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Abstract 

The use of wearable sensors in movement disorder patients such as Parkinson’s disease (PD) and 

normal pressure hydrocephalus (NPH) is becoming more widespread, but most studies are limited to 

characterizing general aspects of mobility using smartphones. There is a need to accurately identify 

specific activities at home in order to properly evaluate gait and balance at home, where most falls 

occur.  

We developed an activity recognition algorithm to classify multiple daily living activities including 

high fall risk activities such as sit to stand transfers, turns and near-falls using data from 5 inertial 

sensors placed on the chest, upper-legs and lower-legs of the subjects. The algorithm is then verified 

with ground truth by collecting video footage of our patients wearing the sensors at home. 

Our activity recognition algorithm showed >95% sensitivity in detection of activities. Extracted 

features from our home monitoring system showed significantly better correlation (~69%) with 

prospectively measured fall frequency of our subjects compared to the standard clinical tests (~30%) 

or other quantitative gait metrics used in past studies when attempting to predict future falls over one 

year of prospective follow-up. 

Although detecting near-falls at home is difficult, our proposed model suggests that near-fall frequency 

is the most predictive criterion in fall detection through correlation analysis and fitting regression 

models. 
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1 Introduction 

Postural instability is both a cardinal symptom of movement disorders like Parkinson’s disease (PD) 

and a major cause of falls in these patients [1]. Injurious falls and hip fractures occur at higher rates in 

PD patients 10-15 years prior to diagnosis of PD compared to healthy controls [1]. Therefore, if subtle 

balance dysfunction could be properly identified and characterized, this information could be used to 

initiate falls preventions and physical therapy programs, improve fall prediction algorithms, and 

monitor or evaluate new treatments.  

The Movement Disorder Society-Unified Parkinson’s Disease rating scale (MDS-UPDRS) [2], [3] 

analyzes all motor symptoms using a semi-quantitative scale. Its validity and reliability is well 

recognized and it is the clinical gold-standard in terms of monitoring symptoms related to PD [4]. 

However, these assessments are subject to inter-rater variability, and the unavailability of continuous 

monitoring limits these methods. The score of the evaluation depends on the patient’s current status, 

which may fluctuate day-to-day and depending on the time since the last dose of medication was taken. 

On the other hand, traditional lab-based assessments using infrared cameras or quantitative analysis to 

characterize postural instability in patients with movement disorders are costly, not portable, and are 

unable to track long-term movement data from these patients in their day-to-day lives when most falls 

occur. Therefore, there is a serious need for long-term, real-time, and objective characterization of 

movement as a complement to clinical and lab-based assessments [7].  

A few methods of characterizing mobility in patients with movement disorders have been proposed, 

including home movement diaries [5] and characterizing mobility using smartphone applications. 

Patient diaries and questionnaires at home are frequently used in clinical routine to study motor stages 

and fluctuations in late-stage PD [6]. However, diaries are subject to fatigue, errors, and bias which 

impacts the quality and credibility of the data, particularly in patients with cognitive dysfunction [6]. 

Some methods of tracking participants at home may involve using mobile phone-based systems that 

gather data using inertial sensors that are built into smartphones [8].  This yields data that allows for 

general tracking of activities such as walking, sitting and sleeping, but does not provide quantitative 

insights into participants’ postural responses when experiencing a fall or near-fall. Additionally, 

relying on data from a device that is not fixed to the patient’s body may introduce error or leave long 

gaps in data. More elaborate systems using multiple cameras throughout a person’s home in order to 

track their movements may also be used, but this may not be feasible on a wide scale due to its cost, 

complexity, and privacy concerns [9].  

To address some of these problems, we have developed an algorithm that can enable real-time detection 

of high-risk activities in the patient’s home environment using inexpensive and widely available 

wearable technology. The goal of this study was to create a video-validated dataset of movement 

disorder patients and healthy controls engaged in daily living activities in their homes, develop an 

algorithm for automatic recognition of near-falls/high fall risk activities and subsequently 

quantitatively characterize the patient’s response to these events. Finally, we developed novel 

behavioral biomarkers based on this data to assess their relationship to patients’ prospective fall risk 

over one year of follow-up. 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.23.22282685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282685


 
3 

2 Methods 

2.1 Participant population characteristics 

19 movement disorder patients who were being clinically evaluated and/or treated for either normal 

pressure hydrocephalus or Parkinson’s disease and 10 age-matched healthy control participants were 

enrolled over a period of 2 years from the Minneapolis VA Health Care System (MVAHCS) and 

University of Minnesota (UMN). Enrollment was designed to enroll a variety of types of movement 

disorder patients with varying gait dysfunction and postural instability ranging from normal gait and 

balance (MDS-UPDRS gait and pull test item scores of 0) to moderate dysfunction (MDS-UPDRS 

scores of 3). Patient participants were excluded if they were non-ambulatory or if they were unable to 

give consent. Control participants were excluded if they had any movement, gait, or balance disorders. 

Demographic information was collected (Table 1). This study was approved by the MVAHCS and 

UMN Institutional Review Boards, and all participants provided informed consent for participation 

according to the Declaration of Helsinki. 

2.2 Measurement setup 

The measurement sensors were customized and reprogrammed inertial measurement units (IMU; 

SparkFun, Inc. Boulder, CO, USA). The board was equipped with a high-performance ARM Cortex-

M4 processor powered by 500 mAh high-capacity Lithium battery [10]. The measurement Integrated 

circuit (IC) was an ICM-20948 (InvenSense, San Jose, CA, USA) which can log nine degrees of 

freedom (accelerometer, gyroscope, magnetometer) at nearly 250 Hz [11]. The data from the IMU was 

sampled with a 100Hz frequency and stored on a flash memory though it can be streamed wirelessly 

through Bluetooth connectivity to a smartphone or computer (Figure 1).  

The sensor configuration is one IMU sensor on each shank (just above the ankle), one IMU on each 

thigh, and one IMU sensor on the chest. This five sensor configuration uses an angle-based method 

taking advantage of the geometry of human in-plane walking. The details of our estimation algorithm 

and the accuracy of a variety of kinematic variables which can be calculated using this configuration 

compared to a gold standard infrared camera measurements has been previously described [16]. 

2.3 Home Wearable Sensor Usage 

Each participant was shown how to properly place the IMUs (Figure 1) in the clinic at their baseline 

visit. They were then sent home for one week and were instructed to wear the IMUs during all waking 

hours. The IMUs were charged overnight. The entirety of the dataset was able to be stored on the 

available flash memory on the sensor board and therefore participants did not need to upload data or 

stream any data to an app. They simply wore the sensors during the day and charged them at night. 

Each patient is provided with a custom charger connected to a Raspberry Pi Zero board (Raspberry Pi 

Foundation, Cambridge, England) which is programmed to synchronize the sensors together using 

threading with an extremely accurate real-time clock module (DS3231 RTC, Adafruit, New York, NY) 

every time the sensors are connected to the charger [14]. During the week of wearable sensor use, a 

research coordinator contacted the participants daily to troubleshoot any technical problems and check 

in. Participants were then prospectively followed for one year and asked to complete fall diaries 

according to accepted fall data formatting. To supplement the fall diaries, a research coordinator called 

the participants weekly for the follow-up year to inquire about any falls occurring during the past week.   
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2.4 Home Wearable Sensor Activity Definitions and Video Validation 

In order to properly identify home activities, we first defined a variety of activities using the IMU data 

(Supplemental Table 1). The algorithm used to identify each home activity is a deep learning-based 

activity recognition architecture using a convolutional neural network long short-term memory 

network (CNN-LSTM) which we have previously detailed [15]. We also used three other commonly 

used classifiers (logistic regression, support vector machine, decision tree) to compare their 

performance to our CNN-LSTM. The details of these algorithms can be found in the Supplemental 

Methods. In order to validate the algorithm-defined activities, we asked a subset of participants (n=10) 

to wear a small video camera (Runcam, Aberdeen, Hong Kong Island, Hong Kong, [12] with a necklace 

to wear at home. Each patient was asked to randomly record for 45-60 minutes each day, ideally while 

ambulating or performing some type of algorithm-detectable activity. The videos were then manually 

annotated using a video-defined equivalent of each IMU-defined home activity (Supplemental Table 

1) and synchronized with the sensors using the camera timestamps.  Examples of the video footage 

captured by the patients are provided in supplemental materials. 

2.5 Fall Prediction Modeling 

We prospectively followed all patient participants for one year with fall diaries and weekly individual 

participant contact to document the presence of any falls and the total number of falls over the entire 

year. From this data, we calculated the fall frequency as #falls/week. Using fall frequency as our 

outcome, we then examined the correlation between multiple computed features and fall frequency. 

These features ranged from standard demographic characteristics such as age, height, and weight, to 

clinical measurements such as the MDS-UPDRS pull test score, and also included a number of 

quantitative features from home measurements (denoted with an “_h”) that have been used in prior 

studies such as the total ambulatory time each day and number of ambulatory bouts each day 

(Supplemental Table 2). We also computed several novel features based on our previously video-

validated activities described above. These include the frequency of near falls, turns and bends among 

others (events defined in Supplemental Table 1, all features used for correlation analysis are seen in 

Supplemental Table 2). We then created correlation confusion matrices to examine correlation of the 

previously mentioned data features with fall frequency. Using the fall diary data above, we also 

examined the time to first fall within the first year.  

From the 29 participants, we have collected fall diaries and have survival data for 17 subjects. We did 

not collect the fall diaries from the control subjects and hence excluded them for the fall prediction 

model. From the remaining subjects, 9 are censored since they are either new patients, or their home 

data is missing, or stopped sending their fall diaries to us before week 52. 

3 Results 

3.1 Population characteristics 

Eight patients with NPH and 11 with PD were enrolled for a total of 19 patient participants. Ten 

healthy, age-matched control participants were also enrolled. Demographic characteristics are 

demonstrated in Table 1. There were no significant differences in age, sex, height or weight between 

controls and patient participants. As expected, patient participants had significantly worse gait and 

postural stability MDS-UPDRS scores. 
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3.2 Activity Recognition Algorithm Validation 

Ten of our patients generated more than 40 hours of video footage which was manually annotated (see 

Supplemental Table 1 for definitions). Figure 2 demonstrates an example of one day of recorded data 

using our sensors compared to the video footage obtained from a patient at home. This patient generated 

approximately 90 minutes of video footage during which he was ambulatory for approximately 45 

minutes punctuated in the middle by 45 minutes where he was sitting at rest. The algorithm-predicted 

activity (blue) overlies the actual video-annotated activity (orange) for the vast majority of the time, 

with an example of one misclassified activity (~8:58 am, standing misclassified as walking, seen in the 

Figure 2 inset).  

The sum total of video footage in the entire subset of patients resulted in more than 14,000 total events 

which were used for algorithm predictions. Figure 3 demonstrates the home activities predicted by our 

activity recognition algorithm in comparison to the video-annotated data collected on the subset of 

patients with video recorded events. Events which were common and straightforward to both define 

and detect such as walking, standing and turning demonstrated the highest accuracy (>99%). Because 

these three events were the most common overall, they also represented most of the false positive and 

false negative errors for all events. Bending, sitting and transitions from sit to stand or stand to sit were 

significantly less common and slightly less accurately predicted (91-94%). Near falls in any direction 

were among the least common events and were less accurately predicted (~80%).  

Table 2 shows the number of true positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) samples from our activity recognition algorithm compared to the ground truth from video 

annotations. We can use these values to calculate the sensitivity (true positive rate or TPR), specificity 

(true negative rate or TNR), positive predictive value (PPV), negative predictive value (NPV), and 

accuracy (ACC).  Because the number of total events is quite high, the specificity and overall accuracy 

of all the events are high, particularly for the low likelihood events such as sit to stand transitions, near-

falls and falls. Nonetheless, even the low likelihood events had sensitivities >95% with the exception 

of near-falls which was 80%.    

Supplemental figure 1 shows the median number of near-falls per week (Nfalls_h) for the three groups 

of our subjects. Control subjects show significantly fewernear-falls compared to PD and NPH patients. 

PD patients showed a slightly higher median compared to NPH patients which could be related to 

variations in the state of neurologicaldisease within these two groups. A detailed analysis and 

comparison across patient groups is out of scope of this paper and will be discussed in future 

publications.  

To compare our LSTM algorithm to other standard classifiers commonly used to make predictions on 

large datasets, we have created receiver operating characteristic (ROC) curves for 6 activities of 

standing, walking, sit-stand transitions, turning, bending and near-falls. Figure 4 shows the ROC curves 

for four binary classifiers of Logistic Regression (LOG), Support Vector Machines (SVM), Decision 

Tree (DT), and our Long-Short-Term-Memory cells (LSTM) for each activity [15]. The area under the 

curve for each plot is summarized in Table 3. The performance of the LSTM classifier is superior in 

all activities with AUCs ranging from 0.982 to 0.999 for all activities while DT performs next best 

with slightly worse results. The SVM and LOG methods are significantly less accurate than LSTM or 

DT but still show acceptable results for a diagnostic classifier with AUCs ranging from 0.65 to 0.97. 

All classifiers worked well for relatively easily classified activities such as standing, walking or 

bending, but more difficult activities to classify such as near falls required the more sophisticated CNN-

LSTM algorithm. There were no differences in activity classification between groups such that the 
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CNN-LSTM algorithm was able to accurately classify activities in controls, NPH and PD patients 

equally well (Supplemental Figure 2). The overall performance (in terms of area under the curve) of 

each classifier is very similar across different patient groups. The small differences are related to 

random variables such as the number of samples, patient specific responses, and outlier responses. 

Figure 5 demonstrates a correlation matrix examining the top ten features correlated with prospectively 

observed fall frequency over the subsequent year of follow-up. Two of our novel metrics, the total 

number and frequency of near falls detected by the home monitoring setup showed the highest 

correlation with patient fall frequency (0.69 and 0.67, respectively). Eight of the most correlated 

features with fall frequency come from values calculated solely using the IMUs while the patient moves 

around their home and surrounding environment. For example, time spent lying down per day (lie 

down frequency, i.e. lying duration/total time), the total number of ambulatory bouts at home 

(totNumABs), the frequency of sitting at home (sit_freq_h i.e sitting duration/total time), walking 

frequency at home (walk_freq_h), the peak acceleration of the chest at home (peak_acc_h, which 

represents the strongest perturbation the subject experiences at home as measured by the chest 

accelerometer in each day) and the distribution of ambulatory bouts in time (alpha parameter for ABs 

of more than 8 seconds (alpha_8)[17]) at home are all within the ten features with the highest 

correlation with fall frequency. It should be noted that some features were inversely correlated with 

fall frequency such that increased number of ambulatory bouts and increased walking frequency at 

home were associated with fewer falls (-0.40 and -0.36, respectively). Furthermore, Figure 5 also 

shows how correlated some of these features are with each other. For example, the total number of 

ABs are highly correlated with walking frequency (0.81), and the total number and frequency of near 

falls are almost perfectly correlated (0.98). We constructed a linear regression model on 5 features 

which are not highly correlated. The details of the regression model are presented in Tables 4 and 5. 

The model shows that near-fall frequency (nfall_freq), alpha parameter for ABs of more than 8 seconds 

(alpha_8) and UPDRS score (updrs) were the most significant predictors, respectively. The regression 

model parameters are summarized in Table 5. The only non-quantitative features included in the ten 

most correlated features were the MDS-UPDRS pull test item score measured in clinic, and the total 

number of failures (needing to be caught by examiner) in clinical pull tests (tot_failures). These were 

among the most weakly correlated features (0.30 and 0.26, respectively) overall and were not 

significantly associated with fall frequency in the multivariable linear regression model. 

 

4 Discussion 

Using a combination of domain specific knowledge and machine learning techniques, we developed 

an automatic algorithm for detection and characterization of near-falls and high fall risk activities of 

the patients. We created a validated, video annotated and quantitative dataset of movement disorder 

subjects wearing inertial sensors at their home environment. The statistical analysis of our algorithm 

shows >95% sensitivity in detection of activities apart from near-falls, which showed 80% sensitivity. 

The correlation analysis of the computed features in our dataset showed that our novel metrics based 

on near-falls are superior in terms of the highest correlation with patient fall frequency over an entire 

year of follow-up while clinic-based features were either not correlated or were among the most weakly 

correlated features. 
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4.1 Video Validation of CNN-LSTM Algorithm in the Home Setting 

Using video to validate algorithm predictions based on IMU data is a necessary component to reliably 

interpret any wearable dataset, but is frequently lacking in studies employing wearables [18].  Studies 

that do employ some measure of validation typically do so in the clinic or laboratory setting, rather 

than “in the wild” as we have done in this study [18]. As such, this represents an ecologically valid 

quantitative dataset that can then be leveraged to understand the factors relevant in producing falls with 

far more detail compared to the current standard solution which involves qualitative clinical 

examination or laboratory-based task assessments that may or not be related to real world balance 

perturbations. Since most falls occur at home and surrounding environment, a wearable dataset that is 

“validated” in the clinic or lab may not be ecologically valid for fall prediction or other uses. On the 

other hand, some activities such as walking, standing and bending may be able to be easily validated 

in the clinic setting and so datasets validated with video “in the wild” should be compared to datasets 

using clinic-based assessments in order to better understand what can accurately assessed in the clinic 

vs. which assessments need to occur at home.  

Our activity recognition algorithm uses a nonlinear switched-gain observer based on measurements 

from IMUs worn on leg segments and the chest in order to estimate body segment orientation. The 

observer estimates the tilt angles and measurement bias is estimated and removed. This has been 

measured in prior studies using infrared-based motion capture systems to ensure its accuracy [16]. 

These estimates are then used to train the LSTM deep learning algorithm on all of the activities.  Since 

many of the activity definitions are based on the tilt angles (Supplemental Table 1), this may be one 

reason that our LSTM activity recognition method showed superior accuracy. In addition, our deep 

learning network demonstrated lower computation cost compared to the other methods as it reduces 

the number of raw IMU signals necessary for activity recognition. Future studies should investigate 

how to reduce both the number of worn IMUs and number of recorded events without affecting 

diagnostic accuracy in order to minimize the burden on patients wearing the IMUs. 

4.2 Development of novel behavioral biomarkers of falls 

We have developed prospective, predictive falls risk metrics that integrate the patient’s postural 

response along with data that reflects the patient’s home environment based on near-falls detection. 

We have included all known gait parameters used in prior studies and current clinical standards in the 

study, however our proposed metrics showed superior performance in predicting falls in these patients. 

While there are simple measures which may be more easily measured with a smartphone or smartwatch 

(e.g., frequency of lying down, number of ambulatory bouts), our study suggests these are inferior to 

the number or frequency of near-falls. Similarly, clinical tests are typically inadequate in describing 

the likelihood of the subject falling and in characterizing the extent of their postural instability [7]. 

Inter- and intra-rater variability in the execution and interpretation of clinical testing likely is 

responsible for some of their poor predictive power. Furthermore, incidents that trigger stumbles and 

falls at home are almost certainly different from testing conducted by clinicians or researchers in an 

artificial environment. Unfortunately, there are few studies on postural instability in home 

environments and these studies typically do not provide enough validation for their results in real-life 

situations at home or at least the demonstration of generalizability to the home environment [19]. While 

there may be overlap in the postural response to balance testing in the clinic or lab and that at home, 

datasets such as the one described in our study should be used to investigate similarities and differences 

between these two settings in the future. This could lead to better fall prediction algorithms and 

improved diagnostic monitoring and treatment evaluations in the clinic, lab and at home in the future. 

Despite being the most relevant feature of the dataset for fall prediction, near-falls were the most 

difficult activity to accurately detect with a sensitivity of 80%. This was for several reasons. First, near-
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falls look similar to other activities (like sit-stand transitions and bending) when examining inertial 

sensor data. Second, some of the near-falls were so subtle that they could not even be detected in 

videos. Finally, the natural occurrence of near-falls is relatively rare and obtaining video-validated 

samples is difficult since most of the patients who are at risk of falling are usually less active or use a 

walking aid to avoid falling. As such, they were also among the least common events and our algorithm, 

like all machine learning algorithms, performs better with more samples. Continued data collection 

with more validated events will likely help increase the accuracy of the algorithm over time. 

4.3 Future Dataset Usage 

We have collected our dataset using an inexpensive wearable system based on inertial sensors to 

provide kinematic data of PD and NPH patients at home. Typical uses of IMUs worn by movement 

disorder patients at home are detailed gait analysis and metrics on mobility/ambulation which can be 

used for a wide variety of purposes such as disease stage assessment, fall prediction, and treatment 

evaluation, among others [20-23]. An advantage of our system is that it contains data from sensors on 

the chest and both feet that can be used to give detailed information on the postural response to near 

falls that occur in a natural setting in addition to all of those typical uses described above. Given the 

contribution of postural instability to falls in these patients, characterizing postural instability at home 

could potentially be very useful in their monitoring and treatment evaluation, particularly as their 

disease progresses and their likelihood of falling increases. Most studies of postural instability are still 

based on questionnaires or short-term simulations of near-falls in a clinical or lab setup [22]. In 

addition, while wearable studies are becoming more common, clinical fall risk assessment is usually 

performed using diaries and questionnaires or one-time evaluations of gait and balance factors of the 

patients in a clinical trial [2], [3]. These methods are questionable in their quality and credibility due 

to their short-term and subjective assessment of the patients’ response [7]. Thus, there is a crucial need 

for a long-term, easily obtained, and objective characterization of gait and postural instability in the 

home setting as a complement to clinical assessments. We would argue that a dataset such as the one 

described in this manuscript would represent the first step towards that goal.   

 

One limitation of this dataset is its practicality as the current setup with 5 sensors might not be practical 

for everyday patient use. Future research should develop algorithms to use as few sensors as possible 

in optimal locations on the body. Because we were interested mainly in postural instability and falls, 

we did not include IMUs on the upper limbs and so our dataset does not include hand or arm 

movements. Given the frequent presence of upper extremity tremor in PD, this is particularly relevant 

for these patients in their diagnosis, monitoring and treatment evaluation. In addition, many activities 

of daily living can likely be classified with an upper extremity IMU. Further research should plan to 

integrate IMU/smartwatch-based data to obtain the widest variety of activities with the best diagnostic 

accuracy. Wearable usage should also be tailored to the specific usage desired by the clinician and 

patient. Finally, we plan to further develop activity recognition algorithms using unsupervised and 

semi-supervised learning methods to increase their accuracy or discover new activities which might 

have been missed by the current methods.  

 

Even though near-fall detection is difficult to recognize and our algorithm shows 80% sensitivity, near-

fall frequency at home was still the most predictive criterion in the linear regression model compared 

to any other metric. Our results showed that the detection of near-falls is a far more powerful way to 

examine home monitoring data compared to current methods and should be incorporated into fall 

prediction algorithms. This validated dataset of movement disorder patients engaged in daily living 

activities in their homes can serve as a valuable resource for researchers to provide a ground truth for 

IMU algorithm comparison that include the natural responses of patients at home. 
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5 Tables 

Table 1. Demography of participants 

Condition 

* 

Age 

[year] 

Mean 

(SD) 

Female  

n, % 

Height 

[cm] 

Mean 

(SD) 

Weight 

[kg] 

Mean 

(SD) 

UPDRS 

Pull test 

Mean 

(SD) 

UPDRS 

Gait 

Mean 

(SD) 

Duration 

of Disease 

[year] 

Mean 

(SD) 

PD  

(n = 11) 
65 (4.76) 2, 20% 

181.54 

(8.97) 

92.94 

(23.63) 
0.56 (0.96) 0.90 (0.74) 

10.50 

(5.41) 

NPH  

(N = 8) 
69.8 (8.21) 1, 11% 

180.72 

(3.50) 

102.57 

(20.71) 
1.04 (0.56) 1.85 (0.89) N/A 

C  

(n = 10) 
61.1 (9.97) 8, 80% 

172.20 

(6.83) 

79.75 

(27.69) 

0  

(0) 

0  

(0) 
N/A 

* PD = Parkinson’s Disease, NPH = Normal pressure hydrocephalus, C = Control 
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Table 2. Statistics of each activity in our activity recognition algorithm 

ACTIVITY TP FP TN FN TPR TNR PPV NPV ACC 

Stand 2323 54 11998 14 0.994009 0.995519 0.977282 0.998834 0.995274 

Walk 5309 47 9006 27 0.99494 0.994808 0.991225 0.997011 0.994857 

Stand to sit 119 0 14259 11 0.915385 1 1 0.999229 0.999236 

Sit 300 26 14045 18 0.943396 0.998152 0.920245 0.99872 0.996942 

Sit to stand 112 1 14268 8 0.933333 0.99993 0.99115 0.99944 0.999375 

Turn 5414 30 8898 47 0.991394 0.99664 0.994489 0.994746 0.994649 

Lie down 1 3 14385 0 1 0.999791 0.25 1 0.999792 

Bend 577 5 13779 28 0.953719 0.999637 0.991409 0.997972 0.997707 

Near-fall 58 5 14311 15 0.794521 0.999651 0.920635 0.998953 0.99861 

Fall 2 0 14387 0 1 1 1 1 1 

 

Table 3. Area under the ROC curves for each activity 

CLASSIFIER Standing Walking 
Sit-

Stands 
Turning Bending 

Near-

Falls 

LOG 0.85759 0.85745 0.65548 0.69863 0.96702 0.73180 

SVM 0.99691 0.91850 0.71383 0.78733 0.95410 0.73401 

DT  0.99999 0.99881 0.95043 0.95940 0.98589 0.90834 

LSTM 0.99999 0.99985 0.98920 0.99288 0.99774 0.98253 
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Table 4. Linear regression coefficients for fall frequency prediction 

Feature Estimate 
Standard 

error 
t-stat p-value 

intercept 0.047251 0.020211 2.337934 0.041485 

nfall_freq_h 0.696391 0.188534 3.69372 0.004151 

totNumABs 6.82E-08 1.62E-06 0.042112 0.967239 

sit_freq_h -0.00035 0.000178 -1.99592 0.073889 

updrs -0.01573 0.006449 -2.43948 0.03488 

alpha_8 -0.00391 0.001185 -3.30116 0.007998 

 

Table 5. Linear regression model summary for fall frequency prediction 

Feature SumSq MeanSq F pValue 

Total 0.014705 0.0009803   

Model 0.012228 0.0024457 9.8737 0.001268 

Residual 0.002477 0.0002477   
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6 Figures 

 

 

Fig 1. Inertial sensors placement on the body in 5-sensor configuration, one on the chest and one on 

each lower leg and one on each upper leg. 

 

 

 

Fig 2. Predicted activities compared to the video annotations obtained from a patient at home 

environment  
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Fig 3. Confusion matrix of activity recognition algorithm results compared to the annotated videos 

for 6 subjects. 
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Fig 4. Receiver operating characteristic curves for four binary classifiers plotted separately for each 

activity. 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.23.22282685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282685


 
15 

 

Fig 5. Correlation matrix including the first 10 features with the most correlation with the fall 

frequency of patients at home. 

 

7 Conflict of Interest 

The authors declare that the research was conducted in the absence of any commercial or financial 

relationships that could be construed as a potential conflict of interest. 

8 Author Contributions 

RAM conceived the original idea. AN developed the algorithms, designed the sensors and 

measurement setup with the help and supervision of RR. AN, AJ, JH, LS, JJ, TL, ER, YM, SR, KN, 

CS helped with the data collection and annotations. AN analysed and interpret the results with the help 

and supervision of RAM. AN and RAM wrote the manuscript with the help of AJ and LS.  RAM and 

RR supervised the project.  

9 Funding 

This work was funded in part by a grant from the University of Minnesota MnDRIVE 

Neuromodulation Program and Institute for Engineering in Medicine (IEM) doctoral fellowship. 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.23.22282685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282685


 
16 

 

10 References 

[1]    T. A. Stoffregen and L. J. Smart Jr, “Postural instability precedes motion sickness,” Brain Res. 

Bull., vol. 47, no. 5, pp. 437–448, 1998. 

[2] C. Colosimo et al., “Task force report on scales to assess dyskinesia in Parkinson’s disease: 

Critique and recommendations,” Mov. Disord., vol. 25, no. 9, pp. 1131–1142, Jul. 2010, doi: 

10.1002/MDS.23072. 

[3] J. M. Kane et al., “Revisiting the Abnormal Involuntary Movement Scale: Proceedings From 

the Tardive Dyskinesia Assessment Workshop,” J. Clin. Psychiatry, vol. 79, no. 3, p. 18344, 

May 2018, doi: 10.4088/JCP.17CS11959. 

[4] C. G. Goetz et al., “Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results,” Mov. 

Disord., vol. 23, no. 15, pp. 2129–2170, Nov. 2008, doi: 10.1002/MDS.22340. 

[5] R. A. Hauser, H. Russ, D. A. Haeger, M. Bruguiere-Fontenille, T. Müller, and G. K. Wenning, 

“Patient evaluation of a home diary to assess duration and severity of dyskinesia in parkinson 

disease,” Clin. Neuropharmacol., vol. 29, no. 6, pp. 322–330, Nov. 2006, doi: 

10.1097/01.WNF.0000229546.81245.7F. 

[6] S. Papapetropoulos, “Patient Diaries As a Clinical Endpoint in Parkinson’s Disease Clinical 

Trials,” CNS Neurosci. Ther., vol. 18, no. 5, pp. 380–387, May 2012, doi: 10.1111/J.1755-

5949.2011.00253.X. 

[7] A. L. Silva de Lima et al., “Home-based monitoring of falls using wearable sensors in 

Parkinson’s disease,” Mov. Disord., vol. 35, no. 1, pp. 109–115, Jan. 2020, doi: 

10.1002/mds.27830. 

[8] F. Motolese et al., “Parkinson’s Disease Remote Patient Monitoring During the COVID-19 

Lockdown,” Front. Neurol., vol. 11, p. 1190, Oct. 2020, doi: 

10.3389/FNEUR.2020.567413/BIBTEX. 

[9] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust video surveillance for fall 

detection based on human shape deformation,” IEEE Trans. Circuits Syst. Video Technol., vol. 

21, no. 5, pp. 611–622, May 2011, doi: 10.1109/TCSVT.2011.2129370. 

[10] “SparkFun OpenLog Artemis - DEV-16832 - SparkFun Electronics.” 

https://www.sparkfun.com/products/16832 (accessed Dec. 19, 2021). 

[11] “ICM-20948 Datasheet | TDK.” https://invensense.tdk.com/download-pdf/icm-20948-

datasheet/ (accessed Dec. 19, 2021). 

[12] “Runcam 5 Datasheet,” 2020. https://www.runcam.com/download/runcam5/RunCam5-

Manual-EN.pdf (accessed Dec. 19, 2021). 

[13] O. Calin, Deep learning architectures. Springer, 2020. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.23.22282685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282685


 
17 

[14] “Extremely Accurate I2C-Integrated DS3231 RTC Datasheet,” 2015 

https://datasheets.maximintegrated.com/en/ds/DS3231.pdf (accessed Sep. 06, 2022). 

[15] Nouriani, A., McGovern, R., and Rajamani, R., “Nonlinear LMI-based Observer Estimates 

Improve Accuracy of LSTM Human Activity Recognition Algorithms” Proceedings of 

Modeling, Estimation and Control Conference (MECC), 2-5 Oct 2022, New Jersey, NJ. 

[16] A. Nouriani, R. McGovern, and R. Rajamani. "Step length estimation with wearable sensors 

using a switched-gain nonlinear observer." Biomedical Signal Processing and Control 69 

(2021): 102822. 

[17] Del Din, Silvia, et al. "Analysis of free-living gait in older adults with and without Parkinson’s 

disease and with and without a history of falls: identifying generic and disease-specific 

characteristics." The Journals of Gerontology: Series A 74.4 (2019): 500-506. 

[18] Nouredanesh, Mina, et al. "Fall risk assessment in the wild: A critical examination of wearable 

sensor use in free-living conditions." Gait & Posture 85 (2021): 178-190. 

[19] J. K. Lee, S. N. Robinovitch, and E. J. Park, “Inertial Sensing-Based Pre-Impact Detection of 

Falls Involving Near-Fall Scenarios,” IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 23, no. 2, pp. 258–266, 2015. 

[20] I. Pang, Y. Okubo, D. Sturnieks, S. R. Lord, and M. A. Brodie, “Detection of Near Falls Using 

Wearable Devices: A Systematic Review,” Journal of Geriatric Physical Therapy, vol. 42, no. 

1. Lippincott Williams and Wilkins, pp. 48–56, 01-Jan-2019. 

[21] N. Mohammadian Rad, T. Van Laarhoven, C. Furlanello, and E. Marchiori, Novelty detection 

using deep normative modeling for imu-based abnormal movement monitoring in parkinson’s 

disease and autism spectrum disorders. Sensors, 18(10), p.3533, 2018. 

[22] A. Zhan, S. Mohan, C. Tarolli, R. B. Schneider, J. L. Adams, S. Sharma, M. J. Elson, K. L. 

Spear, A. M. Glidden, M. A. Little, A. Terzis, E. Ray Dorsey, and S. Saria, “Using smartphones 

and machine learning to quantify Parkinson disease severity the mobile Parkinson disease 

score,” JAMA Neurology, vol. 75, no. 7, pp. 876–880, Jul. 2018. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.23.22282685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282685

