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Abstract

In situations like the COVID-19 pandemic, healthcare systems are under enormous pressure as they can rapidly
collapse under the burden of the crisis. Machine learning (ML) based risk models could lift the burden by
identifying patients with high risk of severe disease progression. Electronic Health Records (EHRs) provide
crucial sources of information to develop these models because they rely on routinely collected healthcare
data. However, EHR data is challenging for training ML models because it contains irregularly timestamped
diagnosis, prescription, and procedure codes. For such data, transformer-based models are promising.

We extended the previously published Med-BERT model by including age, sex, medications, quantitative
clinical measures, and state information. After pre-training on approximately 988 million EHRs from 3.5 million
patients, we developed models to predict Acute Respiratory Manifestations (ARM) risk using the medical
history of 80,211 COVID-19 patients. Compared to XGBoost and Random Forests, our transformer-based
models more accurately forecast the risk of developing ARM after COVID-19 infection. We used Integrated
Gradients and Bayesian networks to understand the link between the essential features of our model. Finally,
we evaluated adapting our model to Austrian in-patient data. Our study highlights the promise of predictive
transformer-based models for precision medicine.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome
coronavirus type 2 (SARS-CoV-2) that arose in December 2019. Since its emergence, 628 million people have
been infected, and 6.58 million have died (https://coronavirus. jhu.edu/map.html, accessed 25.10.2022).
In such pandemic circumstances, healthcare systems face a tremendous challenge as they can quickly collapse
under the burden of this unprecedented crisis. Despite taking countermeasures such as testing, lockdowns,
and vaccinations, the pandemic temporarily put immense stress on global healthcare systems. The use of
decision support systems such as patient-level risk models can assist with the critical tasks of quickly and
efficiently identifying high-risk patients so that the existing resources are best distributed and vulnerable
patient subgroups are effectively protected.

Structured Electronic Health Records (EHRs) offer great opportunities for the efficient development of such
risk models as they are routinely collected in many healthcare systems in large quantities. They contain
data on diagnoses, prescriptions, procedures, and quantitative clinical measurements, such as vital values
from bedside monitoring. Furthermore, demographic information such as age, gender, and region may be
available. Models trained on such data could be used to better understand risk factors, such as comorbidities
and medications, in addition to predicting a patient’s risk of severe disease development. However, it is difficult
to exploit such data due to their high dimensionality, heterogeneity, temporal dependence, sparsity, and
irregularity[1].

Furthermore, the coding of diagnoses is frequently biased for economic reasons. Since there is no unique
mapping of a physician’s diagnosis to a coding scheme such as ICD, there is a tendency to select the code
that delivers the greatest economic benefit from among several possible codes. Furthermore, medications are
often categorized on a product level rather than a chemical substance level, and it is worth noting that several
medications may contain the same chemical substance.

In the past, many ML approaches have been taken to work with structured EHR data. Simpler methods often
limited the time information and just worked with a one-hot encoding (OHE) of diagnoses and prescriptions,
which allowed the application of standard ML techniques, such as logistic regression, random forest (RF),
XGBoost (XGB), and Bayesian methods[2]. Recently, more studies focused on the use of time-series informa-
tion. Methods for such an approach include autoencoders, convolutional neural networks[3], or sequential
models like recurrent neural networks (RNN)[4] or transformer-based models[5-9]. Transformer-based models
originate from natural language processing (NLP) and have recently gained much attention since they have
achieved excellent results in many areas[10-14]. A principal advantage of transformer models is the ability to
train them in a parallel fashion and the ability to weigh different parts of a time series differently due to their
inbuilt attention mechanism. Typically, transformer-based models are trained in two stages: a pre-training
phase focusing on generic representation learning and a transfer-learning (fine-tuning) phase focusing on
an application-specific prediction task. This approach has the advantage that pre-trained models, which are
often trained on very large datasets (e.g., entire Wikipedia, all protein sequences), can be shared with a broader
community and later on be fine-tuned for various tasks, which cannot be foreseen at the time of pre-training.

Variants of the Bidirectional Encoder Representations from Transformers (BERT)[15] model have recently
been applied to structured EHR data. For instance, Shang et al. developed a graph-augmented transformer
model named G-BERT to encode the medical history of single medical appointments and used the generated
embeddings for a medication recommendation task[9]. Later, Li et al. developed BERT for EHR (BEHRT),
which generated a patient embedding based on the history of diagnoses and used it for disease prediction in
different time windows[5]. Since BEHRT - like most transformer-based models - is limited with respect to the
maximum sequence length, the authors later developed a hierarchical BEHRT variant (HI-BEHRT), which can
process longer medical histories[6]. Another model, called the Bidirectional Representation Learning model
with a Transformer architecture on Multimodal EHR (BRLTM), was published by Meng et al. in 2021[8]. They
followed a similar strategy as BEHRT but used a larger vocabulary, including more diagnoses, medications,
and procedures. Another transformer-based model for structured EHR data is Med-BERT([7]. Like BRLTY,, it is
closely related to BEHRT, but Med-BERT has a much larger vocabulary size and uses slightly different training
objectives. Unfortunately, none of the above-mentioned models is publicly available in a pre-trained form and
thus not usable for the broader community.

Our contribution is an extension of the Med-BERT approach by including information about prescribed
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medications and demographic information such as state of residence, gender, and age as well as quantitative
clinical measurements. We pre-trained our model, named ExMed-BERT, on 987,846,612 EHRs collected
between 2010 and 2021, stemming from 3.5 million US patients in the IBM Explorys Therapeutic dataset. As a
showcase, we subsequently used data from 80,211 COVID-19 patients to develop ML models for predicting
the risk of acute respiratory manifestation (ARM) within three weeks after a confirmed COVID-19 diagnosis.
This time frame was chosen because, on the one hand, a COVID-19 infection typically lasts 10 to 14 days. On
the other hand, the timestamp of the COVID-19 diagnosis provided in the data may only be accurate up to a
weekly resolution. The aim was thus to capture a serious event that could be time-wise related to the previously
reported infection.

We compared our ExMed-BERT models with the two baseline models ignoring time information, RF and
XGB. We then used explainable Al methods to gain insights into the underlying mechanisms of our models.
A specific contribution is the use of Bayesian networks (BNs) to disentangle the relationship between most
predictive features. Finally, we explored how our ExMed-BERT models could be adapted to external data from
an Austrian hospital group (KAGes) via transfer learning strategies. Opposed to previous work, we make our
ExMed-BERT model available to the scientific community.

2. Materials & Methods

1) Pre-Training of ExMed-BERT 2) Development of Risk Models
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Figure 1. Study overview. First, we pre-trained a transformer model on about 988 million EHR records from 3.5 million patients. Then,
we developed patient-level risk models for COVID-19 disease progression. Next, we interpreted our developed risk models
using Integrated Gradients in conjunction with Bayesian networks. Finally, we evaluated the possibility of adapting the models
to external data.

2.1. General Overview

The work in this paper consists of four phases (Figure 1):

1. Pre-Training of transformer-based model for structured EHR data: Initially, we prepared a dataset of
large-scale claims data and pre-trained a transformer-based model called ExMed-BERT for structured
EHR data.

2. Development of risk models for COVID-19 disease progression: Subsequently, we used our newly trained
model to develop risk models for predicting severe COVID-19 disease progression — namely ARM — and
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compared their performances with RF and XGB models.

3. Interpretation of developed risk models: Then, we used the Integrated Gradients approach in conjunc-
tion with Bayesian Networks to offer detailed explanations for model predictions.

4. Evaluation of the adaptation of our models to data obtained from an Austrian hospital group within a
transfer learning approach.

In the following, we describe our approach in more detail.

2.2. Data Preprocessing

Table 1. Overview of the number of patients in the two datasets used in this study. ARM stands for acute respiratory manifestation.

IBM Explorys Data from an

Therapeutic Austrian Hospital

Dataset Group

Entire dataset (unfiltered) 4,563,769 -
Pre-training cohort 3,478,438 -
Fine-tuning cohort 80,211 6,335
ARM patients 10,743 385
Patients with quantitative clinical data 23,949 -

2.2.1. Preparation of Data for Modeling

This study used the IBM Explorys Therapeutic dataset (https://www.ibm.com/products/explorys-e
hr-data-analysis-tools), which comprises EHRs and insurance claims from 4.5 million patients from
all over the USA from 2010 until mid of 2021. Records consist of prescribed drugs, diagnoses, performed
procedures, and a few quantitative clinical measures (e.g., blood pressure). We focused on demographic data
and drugs, diagnoses, and available quantitative clinical measures. We excluded patients with fewer than
five observations. This led to a reduced dataset of 3.5 million patients with 987,846,612 recorded diagnoses
and drugs, which we used for pre-training a transformer model (details described later). The intent behind
pre-training of a transformer model is to learn a suitable vector representation of time-stamped structured
EHRs, irrespective of any later clinical use case. The fit of the model to a dedicated clinical endpoint is then
performed within a subsequent fine-tuning / transfer learning step, for which we selected only patients with a
confirmed COVID-19 diagnosis defined by the use of the International Classification of Diseases (ICD10)[16]
code U07.1 or a set of Logical Observation Identifier Names and Codes (LOINC)[17] codes (see Supplementary
Section A) (n=80,211). We corrected the diagnosis or observation dates of the records by subtracting seven
days to get an approximation of the index date of infection. Then we focused on the ARM endpoint, which was
defined if at least one of the following diagnoses appeared within three weeks after the COVID-19 infection
was reported (n=10,743):

¢ Pneumonia due to coronavirus disease 2019 (J12.82)

¢ Acute bronchitis due to other specified organisms (J20.8)
¢ Unspecified acute lower respiratory infection (J22)

¢ Bronchitis, not specified as acute or chronic (J40)

¢ Acute respiratory distress syndrome (J80)

* Respiratory failure, not elsewhere classified (J96)
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¢ Other specified respiratory disorders (J98.8)

For fine-tuning, we used one year of medical history of the COVID-positive patients prior to their infection.
Patients who fulfilled these criteria for the ARM endpoint were labeled as positives. Supplementary Figure A.1
depicts the filtering process in further detail.

To identify negatives while adjusting for the potentially confounding effects of age and gender, we used
the technique of Inverse Probability of Treatment Weighting (IPTW)[18-20]. We used the Python package
psmpyl[21] (version 0.2.8) to calculate propensity scores (PS), and subsequently, the IPTW weights for each
patient sample were calculated by the following equation and used in the fine-tuning process.

1 . ‘s
5 if positive

IPTW =1 P ' ) 1)
1-PS 1 negatlve

2.2.2. Mapping of Drug and Diagnosis Codes

The IBM Explorys Therapeutic dataset includes information about diagnoses encoded as ICD9 and ICD10
codes and administered or prescribed drugs as RXNorm[22] identifiers. To harmonize the two versions of ICD
diagnosis codes, we mapped them to Phecodes provided by the Phenome-wide association study (PheWAS)[23].
Due to the lower number of Phecodes, the problem of a non-unique mapping between a physician’s diagnosis
and the ICD coding scheme is reduced. Hence, we reduced potential coding biases and reduced the feature
space from 59,709 to 1,850 codes. Similarly, we mapped the provided RXNorm identifiers (RxCUI) to the fourth
level of the Anatomical Therapeutic Chemical (ATC)[24] classification system for chemical compounds and
thus addressed the sparse use of some RxCUIs by reducing the feature space from 23,801 to 630 codes.

2.2.3. Input Representation for Pre-training

Unlike XGB and RF baseline models, our transformers require a pre-training phase. As transformer models are
specifically designed to work on data of sequential nature, we need to represent the entire medical history
of each patient as a sequence. We generated separate sequences for each modality, as depicted in the lower
part of Figure 2. Each element of the sequence is an integer corresponding to one vector of the embedding
matrices. Quantitative clinical measures were not considered at this point but only during the subsequent
fine-tuning phase.

2.3. Model Training and Evaluation
2.3.1. Basic Model Structure and Pre-training of ExMed-BERT

We followed a similar strategy as the Med-BERT paper and focused on an extension of the BERT embedding
layer. In addition to the diagnoses that were included in the Med-BERT model, we further extended Med-BERT
by adding information on prescribed drugs, the patient’s sex, state of residency, and age. We denote our model
as Extended Med-BERT (ExMed-BERT). As shown in Figure 2, we used different embeddings to accommodate
the five feature modalities. Diagnoses and drugs were represented in one embedding via Phecodes and ATC
codes. The sex and state embeddings contained static information. The age sequence contained the patients’
age encoded in months, and lastly, the visit sequence was used to distinguish between each visit in a sequence.
Since the order of drugs and diagnoses within one visit was random, we passed on a serialization embedding.
Similar to Med-BERT, we also did not use CLS and SEP tokens in our input sequences.

We used the same hyperparameters and training objectives as Med-BERT and pre-trained the model on
the entire information of the 3.5 million patients in the pre-training cohort. If sequences exceeded the
maximum sequence length of 512 diagnosis and drug codes, we split the sequences and processed the samples
individually. We used the following joint training objectives to pre-train our model:

* Masked language modeling (MLM): This task is identical to the BERT approach and we followed the
Med-BERT strategy in masking only one of the codes at a time. In 80 % of the cases, the masked code was
replaced with [MASK], in 10 % it was replaced with another code and in the remaining 10 %, it remained
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Figure 2. Overview of the model structure. Compared to BERT or other transformer-based models, we employed a multimodal embed-
ding layer for structured EHR data comprising of drug, diagnosis, visit information, and information about a patient’s sex, state
of residence, and age. After embedding, the input is passed through 6 transformer layers before a final representation of a
patient’s medical history is generated with an FFN, LSTM, or GRU head. Subsequently, these patient representations were
either concatenated with the quantitative clinical data or directly passed through an FFN head for classification.

unchanged. The model’s task was to predict the correct code based on the information provided by the
remaining sequence.

* Prediction of prolonged length of stay (PLOS) in hospital: As Rasmy et al.[7], we also predicted whether
a patient had a prolonged stay in a hospital (>7 days) throughout his or her medical history. This task
requires assessing the severity of a patient’s health condition throughout their medical history.

2.3.2. Machine Learning-Based Risk Models

We developed ML-based risk models for the above-defined endpoint ARM using RE XGB, and our ExMed-
BERT architecture while at the same time adjusting for the potentially confounding effects of age and gender
via the IPTW approach described before. During the fine-tuning of our ExMed-BERT model, we evaluated
different classification head variants. We trained three models by using a feed-forward network (FFN), long
short-term memory (LSTM), and gated recurrent unit (GRU) head to classify whether a patient was positive
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for the respective endpoint or not. We split the data into training, validation, and testing sets in a stratified
manner (70/10/20 %) and used Bayesian hyperparameter optimization (optuna [25], version 2.10.0) to tune
model parameters such as the learning rate, batch size, warmup ratio, weight decay, and in the case of RNNs,
also the number of RNN layers. Similarly, we trained RF and XGB classifiers and optimized several model
hyperparameters. A detailed list of all optimized parameters can be found in Supplementary Table B.1.

In the case of the RF and XGB models, we represented all categorical features in a one-hot encoding, meaning
that if a diagnosis or a drug was recorded at any time point in the considered one-year medical history, it was
labeled with one, if not it was labeled with zero. Similarly, we encoded the state of residence and sex.

2.3.3. Combination with Quantitative Clinical Measurements

In this work, we also evaluated the combination of diagnosis and prescription codes with quantitative clinical
data, such as blood pressure measurements. We restricted ourselves to data recorded in the two weeks prior
to the corrected index date and excluded features with a missingness of more than 60 %. Due to the high
sparsity of this data, we ended up with only eight features for our experiments: weight, body mass index (BMI),
body surface area (BSA), body height, temperature, diastolic and systolic blood pressure, and heart rate. The
number of patients with available quantitative data for each of these features is shown in Table 1 (n=23,949).
We used an RF-based approach to impute the quantitative data for all patients while only using the training
data (missingpy(26], version 0.2.0).

For the RF experiments, the quantitative clinical features were directly concatenated with the OHE. For the
XGB model, we performed no prior imputation; instead, we directly concatenated the quantitative clinical
features with the OHE and relied on the implicit imputation mechanism implemented in XGB.

While no changes were necessary for the RF and XGB models, we had to modify the ExMed-BERTs model
architecture to handle quantitative clinical features. More specifically, we used the same ExMed-BERT model
as before to generate embeddings of a patient’s medical history and concatenated those vector-based repre-
sentations with the quantitative input before passing it into a final classification head (see Figure 2).

2.4. Model Interpretation
2.4.1. Feature Importance

To better understand the ExMed-BERT models, we used the Integrated Gradients (IG)[27] approach to deter-
mine which drugs and diagnoses had the highest influence on the model predictions. The IG method is an
axiomatic model interpretability technique that awards, in the case of the ExXMed-BERT models, an attribution
score for each diagnosis or drug in the medical history. Next to an input sample (x € R"), the IG method
requires a baseline input (x’ € R"), which we constructed using a sequence of padding tokens. The IGs are
then approximated by summing the gradients at points along the path from the specified baseline to the input
using the following formula:

m AF(x' + £ x (x—x"))
IG; (x)PPT% = (x; — x}) Xf i da )
k=1 ax,-

Here, m is the number of steps, and F is a function (F : R" = [0, 1]) which represents our ExMed-BERT model.
We performed 50 steps to approximate the integrated gradients.

Initially, we computed IG attributions for all patients in the test dataset. Based on these, we calculated
the mean absolute attribution for each diagnosis and drug that occurred at least ten percent of the time to
identify the top features for each model. Subsequently, we calculated partial dependency scores using the
top 20 features. To do so, we first calculated the probability for each patient for a specific endpoint using our
fine-tuned ExMed-BERT models; we refer to this probability as p,. The data for each of the top 20 features
were then permuted individually by exchanging the respective diagnosis or drug codes with a PAD token.
Subsequently, the modified data was used as input for our models to calculate the probability p;,. Finally, a
fold change for each feature was calculated using the probabilities obtained for actual (p,) and modified data
(pm) to estimate the effect (fold change; FC) of certain features on the model’s prediction:
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2.4.2. Unraveling Feature Dependencies

To better comprehend the numerous interactions and dependencies between the most influential features,
we developed BN models. BNs are probabilistic graphical models that can represent complex multivariate
distributions with many variables. They can be graphically depicted with nodes representing random variables
and edges expressing conditional statistical relationships. Let G = (V, E) be a directed acyclic graph and
{X,|v € V} a set of random variables indexed over nodes in V. Then for any BN B = (X, G):

pX1G) =[] p(Xvlpay) @
veV

where pa, denotes the parents of v € V according to the graph structure G. Because of their ability to model
(potentially causal) relationships between variables, BNs are frequently employed in many areas of science,
including system biology and medicine. In this work, we learned the graph structure G of a BN for the 100
most important features (according to the IG method) using the R package bnlearn[28] (version 4.7). We used
a one-hot encoding for the respective features to indicate whether it was present in the one-year medical
history, similar to the data preparation for the tree-based models. We also provided the patients’ age, sex, and
endpoint status. The tabu algorithm(29, 30] was used for BN structure learning. This was performed within a
non-parametric bootstrap sampling scheme: We randomly subsampled n = 80,211 patients with replacement
for 1000 times, and for each bootstrap sample we performed a complete network structure learning. We then
focused on edges occurring in over half of the 1000 network architectures acquired from the non-parametric

bootstrapped samples.

2.5. Transfer Learning on Austrian Hospital Data
2.5.1. Overview about Data

Data from the Austrian hospital group consisted of pseudonymized in-patient records of 6,335 COVID-19
positive patients, out of which 385 suffered from ARM within a 3-week follow-up period after the initial visit to
the hospital. The medication prescriptions were already encoded in ATC, but as ICD9/10 codes were used
for diagnoses, these were mapped to Phecodes, akin to the procedure described earlier for the IBM Explorys
dataset.

2.5.2. Transfer Learning of ExMed-BERT

We continued training of the ExMed-BERT model for the ARM endpoint for only five epochs on the Austrian
hospital data. This was done due to computational constraints. For the same reason, we did no substantial
hyperparameter tuning but used the optimal hyperparameters discovered on the IBM Explorys data. We used
5-fold cross-validation to account for the small amount of available data. Alongside the ExMed-BERT model,
we trained a new RF model as a comparison.

3. Results

In this study, we predicted severe COVID-19 disease progression based on a patient’s medical history. We
begin by presenting the pre-training results of our newly created ExMed-BERT model. Then, we show the
performances of the developed risk models, and lastly, we interpret our models using an explainable Al
methodology.
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3.1. Model Pre-Training

We utilized MLM and PLOS as training objectives for pre-training of the ExMed-BERT model. After 4.5M steps
(epoch 37), the MLM accuracy increased to around 51 % and the PLOS F1-score to 70 %. Following the inclusion
of 61 missing ATC codes and the corresponding changes to the embedding, we began training for 750K steps.
Finally, we achieved an MLM accuracy of 67 % and a PLOS F1-score of 66 % (epoch 42, Supplementary Figure
B.1).

3.2. Evaluation of Risk Models

Table 2. Evaluation results of the risk models for predicting ARM. Areas under the Receiver-Operator Characteristic Curve (AUROC) and
the Precision-Recall Curve (AUPR) are shown for each model and feature modality. The best results per column are highlighted
in bold. The suffix “+Quant” stands for the additional use of quantitative clinical data during fine-tuning. The suffix “subset w/o
missingness” indicates that we used a reduced subset (n = 23,949) for training and evaluation, where all quantitative clinical
measures were available. The values in brackets indicate the 95 % confidence interval which we estimated by performing
bootstrap resampling for 1000 times.

Model AUROC [%] AUPR [%]
RF 73.4 [72.6, 74.3] 29.1 [27.6, 30.7]
+ Quant 77.7[76.9, 78.6] 34.7 [33.0, 36.4]
subset w/o missingness 68.6 [67.1,70.1]  40.1 [37.8, 42.6]
subset w/o missingness + Quant 70.2 [68.8,71.6] 42.1[39.7, 44.5]
XGB | 72.41(715,73.3]  28.2(26.7,29.7]
+ Quant 77.7[76.9, 78.5] 35.5[33.8, 37.3]
subset w/o missingness 67.8 [66.3, 69.2] 38.8 [36.5, 41.2]
subset w/o missingness + Quant 70.6 [69.2,72.0]  42.2[39.7, 44.7]
ExMed-BERT-FFN | 77.51[76.7,78.4]  38.27[36.4,40.0]
+ Quant 77.7[76.8,78.5]  38.1[36.3,39.8]
subset w/o missingness 67.6 [66.1, 69.1] 39.3 [36.9, 41.6]
subset w/o missingness + Quant 70.1 [68.7, 71.6] 41.9 [39.5, 44.4]
ExMed-BERT-GRU | 77.7[76.8,78.6]  36.7[35.0,38.4]
+ Quant 79.8[78.9,80.6] 38.7 [36.9, 40.4]
subset w/o missingness 70.7 [69.3,72.1] 42.8[40.2, 45.4]
subset w/o missingness + Quant 72.0 [70.5, 73.5] 44.7 [42.1, 47.3]
ExMed-BERT-LSTM | 77.7[76.9,78.6]  37.6[35.9,39.4]
+ Quant 78.4 [77.4,79.3] 39.3[37.4,41.0]
subset w/o missingness 71.8[70.5,73.3] 45.0 [42.4, 47.4]
subset w/o missingness + Quant 71.4[70.0,72.8] 43.3[40.8, 45.8]

Following pre-training, we developed and evaluated risk models for the prediction of the ARM endpoint.
Initially, we considered only the medical history without additional quantitative clinical measures. As shown in
Table 2, all ExMed-BERT models performed better than the RF and XGB variants on unseen test data. Without
quantitative clinical data, the ExMed-BERT models scored roughly 78 % AUROC for the ARM endpoint, and the
AUPR varied between 36.7 % and 38.2 %. The RF model, on the other hand, only achieved an AUROC of 73.4 %
and an AUPR of 29.1 %. The XGB model had a slightly lower AUROC of 72.4 % and AUPR of 28.2 %.

The results of nearly all models improved when quantitative clinical measurements were integrated. The
ExMed-BERT model with the GRU classification head integrating quantitative data gave the overall best result,
with an AUROC of 79.8 % and an AUPR of 38.7 %, which is significantly higher than all other models.

When only patients with fully recorded quantitative clinical measurements were used, all models performed
worse. That means the potential negative effect of imputing missing values was far less than the benefit of
including additional data.
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3.3. Model Explanation

To better understand model predictions, we used an explainable Al methodology — namely IG - to calculate
attribution scores for all features in the best-performing ExMed-BERT model. We calculated the IG attributions
and used them to identify the 20 most important features by ranking them based on their mean absolute
value. Figure 3 shows all the IG attributions and FC scores, which are in agreement with each other. We found
that the presence of diagnoses for chronic airway obstruction, congestive heart failure, cough, dementia,
edema, obesity, shortness of breath, spondylosis, and type 2 diabetes in the medical history has a large impact
on the prediction of a patient’s risk for ARM. Similarly, the prescriptions of angiotensin II receptor blockers,
biguanides, dihydropyridine derivatives, and thiazides have a substantial positive impact on our models’

predictions.
Morbid obesity - 4 : _
Dihydropyridine derivatives L : _
Chronic airway obstruction - b , :- d
Shortness of breath - B |—E-—|
Spondylosis without myelopathy - B |—_—|
Congestive heart failure (CHF) NOS - |___|
Biguanides |—_—|
Thiazides, plain - I—'-—l:
Type 2 diabetes - B |—i-—|

Cough T

Angiotensin Il receptor blockers, plain -

Feature Name

Edema

Corticosteroids -

screening for malignant neoplasms -

Antiinflammatory products for vaginal administration -
Sympathomimetics, plain -

Corticosteroids, weak, other combinations

Selective serotonin reuptake inhibitors -
Sympathomimetics, combinations excl. corticosteroids -

+++++++++%.++++++-.

I

0
communicable diseases I—!—( B I—-:—l
T T T T T T T T T T T T T
0.6 0.8 1.0 1.2 14 1.6 18 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
Fold Change (Real/Manipulated) Integrated Gradient Attribution

Figure 3. Integrated Gradients Attributions for ExMed-BERT GRU. Depicted are all calculated fold changes (FC) and IG attributions for
the 20 most important features for the prediction of ARM onset. The dashed blue lines indicate neutral attributions. Everything
greater than the neutral value has a positive effect on the prediction and vice versa.

Of course, these prescriptions and diagnoses could be correlated with each other, and thus, not all of them
might have a direct impact on the ARM endpoint. Hence, we learned the graph structure of a BN to determine
how the significant diagnoses or drugs could be related to one another. The overall network structure is
provided as a graphml file, an XML-based data format for graph representation, as supplementary material to
this paper. Figures 4 and 5 show two excerpts of the BN graph structure. Figure 4 focuses on Angiotensin II
receptor blockers and their relationship to other drugs and diagnoses. Angiotensin II receptor blockers are
used to treat hypertension, kidney diseases, and heart failure[31]. Furthermore, our graph shows a connection
to essential hypertension and several ATC subgroups, namely ACE inhibitors, Dihydropyridine derivates, HMG
CoA reductase inhibitors, and Thiazides.

Figure 5 depicts morbid obesity and other diagnoses and drugs in its immediate neighborhood. There
is a link to the class of Biguanides, which includes the drug Metformin which is commonly used to treat
diabetes[32]. Furthermore, morbid obesity is linked to hypertension, type 2 diabetes, obstructive sleep apnea,
and obesity.

We aimed for an understanding of the statistical and potentially causal effect of those features on the
endpoint, which were either among the 20 most important features or sink nodes in the BN. The latter are
nodes without outgoing connections and, therefore, do not influence any other features according to our BN
analysis. For each of those features, we performed a univariate logistic regression analysis while using IPTW
case weights to correct for potential confounding effects of age and gender. Our analysis shows significant
effects of several prior diagnoses on the ARM onset, namely, type 2 diabetes, obesity, dementia, cardiovascular
diseases, and respiratory diseases (see Table 3). These morbidities have previously been reported as risk
factors for severe COVID-19 disease progression[33-38], and also the underlying molecular mechanisms have
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Figure 4. Angiotensin II receptor blockers and the direct neighborhood in the inferred Bayesian network. The numbers indicate
the bootstrap strength of the respective edges in percentage. That means a bootstrap strength of 100 indicates that the
corresponding edge has been found in each of 1000 BN reconstructions learned from different bootstrap samples.
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Figure 5. Morbid obesity and the direct neighborhood in the inferred Bayesian network. The numbers indicate the bootstrap strength of
the respective edges in percentage. That means a bootstrap strength of 100 indicates that the corresponding edge has been
found in each of 1000 BN reconstructions learned from different bootstrap samples.
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Table 3. Features with a significant statistical effect on ARM. We performed a logistic regression and corrected for the confounding
variables age, sex, and state of residency. The p-values were corrected for multiple testing using the Holm-Sidak method.

Feature Names Corrected p-value
Type 2 diabetes <0.0001
Heart failure with reduced EF <0.0001
Shortness of breath <0.0001
Constipation <0.0001
Morbid obesity <0.0001
Screening for malignant neoplasms <0.0001
Dementias <0.0001
Chronic airway obstruction 0,0003
Cough 0,0018
Screening for infectious and parasitic diseases 0,0083
Congestive heart failure (CHF) NOS 0,0119

been discussed[39, 40]. Besides, we found significant effects between constipation, screening for malignant
neoplasms, and infectious/parasitic diseases and the ARM onset. This might be explained by the fact that
such procedures are more frequently executed in older patients with a bad health condition, hence resulting
in a higher risk of severe COVID-19 progression. In the same type of patients constipation is also a frequent
problem, e.g., due to lifestyle.

3.4. Transfer Learning on Austrian Hospital Data

Fine-tuning of Ex-MedBERT on a small set of pseudonymized in-patient data from an Austrian hospital group
resulted in a prediction performance almost identical to the one observed for an RF trained de novo on the
same data (Supplementary Table B.2). At the same time, prediction performances were significantly lower than
the ones observed on IBM Explorys (AUC = 60 %). We will elaborate on potential reasons in the subsequent
discussion.

4. Discussion

Pandemics such as COVID-19 pose immense challenges to global healthcare systems. Utilizing patient-level
risk models to support doctors and clinics is one way to maximize the use of available resources. Following
previous research, we trained a transformer-based model on structured EHR data in this study. In contrast to
the prior approaches, such as BEHRT or Med-BERT, we incorporated additional data modalities and developed
risk models for COVID-19 disease progression. Prediction performances achieved by our ExMed-BERT model
are altogether superior to those reported by Lazzarini et al. [41] for the closely related endpoint acute respiratory
distress syndrome (ARDS)[41]. The authors trained an XGB based on US administrative claims data from
290,000 patients and achieved an AUROC of 69 % and an AUPR of 7%. For comparison, using data from
intensive care units (ICUs), Bendavid et al. reported an AUROC of 83 % for an XGB trained to predict the
initiation of invasive mechanical ventilation[42], and Singhal et al. achieved an AUROC of 89 % for predicting
the onset of ARDS[43]. Importantly, ICU data are structurally and content-wise very different from the data
used in our study, which comprises in-patient as well as out-patient information over a longer period (here:
one year), but only contains limited quantitative information. Altogether, our findings are in line with previous
studies [5, 7, 8], showing that transformer-based models are well-suited for structured EHR data similar to ours.
Even without additional quantitative information, our ExMed-BERT outperformed the RF and XGB models.
With the inclusion of quantitative clinical measures, our ExMed-BERT models further increased in prediction
performance. For that purpose, we proposed a novel approach to combine quantitative clinical measures
with the embeddings of EHR codes learned by ExMed-BERT, which resulted in the overall best-performing
model. Our results thus demonstrate the importance of combining diagnosis and prescription codes with
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quantitative clinical measures for developing risk models. Even though these quantitative clinical measures
were only taken at a single time point in the two weeks preceding COVID-19 infection and not for every patient,
using these data could provide better performance.

Using a combined strategy consisting of feature importance analysis, BN structure learning and statistical
hypothesis testing, we were able to identify diagnoses and prescriptions that have a significant impact on
model prediction and may causally influence the endpoint. Our analysis supports that socioeconomic and
psycho-social health risks play an important role in addition to well-known risk factors such as obesity,
diabetes, cardiovascular diseases, and dementia, which have already been reported as known risk factors
for severe COVID-19 disease progression in several studies [33, 36, 44-46]. This confirms the validity of our
approach, which can be applied to other datasets as well.

Our work demonstrates the potential of a transformer-based pre-training / fine-tuning strategy to develop
risk models for precision medicine. This strategy provides the chance to perform transfer learning of our
model on data from other organizations and thus use the pre-trained ExMed-BERT as a basis for future model
development. Our experiment with data from an Austrian hospital group demonstrated the potential as well
as the limitations of such an approach: The data from the Austrian hospital group only comprises in-patient
information, and the number of patients is far smaller than during the fine-tuning phase on the IBM Explorys
data (6,335 patients instead of 80,211). Furthermore, the ratio of ARM-positive patients is significantly lower
(6.1 % instead of 13.4 %). Notably, there could also be different medical coding practices in the two countries.
Finally, constraints on the technical equipment within the Austrian hospital group only allowed us to fine-tune
our model for a small number of epochs and without hyperparameter tuning. Due to all these factors, our
ExMed-BERT model fine-tuned on the Austrian data achieved a performance that was comparable to an RF
model trained de novo on the same data but significantly lower than prediction performances achieved on US
data. We thus conclude that having a sufficiently large dataset with a number of patients in a range comparable
to the IBM Explorys data would be a prerequisite to obtaining better models in a transfer learning setting.
Furthermore, appropriate technical equipment is important. Finally, integration of in-patient and out-patient
data is required, at least for our model.

5. Conclusion

Our work demonstrates the potential of customized transformer-based models for analyzing structured
EHR data. We showed that it is possible to integrate quantitative clinical data into such models, which can
significantly improve prediction performance. Furthermore, we introduced a general approach for explaining
ExMed-BERT model predictions. Transfer learning strategies open the possibility of leveraging our pre-
trained ExMed-BERT model for the prediction of clinical endpoints different from the one addressed within
this paper. For that purpose, we allow users to apply for access to our pre-trained ExMed-BERT model on
https://doi.org/10.5281/zenodo.7324178 or by sending an email to the corresponding author. Our
code is available on https://github.com/SCAI-BI0/ExMed-BERT.
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