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Abstract— Advances in the field of image classification using 
convolutional neural networks (CNNs) have greatly improved 
the accuracy of medical image diagnosis by radiologists. 
Numerous research groups have applied CNN methods to 
diagnose respiratory illnesses from chest x-rays, and have 
extended this work to prove the feasibility of rapidly diagnosing 
COVID-19 to high degrees of accuracy. One issue in previous 
research has been the use of datasets containing only a few 
hundred images of chest x-rays containing COVID-19, causing 
CNNs to overfit the image data. This leads to a lower accuracy 
when the model attempts to classify new images, as would be 
clinically expected of it. In this work, we present a model trained 
on the COVID-QU-Ex dataset, overall containing 33,920 chest 
x-ray images, with an equal share of COVID-19, Non-COVID 
pneumonia, and Normal images. The model itself is an ensemble 
of pre-trained CNNs (ResNet50, VGG19, VGG16) and GLCM 
textural features. It achieved a 98.34% binary classification 
accuracy (COVID-19/no COVID-19) on a balanced test dataset 
of 6581 chest x-rays, and 94.68% for distinguishing between 
COVID-19, Non-COVID pneumonia and normal chest x-rays. 
Also, we herein discuss the effects of dataset size, demonstrating 
that a 98.82% 3-class accuracy can be achieved using the model 
if the training dataset only contains a few thousand images, but 
that generalisability of the model suffers with such small 
datasets. 

Keywords— COVID-19, Pneumonia, Convolutional Neural 
Network, Ensemble Classification, AI in healthcare. 

I. INTRODUCTION 
Rapid diagnosis of COVID-19 in hospitals is vital for 

ensuring that patients with respiratory symptoms are triaged 
swiftly and receive the correct treatment. The state of the art 
for confirming a suspected COVID-19 case is the use of 
Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). 
However, the process of obtaining PCR results is slow, and 
some studies have found it to only be sensitive to about 90.7% 
[1]. One alternative is to perform a chest x-ray, which takes 10 
minutes or less, and then use a deep learning model to 
diagnose the patient, taking milliseconds. Deep learning 
models are also typically more sensitive in detecting diseases 
from medical images than radiologists [2], and as this work 
will show, can be more sensitive to detecting COVID-19 than 
a PCR.  

Ever since the beginning of the COVID-19 pandemic, 
deep learning approaches for the detection of coronavirus 
pneumonia in chest x-rays, and its distinction from an 
alternative pneumonia, became of great interest to the research 
community. Several groups have presented promising results 
using variations of convolutional neural network (CNN) based 
image recognition models [3]-[10]. 

Some models utilise only a single CNN for classification such 
as in Wang et al. (2020), where a custom 89-layer CNN named 
COVID-Net was developed [3]. The group obtained a 93.3% 
accuracy for distinguishing between chest X-rays containing 
COVID-19 pneumonia, other pneumonia or no condition. 
However, due to the novelty of the pandemic at the time, only 
358 of the total 13,975 X-rays the group obtained were 
examples of a COVID-19 infection, making effective training 
of the model difficult due to the image class bias. It is not 
exclusively required to develop a custom CNN to perform 
medical image diagnoses, however. Instead, a process known 
as transfer learning can be used, in which the feature 
extraction ability learned by a CNN trained on a different 
dataset can be transferred to assist in classifying images from 
a different application [4]. Zouch et al. (2022) employed a 
CNN transfer learning approach, comparing the performance 
of the ResNet50 and VGG19 CNNs pretrained on the 
ImageNet dataset [5]. Between the two models, VGG19 had 
superior performance with a 99.35% binary classification 
accuracy (COVID-19/No COVID-19) compared to the 
96.77% accuracy for ResNet50. However, due to the small 
and unbalanced dataset size of 112 COVID-19 and 747 Non-
COVID-19 chest X-rays, overfitting of the dataset may have 
feasibly occurred. Despite this, the study conveys the 
effectiveness of transfer learning in a medical image 
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Fig. 1. Examples of COVID-19 (A), Non-COVID Pneumonia (B) and 
Normal (C) chest x-ray images from the COVID-QU-Ex dataset [11]. 
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classification application, proving that CNNs do not have to 
be built from scratch to obtain high classification accuracies.   

CNNs do not have to be used for the classification step, 
but can alternatively be utilised as feature extraction tools 
before passing these features to other types of classifiers [6]-
[10]. Sethy et al. (2020) achieved a 4-class accuracy of 
95.33% by combining ResNet50 with a Support Vector 
Machine (SVM) classifier [7].  Karim et al. (2022) combined 
the features extracted using AlexNet with several types of 
machine learning classifiers and obtained a maximum 3-class 
accuracy of 98.01% by transferring these features to a Naïve-
Bayes classifier [9].  

Models with more complex construction have been shown 
to achieve very high accuracies on medium-sized datasets. 
Notably, the methods of Mostafiz et al. (2022) included 
watershed segmentation, GLCM/Wavelet feature extraction, 
ResNet50 for feature extraction, feature selection using 
Maximum Relevance Minimum Redundancy (mRMR) and 
Recursive Feature Elimination (RFE), and a final Random 
Forest Classifier for classification [6]. Due to the high number 
of optimisation steps, the accuracy obtained was 98.48% for a 
4-class classification (COVID-19, Bacterial Pneumonia, Viral 
Pneumonia and Normal). Their dataset was a combination of 
previous existing datasets, with 4809 chest X-rays, 790 of 
which contained COVID-19 infections.  

Another example of this is in Toğaçar et al. (2020), where 
three CNNs were used to extract features from 5849 chest X-
rays of normal and non-COVID pneumonia cases [10]. An 
mRMR feature selection algorithm was used to determine the 
most important features. The group concluded that the best 
configuration involved selecting 100 features from each CNN 
before passing them to a Linear Discriminant Analysis (LDA) 
classifier. This configuration obtained a 99.41% binary 
classification accuracy. The benefit of such a system is that 
the classification outcome is a collaborative effort of several 
CNNs of different architectures, meaning that features missed 
by one CNN may be accounted for by another CNN. This 
makes it more difficult for classification errors to occur [10]. 

The discussed literature provides great insight into the 
variety of viable models for classification of chest x-ray 
images. However, due to the novelty of COVID-19 at the 
time, the number of COVID-19 chest x-rays utilised by the 
studies did not exceed 3616 [9], and most only had below 
1000. Furthermore, many of these studies do not explore the 
generalisability of their models on datasets external to their 
training datasets, preventing knowledge of their clinical 
effectiveness. In the present study, we train our model on a 
dataset of almost 33,000 total images, a third being of 
COVID-19 infections, and we show that this has a marked 
improvement in generalisability performance compared to 
training on a smaller dataset. We also expand on previous 
works by combining features from multiple CNNs with 
GLCM features, and by exploring the relative benefit of RF, 
LDA, LR and ANN classifiers to classify the combined 
features. 

II. METHODS 

A. Datasets 
 The dataset used for training and evaluation of the model 
was the COVID-QU-Ex dataset developed by researchers at 
Qatar University and University of Dhaka [11]-[13]. This is a 
dataset of 33,920 chest x-rays, of which 11,956 contain a 
COVID-19 infection, 11,263 contain bacterial or viral 
infections and 10,701 are normal. This dataset was chosen for 
its large size, and its balanced nature, which help to tackle 
overfitting and biased learning respectively. Prior to using the 
dataset, it was cleaned by removing x-ray images with 
excessively high or low contrast. This lowered the numbers of 
images in the training set from 21715 to 21102, the validation 
set from 5417 to 5274, and the test set from 6788 to 6581. 
Examples of x-rays from each class can be found in Fig. 1. 

Many of the other research works discussed in the 
previous section used far smaller datasets, some with only a 
few hundred x-ray images of each of COVID-19 infections, 
other pneumonia infections, and no infections. Many of these 
papers also claim high (>98%) accuracies in the classification 
of the chest x-rays. Great care must be taken when using 
smaller datasets to avoid the issue of overfitting. Dataset 
overfitting is the phenomenon whereby a classifier performs 
poorly on datasets which were not used to train the classifier. 
It is often the result of not having enough training images to 
teach the classifier to extract generalised features from images 
of each class. Instead, it learns to extract features that are 
specific to the dataset it was given, and therefore performs 
worse when it cannot find these features in other datasets. This 
issue is far from trivial, since clinical use of such a chest x-ray 
classification system requires that it is robust and accurate, no 
matter the x-ray image’s source or properties. 

To explore the issue of overfitting in medical image literature, 
a smaller dataset of 4809 chest x-ray images was also obtained 
from Mostafiz et al. (2022) [6][14]. It contains 790 cases of 
COVID-19, 2519 cases of bacterial or viral pneumonia, and 
1500 normal cases. It is actually composed of 3 datasets: 
COVID-19 images from Cohen et al. (2020) [15] and Dadario 
(2020) [16], and normal and pneumonia images from 
Kermany et al. (2018) [17]. A summary of the dataset statistics 
can be found in Table 1. 

TABLE 1: DATASET SAMPLE NUMBERS FOR COVID-QU-EX AND 
MOSTAFIZ ET AL. (2022) DATASETS. 

Dataset and Classes Train Val Test Total 
COVID-QU-Ex [12]     

COVID-19 7290 1826 2264 11380 

Non-COVID Pneumonia 7082 1762 2204 11048 

Normal 6730 1686 2113 10529 

Total 21102 5274 6581 32957 
Mostafiz et al. (2022) [14]     

COVID-19 442 111 237 790 

Non-COVID Pneumonia 1410 353 756 2519 

Normal 840 210 450 1500 

Total 2692 674 1443 4809 
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B. Model Overview 
The model is an adaptation of that used in Toğaçar et al. 

(2020) [10] to the application of COVID-19 detection, and is 
illustrated in Fig. 3. In general, it involves the combination of 
features extracted using several CNNs, in this case ResNet50, 
VGG19 and VGG16, and extracted GLCM features. The 
CNN features for one image consist of a vector of 1024 output 
values from the final Dense layer of each CNN, the layer 
immediately before the classification into the 3 image classes. 

The 80 GLCM features extracted from the Grey-Level Co-
occurrence Matrix give details about textural features in the 
image, such as pixel contrast, energy, homogeneity and 
correlation.  

The 1024-value feature vectors from the CNNs are then 
shortened to vectors of only the 160 most important features 
for correctly classifying the chest x-ray. For GLCM features, 
80 of 144 were selected. The selection criteria were 
determined by an mRMR (Minimum Redundancy Maximum 
Relevance) algorithm, available as a library in Python [18]. 
The purpose of performing this feature selection is to 
minimise computation time and to prevent less irrelevant 
features from causing incorrect classifications.  

Once the feature selection is performed, the 560 total 
features were horizontally concatenated and this vector was 
passed to one of multiple traditional classifiers such as a 
Random Forest Classifier, to fit the classification model. A 
separate test dataset was then used to evaluate the performance 
various model combinations and configurations. 

C. Convolutional Neural Networks (CNNs) 
CNNs by themselves are able to relatively accurately 

classify medical images. The combined efforts of multiple 
CNNs, however, can allow for superior results to any of the 
individual CNNs. The current model utilised 3 CNNs loaded 
with weights that were pretrained on the ImageNet dataset 
[20]. During this pretraining, the CNNs learned how to extract 
various features such as edges, patterns and textures from 
images of objects, including animals, vehicles and food items.  

The ability to extract such features from non-medical 
images can be “transferred” to a medical image classification 
application, known as transfer learning [4]. The 3 pretrained 
CNNs used were ResNet50, VGG19 and VGG16, each of 
which were prepared in Python using Tensorflow and Keras 
[19]. The preparation involved removing their classification 
layers, and adding a Dense-1024 layer, followed by a dropout 
layer, another Dense-1024 layer, and a Dense-3 layer as the 
final classification layer, as shown in Fig. 2. The dropout layer 
was added as an additional way to combat overfitting during 

Fig. 3. Proposed ensemble CNN and GLCM chest x-ray classification 
model. 

Fig. 2. Schematic of how pretrained CNNs were modified to classify chest x-rays. Later, the CNNs were used for feature extraction purposes, 
whereby the Dense-3 layer was removed and the final Dense-1024 layer (without dropout) was used to provide 1024 features for classification. 
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the training of the CNNs. A value of 30% of randomly 
dropped input neurons was used. The Dense-3 layer was 
added to the CNN just for training of the layer weights, with 
each node representing one of either COVID-19, Non-
COVID, or Normal classes. The layer was removed when the 
models were later used for feature extraction (where the final 
layer was Dense-1024), and the dropout was inactive during 
this extraction stage. 

Before training, the base layers of the model (with weights 
trained on ImageNet) were frozen such that only the last 3 
layers were trainable. This is common practice in deep 
learning, aiming to reduce computation time. Rather than 
training each CNN for a fixed number of epochs, a learning 
rate reduction and early stopping procedure was used, to 
strategically shift the weights towards convergence. The 
learning rate was first set to 0.001 and the validation loss was 
monitored. If the validation loss did not improve (decrease) 
for 3 epochs, known as the “patience” in Keras, the learning 
rate was set to 0.1 times the previous value. The minimum 
learning rate was set to 1e-6. At any stage, if there was no 
improvement in the validation loss for 6 epochs, the training 
process was exited. This training procedure was performed 
with the Adam optimiser, and a batch size of 32. Training was 
performed in a Jupyter notebook on an Apple MacBook Pro 
with M1 Max using its GPU. 

D. Grey-Level Co-occurrence Matrix Features 
A Grey-Level Co-occurrence Matrix (GLCM), first 

proposed by Haralick et al. (1973), is a compact method of 
expressing the number of times a certain pair of pixels appears 
along a particular direction in an image, and at a particular 
distance away from each other [21]. Its purpose is to allow for 
the computation of textural features within the image, such as 
its contrast and homogeneity. Given a greyscale image with 
256 distinct levels of grey, its co-occurrence matrix 𝑃𝑖,𝑗 will 
be of size 256 x 256. Assuming computation in the horizontal 
0° direction and distance = 1, each value (𝑖, 𝑗) in the matrix 
equals the number of times the pixel value pair 𝑖, 𝑗 appeared 
in the original image horizontally and with 𝑗 directly adjacent 
to 𝑖, as illustrated in Fig. 4. 

Using a GLCM, several textural image properties can be 
computed. A summary of the equations for calculating various 

image properties have been outlined in Table 1. The feature 
extraction from the GLCM was performed using the Sci-Kit 
Image Python library [22]. Each of the six GLCM image 
properties in Table 2 were computed. These were computed 
in 8 directions and 3 distances in order to obtain as much 
information from each chest x-ray image as possible. This 
amounts to a total of 144 features (6 categories x 8 directions 
x 3 distances), where each “feature” is defined as a numerical 
value of one of the GLCM properties for a particular direction 
and distance. 

E. mRMR Feature Selection 
The Minimum Redundancy Maximum Relevance 

algorithm proposed by Ding and Peng (2005) aims to select 
features with the most importance to classification when using 
traditional (non-CNN) classifiers [23][24]. Removing 
irrelevant features allows for quicker computation time when 
fitting the model to a traditional classifier, as well as more 
accurate results as there are less features to consider and 
therefore fewer chances of model confusions [25]. Their 
algorithm iteratively cycles through the features and extracts 
the most relevant and least redundant feature at each iteration. 
On the first iteration, the feature with the highest F-test 
statistic is selected. On subsequent iterations, the criterion for 
selection is a feature’s F-statistic divided by its average 
Pearson correlation to all features selected on previous 
iterations as in Equation 1 below. This is known as the F-test 
Correlation Quotient (FCQ). 

 

𝑠𝑐𝑜𝑟𝑒(𝑋𝑖) = 𝐹 (𝑌 , 𝑋𝑖)/([
1

|𝑆|
∑ 𝜌(𝑋𝑠, 𝑋𝑖)])  

𝑋𝑠∈𝑆
 

 

(1) 

Fig. 4. GLCM transformation on 3x3 arrangement of pixels with 
values 0-2. Performed on 0º angle and pixel distance 1. 

TABLE 2: GLCM PROPERTIES AND THEIR DEFINITIONS. 
GLCM 

Property Meaning Equation 

Contrast 
Measure of 
local  variations 
in pixel values. 

! 𝑃!,#(𝑖 − 𝑗)$
%!"#"!$&'

!,#()
	

Dissimilarity 

Measure of 
absolute 
difference in 
pixel intensities. 

! 𝑃!,#|𝑖 − 𝑗|
%!"#"!$&'

!,#()
	

Homogeneity 

Measure of the 
local 
homogeneity of 
pixels in the 
image. 

!
𝑃!,#

1 + (𝑖 − 𝑗)$
%!"#"!$&'

!,#()
	

ASM 

Measure of 
overall 
homogeneity of 
pixels in the 
image. 

! 𝑃!,#$
%!"#"!$&'

!,#()
	

Energy Square root of 
ASM. √𝐴𝑆𝑀	

Correlation 

Measure of how 
linearly 
correlated pairs 
of pixels are 
over the whole 
image. 

! 𝑃!,# #
(𝑖 − 𝜇!))𝑗 − 𝜇#+

𝜎!𝜎#
-

%!"#"!$&'

!,#()
	

 Note: 𝑃𝑖,𝑗 is a value at row 𝑖 and column 𝑗 in the GLCM, 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 is the number of 
grey levels, 𝜇𝑖  and 𝜇𝑗 are the mean of the current column and current row in the 
GLCM respectively, and 𝜎𝑖 and 𝜎𝑗 are the standard deviations of the current column 
and current row respectively. 
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𝑋𝑖 is the feature to be selected at iteration 𝑖, 𝐹 (𝑌 , 𝑋𝑖) is 
the F-test statistic of the feature with respect to its 
corresponding class label 𝑌 , 𝑆  is the set of previously 
selected features, and 𝜌(𝑋𝑠, 𝑋𝑖)  is the Pearson correlation 
coefficient of the feature to each of the previously selected 
features, 𝑋𝑠.  

There are many variations of this criterion depending on 
the specific use case. For example, if the classifier to be used 
on the feature set is a Random Forest Classifier, the F-test 
relevance criterion can be replaced with one derived from the 
decision tree algorithm of the classifier, known as the Gini 
feature importance, in order to further improve the relevance 
of the selected features [26]. The resulting mRMR feature 
selection algorithm is then known as RFCQ (Random Forest 
Correlation Quotient).  

For the present study, RFCQ was used. The number of 
iterations, and hence the number of features selected, was set 
to 160 for each of the feature sets generated by the CNN 
models, and to 80 for the GLCM feature set. These were the 
values that gave the best performance when considering 
computation time. 

 

F. Classification Process 
 

In a secondary “training” process, a Python program was 
created to extract feature sets from each of the chest x-rays 
images in each of the COVID-QU-Ex and Mostafiz et al. 
training datasets. Each of the 3 trained CNNs provides 1024 
features directly from their Dense-1024 layer for each image. 
The 144 GLCM features are also extracted in this process. 
Once this is complete, the features from each source are 
processed by the mRMR algorithm, taking only the 160 most 
important features from each CNN feature set, and 80 from 
the GLCM feature set. The resulting features are then 
concatenated to form a final feature set of 560 features for 
each of the chest x-ray images in the training dataset.  

The resulting matrix of size 𝑛/01234 × 560  was then 
passed to one of 4 classifiers, each of which is outlined below:  

1) Random Forest Classifier (RF) 
 

A Random Forest Classifier involves a series of individual 
decision tree classifiers (estimators), that individually attempt 
to classify randomly selected feature samples [27]. While 
these estimators may make errors, the majority vote of each of 
the many estimators gives a much more accurate prediction, 
leading to the success of RFs. In the current study, an RF 
implemented in the Sci-kit Learn Python library, with 200 
estimators. 

 
2) Linear Discriminant Analysis (LDA) 

 
LDA works by grouping features such that variance 

between classes is maximised and variance between features 
within a class is minimised [28]. It is commonly used when 
there are many data points (features) to process, such as in 
facial recognition or other image recognition applications that 

require the extraction of many features. In this study, it was 
once again implemented using Sci-kit Learn. 

 
3) Logistic Regression (LR) 

 
Logistic regression builds on linear regression analysis, 

which analyses the relationship between independent 
predictor variables, and dependent outcome variables, 
assuming that the relationship between these variables is 
linear. In the case of logistic regression, the output variables 
are given to a sigmoid function to convert them to a 
probability between 0 and 1, thus allowing separation into two 
classes: those below 0.5 probability and those above [29]. This 
concept can be extended to multi-class classification, as was 
the case in the Sci-kit Learn LR algorithm implementation.  

4) Artificial Neural Network (ANN) 
 

In contrast to deep neural networks (CNNs) which use 2D 
layers, ANNs refer to multiple 1D layers of neurons stacked 
on top of each other for classification of features. They are 

also commonly known as multi-layer perceptrons, or feed-
forward neural networks, and have been successfully used in 
medical image classification such as classifying CT scans 
containing lung nodules [30] and skin lesion malignancy [31]. 
For the current study, the ANN was implemented in Python’s 
Keras library, using an input layer with the same length as 
each row of features (560), 5 hidden Dense layers of 550 
neurons each, and a Dense-3 layer with softmax activation at 
the output, as illustrated in Fig. 5. It was trained in a similar 
fashion to the CNNs that performed the feature extraction, 
using learning rate reduction with 4 epochs of validation loss 
patience and early stopping after 8 epochs of no improvement 
of the validation loss. 

Once the above 4 classifiers had been fitted to the features 
from either the COVID-QU-Ex or the Mostafiz et al. training 
datasets, the same process was repeated to extract features 
from their respective test datasets, and then the models were 
evaluated based on their predictions for each chest x-ray 
image. 

G. Generalisability of Models 
In order to test the generalisability performance of the 

models when they are trained on different datasets, four 
variations of dataset training and testing were performed: 

Fig. 5. Structure of custom ANN classifier. 
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1) Training and testing on COVID-QU-Ex dataset. 

2) Training and testing on Mostafiz et al. (2022) dataset. 

3) Training on COVID-QU-Ex dataset and testing on 
Mostafiz et al. (2022) dataset. 

4) Training on Mostafiz et al. (2022) dataset and testing 
on COVID-QU-Ex dataset. 

The purpose of this experiment is to investigate the 
influence of dataset size on the degree of overfitting, and the 
ability of the model to extrapolate to new input images. 

H. Classification Metrics 
Several accuracy metrics were computed as outlined in 

Table 3, where TP/TN, FP/FN are true positive/negative and 
false positive/negative of class predictions respectively. 

III. RESULTS 

A. CNN Training Results 
The training and validation accuracies during the training 

of the 3 CNNs are shown in Fig. 6. 

The benefits of using LR reduction and early stopping 
during the network training are clear: Table 4 shows that all 3 
CNNs saw an improvement in test dataset accuracy after the 
modified training regime. In addition, these better test 
accuracies were achieved in fewer epochs: 35, 28 and 34 for 
ResNet50, VGG19 and VGG16 respectively, as per Fig. 6. 

Similar results occurred for the training of the same CNNs 
on the smaller dataset used by Mostafiz et al. as shown in 
Table 5. In this case, the accuracies were already higher due 
to the smaller dataset, therefore decreasing the influence of the 

LR reduction and early stopping. Nevertheless, an 
improvement was seen for all CNNs. 

Fig. 6. Training curves for ResNet50, VGG16, VGG19 (top to 
bottom). Vertical dashed lines show when a new learning rate (lr) 
was applied by the training algorithm. 

TABLE 3: CLASSIFICATION ACCURACY METRICS 

Metric Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  

Sensitivity 𝑇𝑃
𝑇𝑃 + 𝐹𝑁  

Specificity 𝑇𝑁
𝑇𝑁 + 𝐹𝑃  

F1-score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁  

 

TABLE 4: 3-CLASS CNN TEST ACCURACIES WITH AND WITHOUT LR 
REDUCTION AND EARLY STOPPING 

CNN Simple training 
(40 epochs) 

LR reduction + 
early stopping 

ResNet50 0.9184 0.9337 

VGG19 0.9123 0.9189 

VGG16 0.8991 0. 9231 

 

TABLE 5: 3-CLASS CNN TEST ACCURACIES WITH AND WITHOUT LR 
REDUCTION AND EARLY STOPPING FOR MOSTAFIZ ET AL. DATASET 

CNN Simple training 
(40 epochs) 

LR reduction + 
early stopping 

ResNet50 0.9785 0.9806 

VGG19 0.9674 0.9709 

VGG16 0.9729 0.9757 
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TABLE 6: CLASSIFICATION METRICS FOR DIFFERENT COMBINATIONS OF INPUT FEATURES: COVID-QU-EX DATASET. 

Classifier and 
metrics ResNet50 VGG19 VGG16 

ResNet50  
+  

VGG19 

ResNet50 
+ 

VGG16 

VGG19  
+  

VGG16 

ResNet50 + 
VGG19 + VGG16 

ResNet50 + VGG19 + 
VGG16 + GLCM 

Random Forest         

Accuracy 0.9307 0.9175 0.9225 0.9427 0.9448 0.9350 0.9467 0.9468 

Precision 0.9304 0.9172 0.9221 0.9425 0.9445 0.9348 0.9463 0.9465 

Sensitivity 0.9302 0.9170 0.9221 0.9422 0.9445 0.9346 0.9461 0.9463 

Specificity  0.9655 0.9589 0.9614 0.9715 0.9726 0.9676 0.9735 0.9735 

F1-score 0.9303 0.9171 0.9221 0.9423 0.9445 0.9346 0.9462 0.9464 

LDA         

Accuracy 0.9268 0.9122 0.9193 0.9400 0.9401 0.9328 0.9430 0.9383 
Precision 0.9265 0.9119 0.9189 0.9397 0.9398 0.9327 0.9427 0.9386 

Sensitivity 0.9264 0.9117 0.9189 0.9396 0.9397 0.9325 0.9426 0.9379 
Specificity  0.9635 0.9563 0.9598 0.9701 0.9702 0.9666 0.9716 0.9693 

F1-score 0.9264 0.9118 0.9189 0.9396 0.9397 0.9325 0.9426 0.9380 

LR         

Accuracy 0.9304 0.9166 0.9231 0.9398 0.9442 0.9328 0.9427 0.9421 

Precision 0.9301 0.9165 0.9227 0.9395 0.9437 0.9327 0.9424 0.9418 

Sensitivity 0.9300 0.9163 0.9227 0.9393 0.9437 0.9325 0.9423 0.9416 

Specificity  0.9654 0.9585 0.9617 0.9701 0.9722 0.9666 0.9715 0.9712 

F1-score 0.9300 0.9163 0.9227 0.9394 0.9437 0.9325 0.9423 0.9417 

ANN         

Accuracy 0.9299 0.9184 0.9243 0.9451 0.9460 0.9347 0.9444 0.9462 

Precision 0.9298 0.9183 0.9240 0.9448 0.9471 0.9347 0.9443 0.9460 

Sensitivity 0.9295 0.9178 0.9241 0.9447 0.9472 0.9343 0.9440 0.9457 

Specificity  0.9651 0.9594 0.9623 0.9727 0.9739 0.9675 0.9723 0.9732 

F1-score 0.9295 0.9180 0.9239 0.9447 0.9471 0.9344 0.9440 0.9458 
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Fig. 7. COVID-QU-Ex test dataset classification accuracies for different classifier configurations. A - Comparison of accuracies resulting from different 
feature combinations (features from individual CNNs not shown for clarity). B - Average classification accuracy (including individual CNN features) for 
each type of classifier. Error bars show range of values. 
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TABLE 7: CLASSIFICATION METRICS FOR DIFFERENT COMBINATIONS OF INPUT FEATURES: MOSTAFIZ ET AL.  DATASET. 

Classifier and 
metrics ResNet50 VGG19 VGG16 

ResNet50  
+  

VGG19 

ResNet50 
+ 

VGG16 

VGG19  
+  

VGG16 

ResNet50 + 
VGG19 + VGG16 

ResNet50 + VGG19 + 
VGG16 + GLCM 

Random Forest         

Accuracy 0.9813 0.9785 0.9792 0.9841 0.9792 0.9785 0.9834 0.9841 

Precision 0.9798 0.9794 0.9801 0.9827 0.9770 0.9792 0.9820 0.9827 

Sensitivity 0.9844 0.9814 0.9786 0.9862 0.9831 0.9817 0.9858 0.9862 

Specificity  0.9897 0.9879 0.9883 0.9911 0.9888 0.9881 0.9907 0.9911 

F1-score 0.9821 0.9804 0.9794 0.9844 0.9800 0.9804 0.9838 0.9844 

LDA         

Accuracy 0.9827 0.9764 0.9751 0.9841 0.9820 0.9778 0.9834 0.9841 
Precision 0.9813 0.9741 0.9779 0.9825 0.9805 0.9760 0.9820 0.9831 

Sensitivity 0.9860 0.9804 0.9762 0.9872 0.9855 0.9816 0.9864 0.9872 
Specificity  0.9904 0.9874 0.9848 0.9912 0.9901 0.9882 0.9907 0.9912 

F1-score 0.9836 0.9772 0.9770 0.9848 0.9830 0.9787 0.9842 0.9851 

LR         

Accuracy 0.9820 0.9785 0.9799 0.9875 0.9820 0.9806 0.9841 0.9841 

Precision 0.9805 0.9792 0.9829 0.9877 0.9799 0.9810 0.9836 0.9836 

Sensitivity 0.9855 0.9821 0.9802 0.9890 0.9870 0.9827 0.9881 0.9881 

Specificity  0.9901 0.9881 0.9875 0.9929 0.9908 0.9892 0.9915 0.9915 

F1-score 0.9830 0.9806 0.9815 0.9884 0.9834 0.9819 0.9858 0.9858 

ANN         

Accuracy 0.9806 0.9785 0.9744 0.9868 0.9841 0.9827 0.9841 0.9882 

Precision 0.9787 0.9777 0.9719 0.9854 0.9839 0.9834 0.9839 0.9872 

Sensitivity 0.9837 0.9832 0.9793 0.9895 0.9856 0.9849 0.9861 0.9916 

Specificity  0.9893 0.9891 0.9870 0.9928 0.9907 0.9905 0.9914 0.9940 

F1-score 0.9812 0.9802 0.9753 0.9875 0.9847 0.9841 0.9850 0.9893 
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Fig. 8. Mostafiz et al. test dataset classification accuracies for different classifier configurations. A - Comparison of accuracies resulting from different 
feature combinations (features from individual CNNs not shown for clarity). B - Average classification accuracy (including individual CNN features) for 
each type of classifier. Error bars show range of values. 
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B. Results for Different Classifiers 
 

The test image classification results for each dataset are 
shown in Table 6 and Table 7. Accuracy refers to the 3-class 
accuracy for distinguishing between COVID-19, Non-
COVID pneumonia and Normal chest x-rays. The other 
metrics (precision, sensitivity, specificity and F1-score) 
typically correspond to a single class in a dataset, but in this 
case they are macro averages of the metrics obtained for each 
of the 3 classes. 

For the COVID-QU-Ex dataset, the Random Forest 
classifier had the best maximum performance at 94.68% 
accuracy on a test dataset of 6588 images. However, across all 
of the feature combinations, the ANN classifier had a slightly 
better performance on average, at 93.61% compared to 
93.58% for the RF classifier. In terms of feature combinations, 
the feature combination of VGG19 and VGG16 features gave 
consistently the worst performance, whilst the highest 
recorded accuracy came from the combination of all features 
and passed to the RF classifier.  

For the Mostafiz et. al dataset, RF, LDA and LR all 
obtained the same accuracies on the combination of all 
features, while the ANN outperformed them, achieving a 
maximum accuracy of 98.82% on the test dataset of 1443 
images. On average, the best feature combination was 
ResNet50 with VGG19 features at 98.56% average accuracy 
across the different classifiers, however combining all feature 

types was only a slightly smaller average performance at 
98.51%. 

C. COVID-19 Detection Performance 
 

One of the primary aims of this model is to improve on the 
performance and sensitivity of the PCR test and the general 
triaging process for patients with COVID-19 pneumonia. This 
therefore warrants an examination of the binary classification 
accuracy and the specific sensitivity to COVID-19. Fig. 9 and 
Fig. 10 show the confusion matrices for a 3-class classification 
as well as for a binary classification that only considers 
whether COVID-19 was detected or not. They correspond to 
the models that performed the best for each dataset, being the 
RF classifier with all features for the larger COVID-QU-Ex 
dataset, and the ANN classifier with all features for the smaller 
dataset from Mostafiz et al.  Classification metrics for each are 
shown in Table 8 and Table 9. 

D. Generalisability of Models to Foreign Image Data 
 

The models clearly perform well on their own respective 
test datasets. In reality, however, a robust model used 
clinically would require that it generalise well to any input 
chest x-ray image, not just to the test partition of the dataset 
that it was trained on. To examine the performance on images 
external to the training dataset of the model (foreign data), a 
cross-dataset testing procedure was performed. This involved 
testing the model that was trained on the COVID-QU-Ex 

Fig. 9. 3-Class (left) and binary (right) classification confusion matrices for highest performing model in 
COVID-QU-Ex dataset testing: RF classifier with all features. 

TABLE 8: METRICS FOR RF CLASSIFIER 
WITH COVID-QU-EX DATASET 

Metric Performance 

3-Class 
Accuracy 0.9468 

Binary 
Accuracy 0.9843 

Sensitivity to 
COVID-19 0.9713 

 

Fig. 10. 3-Class (left) and binary (right) classification confusion matrices for highest performing model in 
Mostafiz et al. dataset testing- ANN classifier with all features. 

TABLE 9: METRICS FOR ANN 
CLASSIFIER WITH MOSTFIZ ET AL. 

DATASET 

Metric Performance 

3-Class 
Accuracy 0.9882 

Binary 
Accuracy 0.9986 

Sensitivity to 
COVID-19 1.0 
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dataset using the dataset from Mostafiz et al., and vice versa. 
To ensure fairness, the COVID-QU-Ex test dataset was 
modified to match the numbers of chest x-rays in each class 
of the Mostafiz et al. test dataset. This was done by randomly 
selecting 237 COVID-19, 756 Non-COVID, and 450 normal 
chest x-rays from the COVID-QU-Ex test dataset. All 4 types 
of end classifier were examined, with the results shown in Fig. 
11 and Fig. 12. 

 

 

It is apparent in Fig. 11 that, other than for the LDA 
classifier, the generalisation of the model trained on the larger 
dataset is excellent, achieving accuracies even higher than for 
its own test dataset. On the other hand, evidently the LDA 
classifier is severely prone to overfitting, not generalising well 
to new data. This was also clear in Fig. 12 for the model 
trained on the smaller Mostafiz et al. dataset and tested on data 
from COVID-QU-Ex. In contrast to Fig. 11, however, Fig. 12 
shows that the other classifiers also did not generalise well for 
this dataset, achieving accuracies of only around 70% for RF, 
LR and ANN. This points to an issue with the feature 

extraction CNNs poorly extracting features from the foreign 
images. To summarise, the results reaffirm that training on a 
larger (>20,000 image) dataset allows the end model to better 
generalise to new data than training on a smaller (~4000 
image) dataset. 

IV. DISCUSSION 
 

The results of training the CNNs show that it is possible to 
improve their test dataset accuracy by strategically lowering 
the learning rate and by using early stopping. Learning rate 
reduction is also known as learning rate scheduling, and has a 
significant influence on gradient descent in the training 
process. Having a relatively large learning rate when training 
begins allows a rough and rapid estimation of the model 
minimum loss, with further decreases in learning rate tuning 
the model weights with finer and finer steps until the loss 
converges to a global minimum [32]. This is analogous to first 
using a coarse focus followed by a fine focus to visualise an 
object under a microscope with a high magnification. 
Continuously using the same high learning rate throughout the 
training process makes it far more difficult for the weights to 
converge to their ideal values since their values are shifted by 
far greater amounts, just like only using only using coarse 
focus on a microscope. This can cause the model to converge 
at local minima instead [33]. Conversely, only using a low 
learning rate will substantially increase the computation time, 
and likewise may get stuck at local minima. Using strategic 
learning rate reduction, test accuracies were improved by 
1.53% on average, and required less training epochs, reducing 
the computational load.  

The results of the classification exemplify the benefits of 
ensemble techniques in medical image classification for 
improving the accuracies obtained via CNN classification. For 
the COVID-QU-Ex dataset, the mean accuracy for 
classification of features from individual CNNs was 0.9236 
for the RF classifier. However, the combination of features 
from each CNN, GLCM features and classification using 
traditional machine learning classifiers yielded a maximum 3-
class accuracy of 0.9468 with the RF classifier, a substantial 
improvement. The benefits resulting from such ensemble 
CNN approaches have been documented in other studies. 
Togacar et al. (2020) used a similar CNN feature 
concatenation approach for pneumonia detection in chest x-
rays, and attained a binary accuracy about 2.7% higher than 
for their individual CNNs [10]. The approach appears to be 
able to be extended to other specific diseases such as 
tuberculosis detection, as demonstrated by Hooda et al. 
(2019), who saw a 5.5% increase in TB detection accuracy 
when combining the features extracted by AlexNet, 
GoogleNet and ResNet34 [34].  

The results in Fig. 9 and Fig. 10 show that, for both 
datasets, any confusion mostly resided in distinguishing 
between Non-COVID pneumonia and Normal chest x-rays 
and not significantly between either of these and the COVID-
19 chest x-rays. This means that the binary classification for 
COVID-19 or not COVID-19 was in both cases very good, at 
98.43% accuracy for the large dataset and 99.86% for the 
smaller dataset. The binary COVID-19 detection accuracy 
was, in fact, slightly improved over that obtained by Mostafiz 
et al. who achieved 99.45% [6]. The sensitivity to COVID-19 
was similarly high, at 97.13% for the large dataset and 100% 

Fig. 11. Results of training model on large dataset and testing on foreign dataset. 

Fig. 12. Results of training model on small dataset and testing on foreign dataset. 
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in the case of the smaller dataset. Both instances perform 
better than a PCR, which is on average about 90.7% sensitive 
to COVID-19 [1]. Fig. 11 shows that as long as the model is 
trained on sufficient data, these accurate metrics can be 
maintained when applying the model to new data, allowing it 
to adequately be used as a clinical diagnostic tool. 

There have been numerous research articles presenting 
COVID-19 chest x-ray classification models trained on small 
datasets of only a few hundred to a couple thousand images, 
some of which document very high (>98) accuracies [3]-[9]. 
The significance of the present study is that it shows that high 
accuracy on small datasets does not mean that the model is 
generalisable and robust to other datasets, which is the overall 
aim of developing such models in the first place. 
Generalisability of machine learning models is especially 
critical in a clinical environment, where, between hospitals, 
there may be differences in medical image acquisition 
systems, patient demographics, and professional training [35]. 
It is well understood that increasing dataset size improves the 
ability of CNNs and other machine learning classifiers to fit 
input data and reduce dataset overfitting [36][37]. The cleaned 
COVID-QU-Ex dataset used for training contained 11380 
chest x-rays with COVID-19, 11048 with Non-COVID 
pneumonia and 10529 with no condition. Due to the large 
number and, therefore, variety of images, the CNNs learned 
more general features during training, and were therefore able 
to generalise very well when exposed to foreign chest x-ray 
images from Mostafiz et al, obtaining an average 96.7% 
accuracy across different classifiers (excluding LDA classifier 
outlier). On the other hand, the Mostafiz et al. dataset 
contained only 790 cases of COVID-19, 2519 Non-COVID 
pneumonia, and 1500 with no condition. Consequently, the 
CNNs learned to extract features that were specific to this 
dataset very accurately, but generalised poorly when given the 
COVID-QU-Ex images. The models obtained an average 
accuracy of 70.57% across the different classifiers (excluding 
LDA classifier outlier). The consequence of this result is that 
training dataset size has a direct impact on the accuracy of 
predictions and must be considered when attempting to 
develop clinically relevant and robust automatic classification 
models. 

For both cross-dataset tests, the LDA classifier performed 
poorly, clearly a sign of overfitting the image features from 
dataset on which it was trained. Unlike for the similar 
Principle Component Analysis (PCA) where insignificant 
dimensions are ignored, they are included in the LDA process, 
causing the model to fit specific features rather than general 
ones [28][38]. This may make this particular classifier 
unsuitable in scenarios such as medical image classification 
where there are typically a high number of input features, and 
there may be differences in x-ray acquisition systems that can 
introduce variability in the images. On the other hand, RF, LR 
and ANN classifiers appear to generalise well to new features. 
In particular, the COVID-QU-Ex-trained ANN classifier 
achieved an outlying 98.34% accuracy on the unseen Mostafiz 
et al. dataset, suggesting its superior usage when attempting to 
classify new chest x-ray images.  

 

V. CONCLUSION 
 

This study examined several techniques in medical image 
deep learning, and elucidated the benefits of combining CNNs 
for improved classification performance. It first was found 
that using learning rate reduction/scheduling can reduce CNN 
training time, yet substantially improve their test dataset 
classification performance. In a similar fashion, mRMR 
feature selection reduces the computation time for fitting 
features to other classifiers whilst preserving relevant image 
information. The maximum classification accuracy for the 
COVID-QU-Ex dataset was achieved when extracted features 
of all of ResNet50, VGG19, VGG16 and GLCM features were 
combined, at 94.68% with the Random Forest classifier. 
Detection accuracy and sensitivity to COVID-19 were very 
high, at 98.43% and 97.13% respectively. These were even 
higher for the Mostafiz et al. dataset, 99.86% binary accuracy 
and 100% sensitivity, however it was found that the small 
number of images caused the model to overfit the data, leading 
to poor generalisation for all classifier types. It is 
recommended, therefore, that the creation of new or improved 
COVID-19 or pneumonia classification models prioritise 
training with large datasets. It is also recommended to avoid 
the use of LDA classifiers when giving large numbers of input 
features, due to its poor generalisation ability in medical 
image classification.  
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