; mg/day) 83.0 ± 38.8 

Daily PrI estimated from urine (PrIBIO; mg/day) 94.5 ± 38.3 

Reporting bias in PrI (PrISR - PrIBIO) -11.5 ± 41.6 <0.001 

Note: #: Values are mean ± SD or n (%). 
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Table 3. Summary of nutrition intakes of the accepted and the rejected cases by the Goldberg cutoffs# 

 Accepted Rejected P-value$ 

Number 183 120 

Bias 

Energy intake (kcal/d) -26 ± 33 -850 ± 89 <0.001 
Sodium intake (mg/d) -201 ± 142 -1100 ± 200 <0.001 
Potassium intake (mg/d) 3 ± 98 -710 ± 129 <0.001 
Protein intake (g/d) -2 ± 3 -26 ± 4 <0.001 

Self-
reported 

Energy intake (kcal/d) 2320 ± 37 1633 ± 86 <0.001 
Sodium intake (mg/d) 3757 ± 93 3002 ± 145 <0.001 
Potassium intake (mg/d) 3240 ± 71 2461 ± 112 <0.001 
Protein intake (g/d) 91 ± 3 71 ± 4 <0.001 

Biomarker 

Energy intake (kcal/d) 2346 ± 34 2482 ± 49 0.023 
Sodium intake (mg/d) 3958 ± 141 4102 ± 195 <0.001 
Potassium intake (mg/d) 3237 ± 88 3171 ± 124 0.666 
Protein intake (g/d) 93 ± 3 100 ± 4 0.367 

Note: #: Values are mean ± SD or n. $ Mean difference between the accepted cases and the rejected cases 

was tested. 
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Figures 

Figure 1: Bias in self-reported nutrition intakes 

 

(Upper panels) The error in mean of self-reported nutrition intake (A: energy intake, B: sodium intake, C: 

potassium intake, D: protein intake) and relevant nutrition intake measured by biomarkers are plotted. The 

regression lines are plotted with dashed lines and the corresponding p-values are stated. The dotted 

horizontal lines at zero indicate there is no error in nutrition intake. The red circles and black circles are the 

rejected cases and the accepted cases, respectively. (Bottom panels) Self-reported nutrition intake and 

biomarker-based nutrition intake measured are plotted. Closed red and black squares are the mean of 

nutrition intake in the rejected cases and the accepted cases (NIG), respectively.  
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Figure 2: Bias in self-reported nutrition intakes 

 

Italic bold font denotes significant associations between nutrition intake measured by biomarkers and the 

outcome. Open squares correspond to the maximum likelihood estimators and the bars are 95% CIs. Closed 

squares are plotted at the left end or right end of the panel when the point estimate is beyond the x-axis 

limits. Using three types of regression coefficients (𝛽ௌோ : self-reported data, 𝛽஻ூை : biomarker data, 𝛽ீ : 

Goldberg accepted data), three metrics were defined. (Left panel) Percent bias of the linear regression 

coefficient, 𝑏ఉ = (𝛽ௌோ − 𝛽஻ூை) 𝛽஻ூை⁄ ∗ 100(%), was computed. *: Significant bias was observed. (Right 

panel) Percent remaining bias of the linear regression coefficient, 𝑑ఉ = (𝛽ீ − 𝛽஻ூை)/ 𝛽஻ூை ∗ 100 (%), was 
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computed. #: Significant bias reduction was observed (i.e., bias reduction 95%CI is within -100 to 100). *: 

Significant remaining bias was observed.  
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Figure 3: Bias, MSE, and coverage probability in the simulation study 

 

The bias, mean squared error (MSE), and the coverage probability in regression coefficients between four 

nutrition intakes (A: energy intake, B: sodium intake, C: potassium intake, D: protein intake) and six health 

outcomes (body weight, waist circumference, HR [heart rate] post fitness test, resting SBP [systolic blood 

pressure], resting DBP [diastolic blood pressure], and VO2 max) for 1000 replicates. Bold font denotes 

negative associations between nutrition intake measured by biomarkers and the outcome. Red square, blue 
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triangle, and green circle represent biomarker-based nutrition intake, self-reported nutrition intake, and 

Goldberg accepted nutrition intake, respectively. (Left panel) The bias between estimated and true 

regression coefficients are plotted. The grey vertical line at zero indicates there is no bias between the true 

regression coefficient and the mean of the 1000 replicates. For each combination, if the green dot is closer to 

0 than the blue dot, then that indicates Goldberg cutoff rule reduced the bias. (Middle panel) The MSE 

between estimated and true regression coefficients are plotted. The grey vertical line at zero indicates there 

is no bias between the true regression coefficient and the mean of the 1000 replicates. (Right panel) The 

coverage probability for simulation studies. The grey vertical line indicates coverage probability consistent 

with 95% confidence intervals. 
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Figure 4: Schematic illustration of the data generation process for the nutrition intake and health 

outcomes 

 

The associations between nutrition intake (EI: Energy Intake, SI: Sodium Intake, PtI: Potassium Intake, PrI: 599 

Protein Intake) and health outcomes (HO: body weight, waist circumference, heart rate after fitness test, 600 

resting systolic blood pressure, resting diastolic blood pressure, and VO2 max). The subscripts “SR”, “BIO”, 601 

and “G” denote self-reported NI, biomarker-based NI, and self-reported NI after applying the Goldberg 602 

cutoffs, respectively. Fat free mass is denoted by FFM and used to calculate the Goldberg cutoff threshold. 603 

An arrow from one node, A, to another, B, means “B is generated by A”.  Rectangles represent the variables 604 

that are resampled from the empirical distribution, and ellipses are for the variables generated from the 605 

models. 606 
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Supplementary Online Content 607 

Supplemental Figures 608 

 609 

Supplemental Figure 1. Linear regressions of health outcomes on nutrition intakes (1) 610 

The estimated linear regression: associations between (A) EI, (B) SI, (C) PoI, (D) PrI and (1) body weight 611 

(kg), (2) waist circumference (cm), and (3) heart rate after the fitness test (beat/min).  Open blue squares, 612 

filled green squares, and open red circles correspond to self-reported nutrition intake of the whole cases, 613 

self-reported nutrition intake of the accepted cases, and nutrition intake measured by biomarkers, 614 
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respectively. Dashed blue, dotted green, and solid red lines are estimated regression lines using the data with 615 

the corresponding color, respectively 616 

617 
Supplemental Figure 2. Linear regressions of health outcomes on nutrition intakes (2) 618 

The estimated linear regression: associations between (A) EI, (B) SI, (C) PoI, (D) PrI and (4) resting systolic 619 

blood pressure (mmHg), (5) resting diastolic blood pressure (mmHg), and (6) maximal oxygen uptake 620 

(L/min).  Open blue squares, filled green squares, and open red circles correspond to self-reported nutrition 621 

intake of the whole cases, self-reported nutrition intake of the accepted cases, and nutrition intake measured 622 
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by biomarkers, respectively. Dashed blue, dotted green, and solid red lines are estimated regression lines 623 

using the data with the corresponding color, respectively. 624 

 625 

Supplemental Figure 3. Distribution of nutrition intake 626 

The distributions of nutrition intake (A: energy intake, B: sodium intake, C: potassium intake, and D: protein 627 

intake) are shown. Red, blue, and green lines correspond to biomarker-based nutrition intake, self-reported 628 

nutrition intake, and generated (self-reported) nutrition intake, respectively. Each simulation generating 629 

nutrition intake was with n=100 and the simulation was repeated 1000 times in this figure. 630 

  631 
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 632 

Supplemental Figure 4. Sensitivities of the sample size relative to the base value 633 

Sensitivity analysis of the sample size. The sample size was varied between 0.5 and 3 times of the baseline 634 

values (𝑛 = 50,  100,  200,  and 300). Red square, blue triangle, and green circle represent bias (A) and 635 

coverage probability (B) for biomarker-based nutrition intake, self-reported nutrition intake, and Goldberg 636 

accepted nutrition intake, respectively.  637 

  638 
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 639 

Supplemental Figure 5. Sensitivities of parameters relative to the base values 640 

Sensitivity analysis of the selected parameters. The parameters were varied between 0.25 and 2 times of the 641 

baseline values. Red square, blue triangle, and green circle represent bias for biomarker-based nutrition 642 

intake, self-reported nutrition intake, and Goldberg accepted nutrition intake, respectively.  643 

(A) Error term for the regression between health outcome and biomarker-based nutrition intake (𝜂) was 644 

varied. (B) Variance of the bias between self-reported nutrition intake and biomarker-based nutrition intake 645 

(𝜎) was varied. 646 

  647 
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 648 

 649 

Supplemental Figure 6. Distribution of the reporting error 650 

The distributions of reporting error on quantiles of different nutrition intakes (A: energy intake, B: sodium 651 

intake, C: potassium intake, and D: protein intake) are shown. The horizontal dotted lines correspond with 652 

no reporting error. The blue lines and the shaded areas are the fitted polynomials (degrees of polynomials 653 

are 1, 3, 3, and 5 for energy intake, sodium intake, potassium intake, and protein intake, respectively) and 654 

the 95% CI of the polynomials. 655 

 656 

 657 
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Supplemental Tables 658 

Supplemental Table 1. List of abbreviation 659 

Abbreviation Full form 
AARP American Association of Retired Persons 

ASA24 Automated Self-Administered 24-Hour Dietary 
Assessment Tool 

BIO Biomarker 
BW Body weight 
DBP resting diastolic blood pressure 
DHQ-II Diet History Questionnaire 
DLW Doubly labelled water 
EI Energy intake 
EE Energy expenditure 
FFM Fat-free mass 
FM Fat mass 
G Goldberg cutoffs 
HO Health outcomes 
HR Heart rate 

IDATA Interactive Diet and Activity Tracking in American 
Association of Retired Persons 

MSE Mean squared error 
NI Nutrition intake 
PoI Potassium intake 
PrI Protein intake 
SI Sodium intake 
SBP Resting systolic blood pressure 
SR Self-reported 
VO2 VO2 max 
WC Waist circumference 
  660 
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Supplemental Table 2. Estimated regression coefficients of the 3 analyses (per Mcal/day for EE and g/day for the others) with 95% CI computed by 661 
the jackknife method 662 
Predictors Outcomes 𝛽ௌோ 𝛽ீ  𝛽஻ூை Percent bias (%)1,2 Percent remaining bias (%)1,3 

Energy intake 
(Mcal/d) 

Weight (kg) 3.09 (-0.38 to 6.56) 13.72 (8.84 to 18.6)* 20.31 (16.36 to 24.27)* -84.80 (-101.70 to -67.90)* -32.40 (-57.20 to -7.70)* 

Waist circumference (cm) 2.98 (0 to 5.96) 9.12 (5.05 to 13.18)* 13.63 (9.84 to 17.43)* -78.10 (-99.20 to -57.10)* -33.10 (-63.70 to -2.50)* 

HR post fitness test 
(beat/min) -2.64 (-4.98 to -0.31)* -3.59 (-7.62 to 0.44) -2.62 (-6.21 to 0.98) 1.30 (-204.10 to 206.60) 37.40 (-204.40 to 279.10) 

SBP (mmHg) 1.12 (-2.31 to 4.55) 1.29 (-4.14 to 6.73) 3.94 (-1.50 to 9.38) -71.60 (-175.90 to 32.70) -67.20 (-198.70 to 64.30) 

DBP (mmHg) 0.58 (-1.79 to 2.94) 3.45 (-0.15 to 7.05) 1.92 (-1.87 to 5.71) -70.00 (-216.90 to 76.90) 79.80 (-260.20 to 419.80) 

VO2 max (L/min) 0.18 (-9.10 to 9.45) -1.44 (-20.01 to 17.12) 4.76 (-7.70 to 17.21) -96.30 (-305.70 to 113.00) -131.00 (-583.80 to 321.90) 

Sodium intake 

(g/d) 

Weight (kg) 3.32 (1.67 to 4.97)* 5.23 (3.16 to 7.29)* 3.31 (2.14 to 4.47)* 0.50 (-55.30 to 56.30) 58.10 (-17.40 to 133.50) 

Waist circumference (cm) 2.50 (1.14 to 3.86)* 3.08 (1.30 to 4.86)* 2.34 (1.24 to 3.44)* 6.60 (-57.30 to 70.40) 31.40 (-50.90 to 113.80) 

HR post fitness test 
(beat/min) -1.53 (-2.84 to -0.22)* -2.19 (-3.89 to -0.49)* -0.66 (-1.48 to 0.15) 130.20 (-157.10 to 417.50) 230.20 (-180.70 to 641.20) 

SBP (mmHg) 1.17 (-0.80 to 3.15) 0.97 (-1.81 to 3.74) 0.86 (-0.94 to 2.66) 38.00 (-1230.80 to 1306.80) 14.20 (-1337.00 to 1365.50) 

DBP (mmHg) 0.56 (-0.61 to 1.73) 0.93 (-0.62 to 2.48) 0.29 (-0.54 to 1.13) 94.80 (-546.50 to 736.00) 220.70 (-658.20 to 1099.50) 

VO2 max (L/min) 0.01 (-4.98 to 5.01) -2.99 (-10.40 to 4.42) 2.12 (-2.00 to 6.24) -99.50 (-360.90 to 161.80) -241.80 (-808.90 to 325.20) 

Potassium intake 
(g/d) 

Weight (kg) 1.16 (-1.42 to 3.74) 3.75 (0.64 to 6.86)* 1.97 (-0.22 to 4.16) -41.00 (-167.20 to 85.30) 90.50 (-119.60 to 300.60) 

Waist circumference (cm) 0.78 (-1.41 to 2.97) 1.74 (-0.97 to 4.44) 1.85 (-0.08 to 3.78) -57.90 (-169.00 to 53.10) -5.80 (-151.30 to 139.60) 

HR post fitness test 
(beat/min) -1.36 (-2.92 to 0.20) -1.53 (-3.75 to 0.69) -1.13 (-2.56 to 0.30) 20.30 (-133.30 to 174.00) 34.80 (-170.90 to 240.40) 

SBP (mmHg) -1.57 (-5.06 to 1.93) -2.34 (-6.86 to 2.19) 0.46 (-2.34 to 3.27) -510.50 (-41767.00 to 
40746.10) 

-686.40 (-47014.60 to 
45641.90) 

DBP (mmHg) -0.58 (-2.11 to 0.94) -1.08 (-2.77 to 0.61) 0.04 (-1.25 to 1.32) -1951.10 (-253484.00 to 
249581.80) 

-3527.90 (-457168.90 to 
450113.20) 

VO2 max (L/min) 4.75 (-2.03 to 11.53) 5.67 (-3.51 to 14.85) 6.67 (0.82 to 12.52)* -28.70 (-126.30 to 68.90) -14.90 (-150.20 to 120.30) 

Protein intake Weight (kg) 0.10 (0.04 to 0.16)* 0.15 (0.09 to 0.21)* 0.15 (0.07 to 0.22)* -33.60 (-74.00 to 6.90) 2.80 (-53.10 to 58.60) 
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(g/d) Waist circumference (cm) 0.06 (0 to 0.13) 0.09 (0.02 to 0.15)* 0.09 (0.01 to 0.17)* -31.40 (-94.10 to 31.30) -5.30 (-77.50 to 66.90) 

HR post fitness test 
(beat/min) -0.03 (-0.07 to 0.01) -0.03 (-0.08 to 0.01) -0.03 (-0.07 to 0.01) -12.40 (-123.10 to 98.30) -1.50 (-145.90 to 142.90) 

SBP (mmHg) 0.02 (-0.06 to 0.09) -0.01 (-0.09 to 0.07) 0.06 (-0.02 to 0.14) -68.90 (-237.50 to 99.80) -110.40 (-261.80 to 41.10) 

DBP (mmHg) 0 (-0.03 to 0.04) 0 (-0.04 to 0.040) 0.03 (-0.02 to 0.07) -85.90 (-249.00 to 77.20) -115.00 (-284.50 to 54.50) 

VO2 max (L/min) 0 (-0.13 to 0.14) -0.02 (-0.20 to 0.15) 0.10 (-0.04 to 0.23) -95.40 (-237.80 to 46.90) -125.90 (-321.80 to 70.00) 

Note: The numbers in parentheses are 95% CIs. The 95% CIs were computed using the jackknife method. *: Significant association or bias. 1: Computed by jackknife 663 

estimation. 2: 
ఉಿ಺ೄೃ,ಹೀିఉಿ಺ಳ಺ೀ,ಹೀఉಿ಺ಳ಺ೀ,ಹೀ ∗ 100  3: 

ఉಿ಺ಸ,ಹೀିఉಿ಺ಳ಺ೀ,ಹೀఉಿ಺ಳ಺ೀ,ಹೀ ∗ 100. 664 
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Supplemental Table 3. MSE of fitted polynomial functions for the reporting error 666 

 

 

Order of the polynomial functions 

1 2 3 4 5 

Energy 582729* 590639 598972 606127 614911 

Sodium 2056408 1996615 1953706* 1960605 1974721 

Potassium 1229786 1181882 1164808* 1170122 1184684 

Protein 1371 1385 1336 1337 1322*

* The order with the smallest MSE.  667 
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Supplemental Table 4. Statistical tests on the heteroskedasticity of the reporting error 669 

Nutrition Intake P-value of the Goldfeld Quandt test

Energy 0.8666 

Sodium 0.7374 

Potassium 0.9686 

Protein 0.8900 

 670 
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