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ABSTRACT	

Most	advanced	cancers	are	treated	with	drug	combinations.	Rational	design	aims	to	identify	

synergistic	drug	interactions	to	produce	superior	treatments.	However,	metrics	of	drug	interaction	

(i.e.	synergy,	additivity,	antagonism)	are	applicable	to	pre-clinical	experiments,	and	there	has	been	

no	established	method	to	quantify	synergy	versus	additivity	in	clinical	settings.	Here,	we	propose	

and	apply	a	model	of	drug	additivity	for	progression-free	survival	data	to	assess	if	the	clinical	

efficacies	of	approved	drug	combinations	are	more	than,	or	equal	to,	the	sum	of	their	parts.	Among	

FDA-approvals	for	advanced	cancers	between	1995-2020,	we	identified	37	combinations	across	13	

cancer	types	where	monotherapies	and	combination	therapy	could	be	compared.	95%	of	

combination	therapies	exhibited	progression-free	survival	times	that	were	additive,	or	less	than	

additive.	The	predictable	efficacy	of	many	of	the	best	drug	combinations	established	over	the	past	

25	years	suggests	that	additivity	can	be	used	as	a	design	principle	for	novel	drug	combinations	and	

clinical	trials.	

	

INTRODUCTION	

The	most	effective	known	treatments	for	many	types	of	cancer	involve	combination	

therapy.	Because	of	the	vast	number	of	possible	combinations,	prioritizing	drug	combinations	that	

are	most	likely	to	succeed	in	the	clinic	is	a	critical	need1–3.	Historically,	combinations	were	designed	

empirically	based	on	single-agent	activity	and	non-overlapping	toxicity4.	In	recent	decades,	

understanding	of	oncogenic	mechanisms	has	favored	the	design	of	drug	combinations	based	on	

molecular	reasoning.	Rational	combination	design	often	aims	to	identify	synergistic	drug	

interactions,	whereby	two	or	more	drugs	enhance	each	other’s	efficacy	to	produce	a	more	than	

additive	anti-tumor	effect5–7.	Accordingly,	the	National	Cancer	Institute’s	Clinical	Trial	Design	

Taskforce	recommends	that	phase	I	trials	of	novel	combination	therapies	have	a	rationale	for	

pharmacological	or	biological	interaction3.	Many	clinical	trials	of	novel	combinations	are	motivated	
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by	synergy	in	cell	lines	or	mice,	with	the	hope	that	synergy	will	also	occur	in	humans	

(Supplementary	Table	S1).	Most	novel	combinations	are	not	ultimately	approved,	and	pre-clinical	

synergy	is	not	significantly	associated	with	clinical	success8.	Some	combination	therapies	are	found	

to	be	superior	to	monotherapy	(or	N+1	drugs	are	superior	to	N),	yet	a	positive	clinical	trial	does	not	

confirm	synergistic	interaction,	as	superior	efficacy	could	result	from	additive,	more	than	additive,	

or	less	than	additive	effects.		This	is	not	a	semantic	difference:	it	fundamentally	concerns	whether	a	

mechanism	of	positive	drug	interaction	is	needed	to	develop	clinically	effective	combination	

therapies.	Yet,	it	is	rarely	investigated	whether	synergy	is	achieved	in	clinical	settings;	in	fact,	a	

calculation	to	distinguish	additive	from	synergistic	clinical	efficacy	has	not	been	defined.	In	pre-

clinical	experiments,	pharmacological	interactions	-	antagonism,	additivity,	and	synergism	-	are	

rigorously	defined	and	quantifiable.	Additivity	refers	to	the	expected	effect	of	combining	non-

interacting	drugs,	and	synergy	or	antagonism	refers	to	stronger	or	weaker	effects,	respectively9.	

Additivity	can	be	defined	by	the	potency	of	a	dose-response10,	by	a	statistical	calculation	of	effect	

size11,		or	by	models	that	synthesize	both	metrics12,13.	These	pre-clinical	definitions	do	not	readily	

apply	to	patient	data.	Without	a	clinical	definition	of	additivity,	synergy	has	been	often	stated	based	

on	“higher	response	rates	than	one	might	vaguely	expect	from	the	single	agents…	without	realizing	

that	the	term	should	be	a	quantitative	description	of	drug	effect”14.	This	deficiency	has	persisted	

since	its	recognition	in	1986.	

	

Previous	models	of	clinical	trials	have	calculated	how	multiple	drugs	increase	the	chance	of	

response	to	at	least	one	drug,	which	is	more	conservative	than	additivity.	Specifically,	in	1961	Frei	

and	colleagues	described	a	law	to	estimate	the	response	rate	to	combination	therapy	(Rab)	from	

monotherapy	response	rates	(Ra,	Rb):	Rab	=	1	-	(1-Ra)(1-Rb)15.	This	calculates	the	chance	that	at	least	

one	drug	induces	a	response	and	is	therefore	a	model	of	‘highest	single	agent’	(HSA)	that	does	not	

account	for	multiple	drug	effects	‘adding	up’	in	individual	patients.	We	previously	adapted	Frei’s	
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law	to	progression-free	survival	(PFS),	to	compute	PFS	distributions	expected	from	an	increased	

chance	of	single-drug	response16.	Since	its	publication,	this	model	of	HSA	has	been	validated	by	

many	phase	III	trials	of	combination	immunotherapy,	with	ten	FDA	approvals	resulting	from	trials	

where	observed	PFS	distributions	are	statistically	indistinguishable	from	the	model	prediction17.	

We	observed	that	some	combination	therapies	surpass	the	HSA	prediction,	but	this	model	does	not	

distinguish	between	superiority	arising	from	additivity	or	synergy16.	

	

Here	we	propose	a	model	for	clinical	drug	additivity	and	apply	it	to	PFS	results	from	all	

combination	therapy	trials	in	advanced	cancers	that	led	to	FDA	approval	between	1995	and	2020,	

for	which	matched	combination	and	monotherapy	data	are	available.	This	model	provides	a	null	

hypothesis	against	which	to	test	for	clinical	synergy	in	patient	populations.	We	find	that	the	model	

of	additivity	accurately	matches	the	clinical	efficacy	of	most	approved	drug	combinations;	only	2	of	

37	(5%)	combination	therapies	analyzed	were	significantly	more	than	additive	(at	P	<	0.05).	

‘Synergy’	is	often	misleadingly	interchanged	with	effectiveness,	but	these	findings	of	additivity	do	

not	dispute	established	evidence	of	clinical	efficacy.	They	instead	show	that	most	approved	drug	

combinations	owe	their	efficacy	to	having	effective	ingredients.	This	work	elucidates	the	

mechanism	of	clinically	effective	drug	combinations	in	oncology,	providing	a	design	principle	for	

future	pre-clinical	drug	development	and	clinical	trial	design.		

	

RESULTS	

Definition	of	clinical	additivity	

We	defined	clinical	drug	additivity	as	the	sum	of	PFS	benefits	in	individual	patients.	This	

expands	on	our	published	HSA	model16,17	which	estimates	a	PFS	distribution	for	a	drug	combination	

by	simulating	a	cohort	of	virtual	patients	whose	single	drug	responses	are	sampled	from	clinically	

observed	single-drug	PFS	distributions	and	assigning	to	each	virtual	patient	their	maximum	single	
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drug	response	time.	To	model	additivity,	the	PFS	times	of	individual	drugs	(PFSA,	PFSB)	are	added,	

with	a	correction	to	avoid	double-counting	the	time	to	observe	progression	in	the	absence	of	

effective	therapy	(PFSuntreated);	thus,	PFSAB	=	PFSA	+	PFSB	–	PFSuntreated	(see	Methods).	This	correction	

accounts	for	the	fact	that	progression	is	observable	at	scheduled	radiological	scans18,	and	in	

‘placebo	only’	or	‘best	supportive	care’	arms	in	advanced	cancers,	the	majority	of	patients	exhibit	

disease	progression	by	their	first	scheduled	scan	(Supplementary	Figure	S1).		

	

Study	population	

We	searched	FDA	approvals	to	obtain	a	comprehensive	list	of	combination	therapies	

approved	for	advanced	cancers	between	1995	and	2020	(Figure	1).	84	drug	combinations	met	the	

inclusion	criteria.	Assessing	additive	versus	non-additive	efficacy	requires	Kaplan-Meier	curves	of	

PFS	for	the	control	(standard-of-care)	arm,	the	experimental	single-agent	arm,	and	the	combination	

arm.	When	all	three	arms	were	not	present	in	the	same	trial,	we	searched	for	clinical	trials	that	

studied	the	missing	arm	in	a	comparable	cohort	with	identical	or	similar	dosage	(Supplementary	

Figure	S2).	This	yielded	a	total	of	37	combination	therapies	across	13	cancer	types,	with	data	from	

24,723	patients.	

	

Additivity	explains	the	clinical	efficacy	of	most	combination	therapies	

Each	combination	therapy’s	PFS	distribution	was	compared	with	the	HSA	model	and	the	

additivity	model,	as	calculated	from	clinically	observed	monotherapy	PFS	(Figure	2,	3,	

Supplementary	Figure	S3).	We	consider	a	trial	result	to	be	consistent	with	a	model	if	there	is	no	

statistically	significant	difference	between	observed	and	expected	PFS	by	Cox	Proportional	Hazards	

(significance	level	of	0.05),	which	is	the	standard	method	for	comparing	survival	distributions	in	

trials.	Note	that	when	comparing	observed	and	expected	efficacy,	a	hazard	ratio	(HR)	of	1	indicates	

a	predictable	magnitude	of	benefit;	it	does	not	mean	‘no	benefit’.	2	out	of	37	combinations	(5%)	
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were	significantly	superior	to	the	additivity	model,	i.e.,	synergistic	(Figure	3A).	25	of	37	

combinations	(68%)	were	statistically	indistinguishable	from	the	additivity	model.	Of	these,	10	

combinations	were	consistent	with	both	HSA	and	additivity	(Figure	3B);	these	similarities	are	

discussed	below.	9	combinations	(24%)	were	significantly	inferior	to	additivity	but	consistent	with	

HSA,	and	one	combination	(3%)	was	inferior	to	HSA	(Figure	3C).	

	

Overall,	drug	additivity	was	the	most	accurate	model	and	100%	of	these	approved	regimens	

could	have	been	predicted	to	succeed	by	the	additivity	model.	We	assessed	the	goodness	of	fit	using	

coefficient	of	determination	(R2)	between	the	expected	and	observed	PFS	curves	(Figure	4A,	B).	R2	

across	all	37	combinations	were	0.82	and	0.90	for	HSA	and	additivity,	respectively.	We	further	

assessed	goodness	of	fit	as	the	mean	signed	difference,	which	was	on	average	+3.7%	for	HSA	

(observed	effect	was	better	than	model)	and	-1.7%	for	additivity	(observed	effect	worse	than	

model)	(Figure	4C).	We	next	investigated	whether	HSA	or	additivity	models	could	have	predicted	

the	success	of	these	trials	based	only	on	single-agent	data.	For	each	trial,	a	hazard	ratio	was	

calculated	for	predicted	combination	therapy	PFS	versus	the	trial’s	control	arm	(Cox	Proportional	

Hazards	model;	ɑ	=	0.05).	All	approved	combinations	were	predicted	to	significantly	improve	PFS	

based	on	the	additivity	model	(Supplementary	Figure	S4),	whereas	the	HSA	model	was	more	

conservative	and	only	predicted	the	success	of	73%	of	combinations.	We	conclude	that	the	

additivity	model	better	explains	the	clinical	efficacy	of	combination	therapies	and	has	the	potential	

to	prospectively	estimate	hazard	ratios	from	single	drug	data	to	inform	clinical	trial	design.	

	

Synergistic	combinations	

Two	combination	therapies	exhibited	significantly	‘more	than	additive’	PFS,	being	

palbociclib	plus	letrozole	in	hormone	receptor-positive	/	HER2-negative	(HR+/HER2-)	advanced	

breast	cancer19	(P	=	0.023),	and	daratumumab	plus	lenalidomide	plus	dexamethasone	in	relapsed	
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or	refractory	multiple	myeloma20	(P	=	0.0001)	(Figure	3A).	Three	other	combinations	of	CDK4/6	

inhibition	plus	endocrine	therapy	for	HR+/HER2-	advanced	breast	cancer,	similar	to	palbociclib	

and	letrozole,	were	consistent	with	additivity.	Similarly,	daratumumab	plus	lenalidomide	plus	

dexamethasone	was	the	only	one	among	five	daratumumab	combinations	for	multiple	myeloma	

that	exhibited	synergy.	Data	on	daratumumab	monotherapy	has	the	substantial	limitation	of	

coming	from	patients	with	at	least	three	prior	lines	of	therapy21,	whereas	the	combination	therapy	

trial	enrolled	patients	with	a	median	of	one	previous	line	of	therapy.	Therefore,	these	data	suggest	

two	competing	explanations:	daratumumab	is	synergistic	with	lenalidomide	plus	dexamethasone	

(but	not	with	bortezomib,	carfilzomib,	or	pomalidomide	plus	dexamethasone),	or	daratumumab’s	

efficacy	at	the	second	line	is	underestimated	by	data	from	patients	at	a	fourth	or	later	line	of	

treatment,	which	leads	to	a	false	positive	finding	of	synergy.	Finally,	the	observation	that	5%	of	

trials	are	more	than	additive	at	a	significance	level	of	0.05	also	implies	a	possibility	for	false	positive	

signals.	

	

Similar	predictions	of	additivity	and	HSA 

For	several	combinations,	observed	PFS	was	consistent	with	both	the	HSA	and	additivity	

models	because	they	made	similar	predictions.	This	scenario	arises	when	one	or	both	therapies	

have	highly	variable	PFS	times,	such	that	patients	are	unlikely	to	have	a	similar	magnitude	of	

benefit	from	two	different	drugs.	When	patients	experience	similar	magnitudes	of	drug	effect	(e.g.,	

5	+	5	=	10),	the	prediction	of	additivity	is	much	greater	than	HSA	(10	vs.	5),	but	with	dissimilar	

effect	sizes	(e.g.,	10	+	1	=	11),	additivity	and	HSA	models	are	similar	(11	vs.	10).	This	phenomenon	

can	be	demonstrated	by	simulation	(Supplementary	Figure	S5A)	and	is	empirically	observable	as	

a	negative	correlation	(r	=	–0.55;	P	=	0.0005)	between	the	variability	of	the	monotherapy	PFS	

distributions	(!𝜎!" + 𝜎#")	and	the	difference	between	HSA	and	additivity	models	(Supplementary	

Figure	S5B).		
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Analysis	by	shared	characteristics	

We	next	asked	if	there	are	features	of	combination	therapies	associated	with	greater	or	

lesser	efficacy	than	expected	by	additivity	(Figure	4D).	Whereas	the	confidence	intervals	of	

individual	trials	may	make	it	challenging	to	detect	differences	from	additivity,	here	we	leveraged	

the	statistical	power	of	all	combination	therapies	of	a	group.	Immune	checkpoint	inhibitors	(ICIs)	

and	anti-angiogenesis	agents	are	thought	to	synergize	with	each	other	and	other	therapies22–28.		

Therefore,	we	compared	combinations	that	do	or	do	not	contain	an	ICI	or	an	anti-angiogenesis	

therapy.	We	also	divided	combinations	into	those	where	the	new	drug	does	or	does	not	have	

monotherapy	approval	in	the	same	disease,	motivated	by	the	observation	that	synergy	is	most	

prevalent	among	weaker	therapies	in	pre-clinical	experiments29,30.	Finally,	we	divided	

combinations	by	their	magnitude	of	improvement	compared	to	the	control	arm	(HR	above	or	below	

0.61,	which	was	the	median	HR	across	all	trials)	to	test	if	synergy	is	associated	with	overall	greater	

or	lesser	clinical	efficacy.	Among	these	eight	groups,	six	were	indistinguishable	from	additivity,	

including	the	most	clinically	successful	combination	therapies	(greatest	benefit	over	control	arm).	

Two	groups	were	significantly	less	than	additive,	being	combinations	with	a	new	drug	that	lacked	

monotherapy	approval,	and	combinations	with	a	smaller	net	benefit	versus	the	control	arm	

(Wilcoxon	signed-rank	test,	nominal	P	=	0.008	and	P	=	0.014,	respectively).		

	

Limitations	

Our	analysis	has	limitations	in	common	with	previous	articles	using	the	HSA	model16,17,	the	

most	important	of	which	concern	the	availability	of	monotherapy	data.	45	approved	drug	

combinations	could	not	be	analyzed	because	there	is	no	published	data	on	the	efficacy	of	one	or	

more	constituent	drugs	at	matching	doses	(Supplementary	Table	2).	Of	37	combinations	with	

available	monotherapy	data,	in	17	cases	monotherapy	data	was	from	patients	who	had	experienced	
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more	prior	therapy.	Because	therapies	are	less	effective	in	more	heavily	pre-treated	cancers,	use	of	

these	data	may	overestimate	the	appearance	of	synergy.	Therefore,	the	observed	scarcity	of	

synergy	is	more	robust	when	considering	limitations	in	available	data.	In	seven	combination	

therapies,	one	agent	was	used	at	a	dose	that	was	10%	to	25%	lower	than	its	monotherapy	dosage.	

It	is	possible	that	positive	interactions	compensated	for	these	dose	changes.	We	have	analyzed	PFS	

and	not	overall	survival	(OS)	because	OS,	while	vital	to	clinical	and	regulatory	decisions,	is	affected	

by	subsequent	therapies	and	post-progression	survival,	which	confound	the	analysis	of	drug	

interactions.	All	data	sources	and	limitations	are	described	in	Supplementary	Table	1.	

	

DISCUSSION	

Across	25	years	of	FDA	approvals	of	combination	therapies	for	advanced	cancer,	dose-

matched	monotherapy	data	shows	that	95%	of	combination	therapies	exhibited	PFS	distributions	

that	were	equal	to	the	sum	of	their	parts,	or	less.	These	findings	do	not	suggest	these	are	not	

effective	combination	therapies;	additivity	means	that	they	are	as	effective	as	expected.	Drug	

combinations	often	generate	non-additive	cellular	phenotypes.	Our	findings	do	not	refute	such	

experimental	observations	but	imply	that	humans	rarely	experience	‘more-than-additive’	durations	

of	tumor	control.	The	key	conclusions	of	this	study	are	that	the	clinical	efficacies	of	most	approved	

drug	combinations	are	predictable	from	the	efficacy	of	their	constituents,	and	that	drug-drug	

interactions	are	therefore	not	necessary	to	make	clinically	effective	combination	therapies.	

	

We	caution	against	interpreting	these	findings	as	an	adverse	judgment	of	combination	

therapies;	such	a	perception	could	arise	from	the	common	but	erroneous	belief	that	synergistic	

drug	combinations	are	more	effective	than	additive	drug	combinations6.	The	effect	of	a	synergistic	

combination	can	be	written	as	A	+	B	+	I	where	A	and	B	are	individual	drug	effects	and	I	is	the	extra	

effect	due	to	synergistic	interaction,	whereas	the	effect	of	an	additive	combination	of	different	
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drugs	can	be	written	as	C	+	D.	If	all	single	drugs	were	equally	effective	(A=B=C=D)	then	the	

synergistic	combination	would	be	most	effective.	However,	at	clinically	relevant	doses	in	humans,	

some	drugs	are	more	effective	at	treating	cancers	than	others.	Due	to	this	simple	fact,	observing	

synergy	between	therapies	A	and	B	provides	no	information	about	the	relative	clinical	efficacy	of	

combinations	AB	versus	CD	(I>0	does	not	imply	that	A+B+I	>	C+D).	Thus	our	observation	of	

additivity	by	approved	combination	therapies	in	no	way	makes	them	disappointing	or	inferior	to	

hypothetical	synergistic	combinations.	Rather,	these	findings	are	useful	because	they	suggest	that	

combined	drug	efficacy	can	be	prospectively	estimated	by	additivity.	

	

A	mechanistic	rationale	is	widely	seen	as	necessary	to	justify	trials	of	combination	

therapy2,3,6,7.	In	specific	contexts,	synergistic	drug	interactions	can	be	therapeutically	valuable	and	

remain	worthy	goals,	such	as	to	inhibit	redundant	or	‘bypass’	oncogenic	signals31,32.	As	a	general	

matter	though,	the	prevalence	of	additivity	among	the	best	combination	therapies	established	in	

the	past	quarter	of	a	century	refutes	the	dogma	that	drug	combinations	need	to	be	justified	by	a	

mechanism	of	drug-drug	interaction.	The	perception	that	synergy	is	required	for	efficacy	pressures	

pre-clinical	research	to	choose	model	systems,	drug	doses,	and	modes	of	analysis	that	maximize	the	

potential	to	observe	synergy	in	cell	culture	or	mice,	which	chiefly	arises	among	weak	drugs	or	at	

sub-inhibitory	doses29,30.	Synergy	metrics	quantify	the	difference	between	observed	and	expected	

additive	effects,	which	is	appropriate	to	detect	interactions.	However,	prioritizing	drug	

combinations	for	interaction	has	the	unintended	effect	of	penalizing	combinations	of	highly	

effective	agents,	because	a	large	additive	effect	is	subtracted.	Indeed,	the	largest	datasets	on	drug	

combinations	in	cancer	cells	show	that	synergy	most	frequently	occurs	among	weak	drugs30,33.	

These	results	support	efficacy-based	design	of	combination	therapies	as	a	complement	to	

mechanism-based	design.	Put	simply,	a	combination	effect	of	‘1+1	=	3’	demonstrates	an	interesting	

interaction	but	‘10+10	=	20’	is	a	larger	effect.	
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The	accuracy	of	the	additivity	model	and	scarcity	of	synergy	suggests	that	tumor	

heterogeneity,	not	drug	interaction,	is	the	major	origin	of	benefit	of	approved	combinations	of	

cancer	therapies.	The	model	of	clinical	additivity	can	be	understood	as	describing	both	inter-patient	

and	intra-tumor	heterogeneity.	Inter-patient	variability	was	simulated	by	sampling	single-drug	PFS	

times	from	clinically	observed	distributions,	which	generates	a	spectrum	of	different	combination	

responses	across	patients.	Adding	single-drug	PFS	times	is	the	plain	meaning	of	addition,	but	also,	it	

corresponds	to	the	Bliss	independence	model	which	describes	the	ability	of	drug	combinations	to	

overcome	intra-tumor	heterogeneity34	(e.g.,	90%	+	90%	tumor	cell	kill	=	99%	cell	kill;	

Supplementary	Figure	S6).	As	described	previously16,35,	tumor	heterogeneity	may	explain	the	

seeming	inconsistency	between	pre-clinical	synergies	and	clinical	additivity.	In	vitro	experiments	

show	that	synergy	depends	on	dosage	and	occurs	variably	across	heterogeneous	panels	of	cell	

lines29,30.	Synergy	may	therefore	arise	at	certain	concentrations	in	a	fraction	of	patients,	as	it	does	in	

cell	cultures,	but	without	significantly	affecting	survival	in	diverse	patient	populations.	

	

Phase	III	trials	are	the	decisive	final	step	in	establishing	superior	cancer	treatments,	and	

unfortunately	few	have	positive	results.	The	consistency	between	25	years	of	practice-changing	

trial	results	and	the	additivity	model	suggests	that	it	could	be	useful	for	the	prospective	design	of	

phase	III	trials	of	combination	therapies.	By	estimating	survival	distributions,	the	additivity	model	

can	predict	the	likelihood	of	success	of	novel	drug	combinations	in	different	cancer	types	and	

inform	trial	designs	and	statistical	analyses.	Thus,	the	model	of	drug	additivity	has	the	potential	to	

improve	the	rate	of	success	of	phase	III	trials	and	accelerate	progress	in	cancer	treatment.	

	

Methods	
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Data	Collection	

			We	searched	all	drug	combinations	FDA-approved	for	advanced	cancers	between	1995	and	2020,	

from	FDA	Oncology	/	Hematologic	Malignancies	Approval	Notifications	

(https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-

hematologic-malignancies-approval-notifications)	and	centerwatch.com	

(https://www.centerwatch.com/directories/1067-fda-approved-drugs)	(Figure	1).		

We	sought	combinations	where	the	approval	was	based	on	a	trial	of	‘standard	of	care’	versus	

‘standard	of	care	plus	new	agent’.	We	required	Kaplan-Meier	survival	curves	of	PFS	for	the	

combination	arm,	the	experimental	single-agent	arm,	and	the	control	(standard	of	care)	arm.	When	

all	three	arms	were	not	available	from	the	same	trial,	we	searched	clinical	trial	publications	of	all	

phases	that	included	the	missing	arm	based	on	the	following	criteria:	(1)	patients	had	the	same	

disease,	(2)	dosage	difference	was	less	than	1.5-fold,	and	(3)	the	trial	arm	contained	more	than	30	

patients.	We	collected	PFS	data	from	39	clinical	trials	of	FDA-approved	combination	therapies.	Two	

combinations	had	a	difference	of	more	than	three	lines	of	therapies	or	had	a	mismatch	in	baseline	

patient	characteristics	that	can	potentially	affect	drug	responses.	These	were	analyzed	in	

supplement	and	were	removed	from	subsequent	analyses.	Biomarker-positive	subpopulations	(e.g.,	

PD-L1	expression	for	immune	checkpoint	inhibitors)	were	also	analyzed	in	supplement.	

Digitization	of	Kaplan-Meier	plots	was	as	previously	described16,17.		

	

Clinical	definition	of	drug	additivity	

For	PFS	as	a	metric	of	clinical	efficacy,	the	plain	meaning	of	‘additivity’	is	to	add	PFS	times.	

This	corresponds	to	a	common	pre-clinical	definition	of	additivity.	Specifically,	among	the	two	

dominant	definitions	of	drug	additivity,	Loewe’s	model	requires	dose-response	measurements	and	

cannot	apply	to	clinical	data,	but	the	Bliss	independence	model	can	be	adapted	to	clinical	data.	The	

Bliss	model	defines	non-interacting	drug	pairs	as	conferring	independent	probabilities	of	cell	death.	
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If	tumor	progression	arises	from	the	exponential	growth	of	cancer	cells	that	were	not	killed	by	drug	

treatment,	this	corresponds	to	addition	of	PFS	times	of	individual	drugs	(Supplementary	Figure	

S6)36,37.	Like	the	Bliss	and	Loewe	models,	this	‘null	model’	of	additivity	does	not	anticipate	that	real	

mechanisms	are	as	simple	as	the	null	model,	but	defines	the	efficacy	expected	in	the	absence	of	

synergistic	drug-drug	interactions.	In	clinical	practice,	quantifying	the	PFS	benefit	of	a	drug	must	

consider	that	progression	takes	time,	even	in	the	absence	of	effective	therapy,	and	is	observable	at	

scheduled	radiological	scans.	Therefore	to	‘add’	the	PFS	benefits	of	drugs	beyond	the	first	scan,	the	

equation	for	clinical	additivity	is	PFSAB	=	PFSA	+	PFSB	–	PFSuntreated.	In	a	variety	of	aggressive	cancers,	

trials	with	a	placebo-only	or	best	supportive	care	arm	show	that	most	patients	exhibit	progression	

at	their	first	scheduled,	suggesting	this	time	as	a	proxy	for	PFSuntreated	(Supplementary	Figure	S1).	

When	the	first	scheduled	scan	time	differed	between	the	monotherapy	arms,	we	subtracted	the	

larger	of	the	two	to	avoid	overestimating	the	activity	of	the	drugs.		

Simulation	of	HSA	and	Additivity	Model	

We	previously	published	a	method	to	compute	the	PFS	distribution	of	a	combination	

therapy	from	the	PFS	distributions	of	its	constituents16.	The	underlying	theory	was	originally	

named	‘independent	drug	action’	in	196111.	For	clarity,	we	refer	to	this	model	as	‘Highest	Single	

Agent’	(HSA)	because	each	patient’s	PFS	time	is	the	longest	of	the	two	PFS	times	of	constituent	

drugs.	Constituents	can	be	monotherapies	or	a	combination	of	fewer	drugs	than	the	full	

combination.	Briefly,	this	method	uses	PFS	distributions	of	individual	drugs	(PFSA,	PFSB)	to	

generate	a	joint	distribution,		with	correlation	as	supported	by	experimental	data16,17.	Drug	screens	

in	cell	lines	and	patient-derived	xenografts	(PDX)	were	used	to	estimate	the	correlation	between	

drug	responses38–40.	We	calculated	the	Spearman	correlation	between	drug	pairs	using	area	under	

the	curve	(AUC)	for	cell	lines	and	best	average	response	for	PDXs	as	drug	response	metrics	

(Supplementary	Figure	S7).	If	a	drug	did	not	exist	in	the	databases,	it	was	substituted	with	
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another	compound	with	the	same	mechanism	of	action	(e.g.,	topotecan	for	irinotecan	or	oxaliplatin	

for	cisplatin).	We	used	all	cancer	types,	where	the	drug	was	active	(AUC	<	0.8)	in	at	least	10%	of	the	

cell	lines	if	the	correlation	were	similar	within	a	cancer	type	and	across	all	cancer	types.	We	used	

cancer	type-specific	correlation	otherwise.	Average	pairwise	correlation	(ρ=0.3	for	drugs	with	

different	modalities	and	ρ=0.52	for	cytotoxic	chemotherapy	combinations)	of	all	active	drugs	in	

CTRPv241	was	used	when	individual	drug	data	was	unavailable.	For	these	combinations,	the	range	

of	observed	correlations	covering	95%	of	all	active	drug	pairs	[-0.01,	0.64]	corresponded	to	an	

average	uncertainty	of	±	2.29%	and	±	2.67%	in	PFS	for	additivity	and	HSA	models	respectively.	For	

the	HSA	model,	each	of	5,000	datapoints	from	the	joint	distribution	is	assigned	a	combination	

therapy	PFS	equal	to	the	longest	PFS	time	(PFSAB	=	max(PFSA,	PFSB))16.	The	additivity	model	is	the	

same	except	combination	PFS	is	the	sum	of	PFS	times,	with	a	correction	for	scan	interval	(PFSAB	=	

PFSA	+	PFSB	–	PFSuntreated),	as	defined	above.		Predictions	were	made	over	the	timespan	reaching	the	

shortest	follow-up	time	between	the	trial	arms	if	both	arms	did	not	drop	as	low	as	5%	PFS.	

Predictions	were	otherwise	limited	to	the	end	of	follow-up	of	the	combination	arm.	The	generation	

of	partially	correlated	distributions	introduces	small	stochastic	differences,	and	therefore	for	each	

model	we	conducted	100	simulations,	and	selected	that	which	produced	the	median	result	at	50%	

PFS.	Simulated	and	clinically	observed	PFS	distributions	were	compared	using	Cox’s	proportional	

hazards	model42.	For	observed	combination	therapy	arms,	individual	patient	data	were	imputed	

from	published	Kaplan-Meier	curves	at	at-risk	tables43,44.	For	modeled	PFS	distributions,	we	created	

500	patient	events	by	dividing	PFS	curves	into	equal	increments;	the	same	process	was	required	for	

trials	that	did	not	include	an	at-risk	table.	To	assess	the	quality	of	fit,	5000	datapoints	with	equal	

time	intervals	were	used	to	calculate	the	coefficient	of	determination	(R2)	and	mean	signed	

difference	between	predicted	and	observed	PFS	distributions.	Complete	source	data	and	software	

are	in	Supplementary	Data.	
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Figure	1.	Pipeline	of	clinical	trial	selection	process.	(A)	PRISMA	diagram.	n,	number	of	

combination	therapies.		
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Figure	2.	Most	drug	combinations	approved	for	advanced	cancers	are	as	effective	as	

expected	by	either	the	Highest	Single	Agent	(HSA)	or	additivity	model.	Observed	and	expected	

PFS	distributions	were	compared	by	the	Cox	proportional	hazard	test,	for	models	of	HSA	and	
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additivity.	Hazard	ratio	of	1	means	observed	and	expected	PFS	are	equal.	Error	bars	indicate	95%	

confidence	intervals.	Clinical	trials	are	from	refs.19,20,45–81.	BC,	Breast	Cancer;	MM,	Multiple	Myeloma;	

CRC,	Colorectal	Cancer;	CLL,	Chronic	Lymphocytic	Leukemia;	OC,	Ovarian	Cancer;	TNBC,	Triple-

Negative	Breast	Cancer;	ES-SCLC,	Extensive-Stage	Small	Cell	Lung	Cancer;	NSCLC,	Non-Small	Cell	

Lung	Cancer;	Bev.,	Bevacizumab;	Atezo.,	Atezolizumab;	5-FU,	5-Fluorouracil;	LV,	Leucovorin;	Dex.,	

Dexamethasone;	CPS,	PD-L1	combined	proportion	score;	TPS,	PD-L1	tumor	proportion	score.	
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Figure	3.	Progression-free	survival	(PFS)	of	combination	therapies	compared	with	

predictions	of	HSA	and	additivity.	(A)	Combination	therapies	that	are	significantly	more	than	

additive;	(B)	statistically	indistinguishable	from	additivity;	and	(C)	significantly	less	than	additive.	

Combinations	in	(C)	are	consistent	with	the	HSA	model	except	one	marked	by	a	green	box.	Panel	

numbers	correspond	to	numbers	in	Figure	2.		
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Figure	4.	Additivity	is	a	more	accurate	model	than	HSA	but	overestimates	the	activity	of	

some	drug	combinations.	(A)	Observed	versus	expected	PFS	under	models	of	HSA	and	additivity.	

Each	line	represents	a	different	combination	therapy’s	PFS	over	time.	(B)	Histogram	of	goodness	of	

fit	(R2)	between	observed	versus	expected	from	HSA	(left)	and	additivity	(right).	R2	below	zero	is	

shown	at	zero.	Gray	bars	indicate	combinations	that	are	not	consistent	with	the	model.	(C)	

Histogram	of	mean	signed	difference	between	observed	and	expected	PFS	distributions	from	HSA	

(left)	and	additivity	(right).	Positive	values	indicate	observed	PFS	better	than	expected	PFS.	(D)	

Combination	therapies	were	classified	by	inclusion	of	an	immune	checkpoint	inhibitor,	inclusion	of	
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an	anti-angiogenesis	agent,	monotherapy	approval	of	the	experimental	drug,	and	the	net	benefit	of	

the	combination	(hazard	ratio	between	combination	arm	and	control	arm	above	or	below	median	

of	all	trials	analyzed,	0.61).		Each	group	was	tested	for	deviation	from	additivity	(HRadditivity	≠	1)	by	

the	Wilcoxon	signed-rank	test.	The	center	of	the	boxplots	indicates	median	and	the	upper	and	

lower	bounds	of	the	boxes	indicate	first	and	third	interquartile	range.	Whiskers	extends	to	1.5	

interquartile	range.	NS,	not	significant.	
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