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Abstract 
In this work, we report a systematic review and meta-analysis that seeks to analyze the 
accuracy of diagnostic tests for coronavirus disease 2019 (COVID-19). The objective of 
this article is to detail the scientific findings based on diagnostic tests of the last years 
when the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) occurred. Searches for published studies were carried out in the PubMed 
database between the years 2020 and 2021 for the diagnosis of COVID-19. Ninety-nine 
scientific articles that met the criteria were examined and accepted in the meta-analysis, 
and the diagnostic accuracy was evaluated through specificity and sensitivity. Molecular 
tests [Reverse transcription polymerase chain reaction (RT-PCR), reverse transcription 
loop-mediated isothermal amplification (RT-LAMP), and clustered regularly interspaced 
short palindromic repeats (CRISPR)] showed better performance in terms of sensitivity 
and specificity when compared to serological tests [Enzyme-linked immunosorbent assay 
(ELISA), chemiluminescence immunoassay (CLIA), lateral flow immunoassay (LFIA), 
chemiluminescent microparticle immunoassays (CMIA), and Fluorescence immunoassay 
(FIA)], which showed higher specificity, mainly for the detection of IgG antibodies; 
however, they showed sensitivity <90%. In addition, the antiviral neutralization bioassay 
(ANB) diagnostic test demonstrated high potential for the diagnosis of COVID-19, since 
it obtained the highest area under the curve restricted to the false-positive rates (AUCFPR) 
of 0.984. It is settled that the different diagnostic tests have been efficiently adapted for 
the detection of SARS-CoV-2; however, their performance still needs to be optimized to 
control future outbreaks of COVID-19, which will also serve to help the control of future 
infectious agents. 
 
Keywords: SARS-CoV-2; Diagnostic Tests; Meta-analysis; Systematic Review; 
Sensitivity; Specificity.
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Introduction 
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), was first reported at the end of 2019 in Wuhan, Hubei 
province, China [1]. On 11 March 2020, the World Health Organization (WHO) declared 
COVID-19 a pandemic, due to the high levels of spread worldwide [2]. The virus is 
transmitted by direct contact with an infected person, by the expulsion of droplets and 
small particles when breathing, speaking, or coughing, or by drops of saliva with the virus 
being deposited on surfaces and/or objects, which are transmitted through touch [3,4]. 
According to the WHO, by September 2022, around 600 million confirmed cases of 
COVID-19 have been reported worldwide, including more than 6 million deaths [5]. 
Likewise, the transmission of the virus by asymptomatic people is a major concern for 
community spread [6], where a study indicates that 35.1% of patients with COVID-19 did 
not present symptoms [7]; in this context, so an early diagnosis of infection would allow 
the rapid spread of the virus to be controlled [8]. It was estimated that a single 
symptomatic COVID-19 infection would have an average direct medical cost during 
infection condition of US$3 045, which would increase to $14 366 per hospitalization [9], 
making COVID-19 one of the greatest and most significant global health crises crisis in 
human history. 
The pathogenicity of SARS-CoV-2 is fundamentally related to the interaction of the virus 
S protein and host membrane receptor angiotensin-converting enzyme 2 (ACE2) [10]. 
COVID-19 affects not only the respiratory system but also other organs, such as the liver 
and kidneys [11]. Generally, the clinical manifestations of COVID-19 are diverse, while 
the most prevalent symptoms are fever, cough, dyspnea, malaise, fatigue, neurological 
symptoms, dermatological manifestations, anorexia, myalgia, sneezing, sore throat, 
rhinitis, goosebumps, headache, chest pain, and diarrhea [12,13]. The symptoms that 
SARS-CoV-2 induces in several patients are mild, but may also be related to an 
accelerated onset of generalized infection in the lungs that is complicated by acute 
respiratory distress syndrome (ARDS) [14,15], due to an unregulated 
inflammatory/immune system and cytokine storm [16]. In addition, a series of possible 
late complications due to COVID-19 infection has been pointed out, including venous 
thromboembolism, arterial thrombosis, pulmonary fibrosis, cardiac thrombosis and 
inflammation, cerebrovascular accident, mental fog, dermatological complications, and 
overall mood dysfunctions [17]. 
Control strategies against the spread of COVID-19 in many countries initially focused on 
complete or partial lockdowns. Still, these measures were not as effective due to the rapid 
increase in the number of hospitalized infected people [16]. Several vaccines have been 
licensed to reduce the incidence of hospitalization and death; despite this vaccination 
coverage remains insufficient [18,19], and many of them may not be effective against new 
virus variants [20]. Symptomatic treatment instead of curative treatment has been the 
fundamental tool for the treatment of critically ill patients through ventilatory support in the 
intensive care unit [21]. Other potential therapeutic strategies include antiviral, antibiotic, 
and immunomodulatory therapies [22]. For this reason, diagnostic tools continue to play 
a crucial role in the battle against COVID-19, allowing rapid implementation of control 
measures to suppress SARS-CoV-2 transmission through case identification, contact 
tracing, and isolation of positive cases [23,24]. 
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At the beginning of the COVID-19 pandemic, no efficient diagnostic test was available for 
patients who became severely ill, and the diagnosis was based mainly on the patient's 
clinical manifestations and exposure history. With the SARS-CoV-2 genome sequenced, 
WHO produced the protocol for the molecular diagnosis of COVID-19 based on real-time 
RT-PCR, allowing the development of commercial diagnostic kits [25]. Real-time RT-PCR 
is the current reference laboratory test, considered the "gold standard" for its high 
sensitivity and specificity [26]. However, despite the high diagnostic accuracy, the high 
cost, the need for ribonucleic acid (RNA) extraction, the availability of specialized raw 
materials, and the relatively long execution time, makes it is difficult to be applied on a 
large scale [27,28]. On the other side, serological tests are reliable, simple, and 
inexpensive techniques that allow direct and indirect detection of infections; however, 
they detect the presence of antibodies as a marker of past infection [29]. Serologic assays 
such as Enzyme-Linked Immunosorbent Assay (ELISA), Chemiluminescent 
Immunoassay (CLIA), and Lateral Flow Immunochromatographic Assay (LFIA) are used 
as diagnostic tools, often for the detection of IgA, IgG, and IgM antibodies from the 
patient's serum or plasma, which are directed against the spike (S) and the nucleocapsid 
(N) proteins of SARS-CoV-2 [30]. The timing of immunoglobulin production (from 4 days 
after the onset of symptoms to 10-14 days) limits its applicability in acute phase diagnosis, 
however, by detecting IgM and IgA that is rapidly formed in response to infection, may 
represent a tool that can help diagnose COVID-19, as well as significantly increase 
diagnostic sensitivity by combining serological tests with molecular tests [31,32]. COVID-
19 antigen tests allow the diagnosis of active infection by detecting the proteins of the 
SARS-CoV-2 virus in different types of samples. They are available as single-use, lateral 
flow, rapid antigen detection diagnostic tests, which can be read visually or processed 
and read with a small handheld device. Both can be performed outside a laboratory and 
provide results in 15 to 20 minutes. These tests can be produced faster and applied on a 
larger scale. While these tests can be very specific, they are generally not as sensitive as 
molecular tests [33–35]. 
The present study aims to systematically review and summarize the available literature 
on the diagnostic accuracy of COVID-19 diagnostic tests. In this sense, a systematic 
review of the literature was carried out and the results were analyzed through a meta-
analysis based on the techniques developed and used for the diagnosis of COVID-19. 
The diagnostic techniques analyzed were reverse transcription–polymerase chain 
reaction (RT-PCR), reverse transcriptase loop-mediated isothermal amplification (RT-
LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), microarrays 
(MA), next-generation sequencing (NGS), enzyme-linked immunosorbent assay (ELISA), 
antiviral neutralization bioassay (ANB), biosensors (BS), chemiluminescence 
immunoassay (CLIA), lateral flow immunoassay (LFIA), chemiluminescent microparticle 
immunoassay (CMIA), electrochemiluminescence immunoassay (ECLIA) and 
fluorescence immunoassay (FIA). Therefore, we hope that the data generated will help 
identify the most effective diagnostic techniques against new pathogens such as SARS-
CoV-2 and its variants. 
 
 
Methods 
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Search strategy 
This systematic review was based on the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) technique [36], and this systematic review 
protocol has been registered on INPLASY (https://inplasy.com/inplasy-2022-9-0132), 
while the registration number is INPLASY202290132. The search was carried out and 
conducted until 10 June 2022 in the PubMed database 
(https://pubmed.ncbi.nlm.nih.gov/). PubMed is one of the most widely used search 
engines for biomedical literature, developed and supported by the US NLM/National 
Center for Biotechnology Information (NCBI) [37]. The search for the terms associated in 
the literature with the diagnosis of COVID-19 was carried out using the MeSH term 
"COVID-19", the results were shown in a co-occurrence network map of MeSH terms in 
the VOSviewer software (version 1.6.18) [38]. The clusters in the network map were 
analyzed to choose relevant terms associated with COVID-19 diagnostic techniques. 
Additionally, a second search was developed with each MeSH term obtained in the cluster 
analysis, relating the MeSH term "sensitivity and specificity", which are normally typically 
considered a parameter for the evaluation of the diagnostic accuracy of a test [39], and 
the MeSH term "COVID -19". 
 
Search strategy, eligibility criteria, and data extraction 
The studies included in the meta-analysis were chosen in three stages. In the first stage 
duplicate articles, articles in languages other than English, reviews, and meta-analyses 
were excluded. In the second stage of the screening stage, the titles and abstracts of the 
articles found through the search strategy were analyzed. Finally, in the eligibility stage, 
the complete studies with high relevance were obtained, and they were isolated from the 
articles with a title or abstract that did not provide sufficient data to be considered within 
the meta-analysis. The information extracted from each selected study included the 
diagnostic technique, the number, type, and clinical characteristics of the patients with 
COVID-19, and healthy controls. All studies evaluating diagnostic accuracy using 
sensitivity and specificity parameters have been included. Likewise, the data related to 
the geographical distribution, the number of studies related by country, and the frequency 
of the diagnostic techniques used were extracted. Studies lack data of Studies with 
unclear or lacking data regarding the sensitivity and specificity of COVID-19 diagnostic 
tests were excluded from further analysis. 
 
Statistical analysis 
Results were entered into Microsoft Excel (version 10.0, Microsoft Corporation, 
Redmond, WA, USA) spreadsheets and analyzed in the R programming environment 
(version 4.2.1) using the package “mada” (version 0.5.11) https://cran.r-
project.org/web/packages/mada/index.html; which employs a hierarchical model that 
accounts for within and between-study (heterogeneity) and the correlation between 
sensitivity and specificity [40]. Initially, the number of true negatives (TP), false negatives 
(FN), true positives (TP), and false positives (FP) were analyzed separately for each 
diagnostic technique; while the evaluation of sensitivity (Se) and specificity (Sp) made it 
possible to determine the diagnostic performance. Additionally, the positive likelihood 
ratio (LR+) expresses the ratio between the probability of expecting a positive test in a 
patient and the probability of expecting a positive test in a patient without the disease [41]; 
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the negative likelihood ratio (LR−), which expresses the probability that a patient will test 
negative among people with the disease and the probability that a patient will test negative 
among people without disease; and the diagnostic likelihood ratio (DOR), which is the 
odds ratio of the positivity of a diagnostic test result in the diseased population relative to 
the non-diseased population [42]; and the 95% confidence interval (CI) were determined. 
Summary receiver operating characteristic (sROC) curves were fitted, according to the 
parameters of the “Reitsma” model of the “mada” package, and were used to compare 
the diagnostic accuracy of COVID-19 diagnostic techniques [43]. The confidence level for 
all calculations was set to 95%, using a continuity correction of 0.5 if pertinent. 
 
 
Results 
 
Data sources and study selection 
In this study, a systematic review followed by meta-analysis was performed to measure 
the accuracy of diagnostic tests for COVID-19. A flowchart of the study strategy was 
prepared and presented (Figure 1). To this end, a search was accomplished in the 
PubMed database with the MeSH terms "COVID-19", and a co-occurrence network map 
of MeSH terms was developed; Through the search, 981 scientific articles were obtained 
between the years 2020 and 2021. The minimum number of occurrences of keywords 
was set at a value of five, and a network map with 2.518 keywords was generated (Figure 
2A). The formation of five main clusters was found in the analysis of the network map, in 
the cluster related to diagnostic techniques (purple color) terms such as “Reverse 
Transcription–Polymerase Chain Reaction”, “Reverse Transcriptase Loop-Mediated 
Isothermal Amplification”, “Clustered Regularly Interspaced Short Palindromic Repeats”, 
“Microarrays”, “Next-Generation Sequencing”, “Enzyme-Linked Immunosorbent Assay”, 
“Antiviral Neutralization Bioassay”, “Biosensor” and “Immunoassay”. In addition, terms 
such as "COVID-19", "SARS-COV-2", "adult", China", "disease outbreaks middle-aged", 
and "female" were common denominators (Figure 2A).  
A second search was performed in the PubMed database with the terms found in the first 
analysis. The new terms were associated with the terms "COVID-19" and "Sensitivity and 
Specificity"; generating the new search strings: (Covid 19[MeSH Terms]) AND (sensitivity 
and specificity[MeSH Terms]) AND (RT-PCR[MeSH Terms]) for RT-PCR; (Covid 
19[MeSH Terms]) AND (sensitivity and specificity[MeSH Terms]) AND (RT-LAMP 
assay[MeSH Terms]) for RT-LAMP; (Covid 19[MeSH Terms]) AND (sensitivity and 
specificity[MeSH Terms]) AND (CRISPR[MeSH Terms]) for CRISPR; (Covid 19[MeSH 
Terms]) AND (sensitivity and specificity[MeSH Terms]) AND (Microarray Analysis[MeSH 
Terms]) for MA; (Covid 19[MeSH Terms]) AND (sensitivity and specificity[MeSH Terms]) 
AND (Next generation sequencing[MeSH Terms]) for NGS; (Covid 19[MeSH Terms]) 
AND (sensitivity and specificity[MeSH Terms]) AND (ELISA[MeSH Terms]) for ELISA; 
(Covid 19[MeSH Terms]) AND (sensitivity and specificity[MeSH Terms]) AND 
(Neutralization Tests[MeSH Terms]) for ANB; (Covid 19[MeSH Terms]) AND (sensitivity 
and specificity[MeSH Terms]) AND (Biosensing Technique[MeSH Terms]) for BS; and 
(Covid 19[MeSH Terms]) AND (sensitivity and specificity[MeSH Terms]) AND 
(Immunoassay[MeSH Terms]) for immunoassays. 
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The number of studies chosen for RT-PCR, RT-LAMP, CRISPR, MA, NGS, ELISA, ANB, 
BS, and immunoassays were: 303, 3, 14, 3, 16, 145, 35, 95, and 367, respectively (Figure 
2B). The three-step eligibility criterion allowed 303, 369, and 215 articles to be excluded, 
from the criteria for identification, screening, and eligibility, respectively. Therefore, 99 
articles were selected for meta-analysis (Figure 3). It is observed that in most studies, the 
diagnostic techniques used were immunoassays (CLIA, LFIA, CMIA, ECLIA, and FIA) 
(Figure 3A). Additionally, China, the United States of America, and India are the countries 
that have carried out a higher number of studies related to diagnostic tests for COVID-19 
(Figures 3B and 3C). 
 
Meta-analysis of the diagnostic techniques for COVID-19 
 
Reverse transcription–polymerase chain reaction 
Fifteen studies based on the RT-PCR technique were selected [44–58], in which a total 
of 6,902 subjects were studied. Sensitivity ranged from 36.8% to 99.2%, with a median 
of 94.5%, 95%CI (85.1, 98.0), while the test for equality of sensitivities presented a χ2 = 
577.02, df = 38, p-value = 2e-16. Specificity ranged from 79.3 to 99.8%, with a median of 
98.4%, 95%CI (86.7, 99.8); the test for equality of specificities showed χ2 = 142.18, df = 
38, p-value = 5.96e-14. A negative correlation between sensitivities and false positive rates 
is shown r = –0.188, 95%CI (–0.476, 0.135). Additionally, results regarding LR+ {median 
45.00, 95%CI (4.06, 563.27)}, LR− {median 0.06, 95%CI (0.02, 0.18)} and DOR {median 
609.00, 95%CI (54.53, 8485.95)}. The analyzed diagnostic performance is summarized 
in Figure 4 and Supplementary Figure 1. 
 
Reverse transcriptase loop-mediated isothermal amplification 
Seven studies were selected using the RT-LAMP technique [59–65]. A total of 1,806 
subjects were studied. Sensitivity ranged from 74.7 to 98.8%, with a median of 91.9%, 
95%CI (80.0, 97.0); while the test for equality of sensitivities showed: χ2 = 30.09, df =7, 
p-value = 9.12e-05. Specificity ranged from 88.1 to 99.6%, with a median of 98.8%, 95%CI 
(90.0, 100.0); while the test for equality of specificities presented χ2 = 34.71, df = 7, p-
value = 1.27e-05. The correlation between sensitivities and false positive rates was 
analyzed a negative result is shown r = 0.313, 95%CI (-0.502, 0.834). In addition, results 
regarding LR+ {median 69.51, 95%CI (4.88, 755.24)}, LR− {median 0.09, 95%CI (0.03, 
0.23)} and DOR {median 801.74, 95%CI (48.36, 10044.33)} are displayed. The analyzed 
diagnostic performance is summarized in Figure 5 and Supplementary Figure 2. 
 
Clustered regularly interspaced short palindromic repeats 
The analysis identified 14 published studies that used CRISPR as a diagnostic tool. After 
analysis, only 7 seven studies [66–72] were selected. A total of 1,201 subjects were 
studied. Sensitivity ranged from 67.0 to 99.5%, with a median of 94.4%, and 95%CI (84.0, 
99.0). Test for equality of sensitivities analysis showed: χ2 = 80.26, df = 10, p-value = 
4.47e-13. Specificity ranged from 83.6 to 99.6%, with a median of 98.6%, 95%CI (93.0, 
100.0); while the test for equality of specificities: χ2 = 55.37, df = 10, p-value = 2.69e-08. 
Also, a negative correlation between sensitivities and false positive rates is shown r = 
0.328, 95%CI (–0.339, 0.775). In addition, results regarding LR+ {median 70.33, 95%CI 
(6.80, 898.96)}, LR− {median 0.06, 95%CI (0.01, 0.20)} and DOR {median 1357, 95%CI 
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(37.27, 29912.15)} are displayed. The diagnostic performance of the selected studies is 
summarized in Figure 6 and Supplementary Figure 3. 
 
Enzyme-linked immunosorbent assay for IgG 
Sixteen studies were selected using IgG-detecting ELISA as a diagnostic technique [73–
88]. A total of 9,221 subjects were studied. Sensitivity ranged from 61.6 to 99.0%, with a 
median of 88.3%, 95%CI (80.3, 93.5), while the test for equality of sensitivities presented 
a χ2 = 151.80, df = 22, p-value = 2e-16. Specificity ranged from 81.3 to 99.7%, with a 
median of 97.4%, 95%CI (89.6, 98.9); the test for equality of specificities showed χ2 = 
135.69, df = 22, p-value = 2e-16. A negative correlation between sensitivities and false 
positive rates is shown r = 0.166, 95%CI (–0.264, 0.541). In addition, the results regarding 
LR+ {median 29.99, 95%CI (5.78, 80.78)}, LR− {median 0.12, 95%CI (0.06, 0.23)} and 
DOR {median 333.00, 95%CI (37.03, 1288.51)}. The analyzed diagnostic performance is 
summarized in Figure 7 and Supplementary Figure 4. 
 
Enzyme-linked immunosorbent assay for IgM 
Five studies were selected using IgM-detecting ELISA as a diagnostic tool 
[74,84,87,89,90], in which a total of 1,585 subjects were studied. Sensitivity ranged from 
46.9% to 99.7%, with a median of 73.1%, 95%CI (57.3, 78.8), while the test for equality 
of sensitivities presented a χ2 = 150.59, df = 4, p-value = 2e-16. Specificity ranged from 
89.3 to 99.8%, with a median of 98.1%, 95%CI (92.3, 99.6); the test for equality of 
specificities showed χ2 = 28,12, df = 4, p-value = 1.18e-05. A negative correlation between 
sensitivities and false positive rates is shown r = 0.446, 95%CI (–0.719, 0.953). 
Additionally, results regarding LR+ {median 25.90, 95%CI (9.29, 127.19)}, LR− {median 
0.27, 95%CI (0.21, 0.53)} and DOR {median 546.65, 95%CI (33.36, 8956.27)}. The 
analyzed diagnostic performance is summarized in Figure 8 and Supplementary Figure 
5. 
 
Enzyme-linked immunosorbent assay for IgA 
Five studies were selected using IgA-detecting ELISA as a diagnostic technique 
[74,75,77,89,90]. A total of 1,632 subjects were studied. Sensitivity ranged from 79.8 to 
92.4%, with a median of 83.7%, 95%CI (77.9, 88.8); ), while the test for equality of 
sensitivities showed: χ2 = 13.71, df =4, p-value = 8.25e-03. Specificity ranged from 85.6 to 
99.6%, with a median of 98.0%, 95%CI (92.3, 99.1); while the test for equality of 
specificities presented χ2 = 34.46, df = 4, p-value = 6.00e-07. The correlation between 
sensitivities and false positive rates was analyzed a negative result is shown r = -0.448, 
95%CI (-0.953, 0.718). In addition, the results regarding LR+ {median 39.92, 95%CI 
(9.80, 85.62)}, LR− {median 0.18, 95%CI (0.13, 0.24)} and DOR {median 194.04, 95%CI 
(85.07, 442.62)} are displayed. The analyzed diagnostic performances are summarized 
in Figure 9 and Supplementary Figure 6. 
 
Antiviral neutralization bioassay 
The analysis identified 40 studies that used ANB as a diagnostic technique for COVID-
19. After analysis, only 5 five studies [91–95] were selected. A total of 1,567 subjects 
were studied. Sensitivity ranged from 90.2 to 98.8%, with a median of 95.6%, and 95%CI 
(90.0, 98.0). Test for equality of sensitivities analysis showed: χ2 = 19.18, df = 4, p-value 
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= 7.23e-04. The specificity of the studies ranged from 98.7 to 99.8%, with a median of 
99.5%, 95%CI (96.0, 100.0); while the test for equality of specificities: χ2 = 3.21, df = 4, 
p-value = 0.52. Also, a negative correlation between sensitivities and false positive rates 
is shown r = -0.055, 95%CI (–0.894, 0.869). In addition, results regarding LR+ {median 
185.17, 95%CI (22.71, 2950.41)}, LR− {median 0.04, 95%CI (0.02, 0.10)} and DOR 
{median 6332.92, 95%CI (458.41, 56606.18)} are displayed. The diagnostic performance 
of the selected studies is summarized in Figure 10 and Supplementary Figure 7. 
 
Biosensors 
Seven studies were selected using BS as a diagnostic technique [96–102]. A total of 814 
subjects were studied. Sensitivity ranged from 90.0 to 98.8%, with a median of 96.4%, 
and CI of 95% (85.9, 99.2), while the test for equality of sensitivities presented a χ2 = 
6.63, df = 6, p-value = 0.35. Specificity ranged from 89.3 to 99.5%, with a median of 
97.4%, 95%CI (93.1, 99.5); the test for equality of specificities showed χ2 = 17.31, df = 6, 
p-value = 0.01. A negative correlation between sensitivities and false positive rates is 
shown r = 0.385, 95%CI (–0.882, 0.518). In addition, results regarding LR+ {median 
36.15, 95%CI (8.24, 297.95)}, LR− {median 0.04, 95%CI (0.01, 0.19)} and DOR {median 
459.96, 95%CI (129.02, 4295.06)}. The analyzed diagnostic performance is summarized 
in Figure 11 and Supplementary Figure 8. 
 
Chemiluminescence immunoassay for IgG 
Eight studies were selected using CLIA as an IgG detection technique [76,77,79,88,103–
107], in which a total of 2,859 subjects were studied. Sensitivity ranged from 53.1% to 
96.5%, with a median of 79.8%, 95%CI (65.3, 89.7), while the test for equality of 
sensitivities presented a χ2 = 111.96, df = 11, p-value = 2e-16. Specificity ranged from 89.8 
to 99.9%, with a median of 98.7%, 95%CI (93.5, 99.6); the test for equality of specificities 
showed χ2 = 47.84, df = 11, p-value = 1.53e-06. A negative correlation between 
sensitivities and false positive rates is shown r = 0.319, 95%CI (–0.312, 0.755). 
Additionally, results regarding LR+ {median 62.27, 95%CI (7.99, 248.31)}, LR− {median 
0.21, 95%CI (0.11, 0.38)} and DOR {median 286.73, 95%CI (46.74, 2894.79)}. The 
analyzed diagnostic performance is summarized in Figure 12 and Supplementary Figure 
9. 
 
Chemiluminescence immunoassay for IgM 
Five studies were selected using CLIA as an IgM detection technique 
[77,79,103,104,106]. A total of 1,240 subjects were studied. Sensitivity ranged from 58.7 
to 89.5%, with a median of 61.7%, 95%CI (53.0, 77.0); ), while the test for equality of 
sensitivities showed: χ2 = 18.52, df =4, p-value = 9.76e-04. Specificity ranged from 91.3 to 
99.5%, with a median of 99.2%, 95%CI (94.0, 100.0); while the test for equality of 
specificities presented χ2 = 13.50, df = 4, p-value = 9.06e-03. The correlation between 
sensitivities and false positive rates was analyzed a negative result is shown r = -0.252, 
95%CI (-0.928, 0.810). In addition, results regarding LR+ {median 85.65, 95%CI (7.46, 
1361.54)}, LR− {median 0.40, 95%CI (0.27, 0.48)} and DOR {median 250.76, 95%CI 
(18.56, 3396.17)} are displayed. The analyzed diagnostic performances are summarized 
in Figure 13 and Supplementary Figure 10. 
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Chemiluminescence immunoassay for IgM-IgG 
The analysis identified 28 published studies that used CLIA to detect IgM-IgG antibodies 
for COVID-19. After analysis, only five studies [77,85,103,106,108] were selected. A total 
of 1,008 subjects were studied. Sensitivity ranged from 64.2 to 98.8%, with a median of 
90.1%, and 95%CI (80.0, 95.0). Test for equality of sensitivities analysis showed: χ2 = 
51.25, df = 6, p-value = 2.64e-09. The specificity of the studies ranged from 97.7 to 99.5%, 
with a median of 99.2%, 95%CI (93.0, 100.0); ), while the test for equality of specificities: 
χ2 = 1.73, df = 6, p-value = 0.94. Also, a negative correlation between sensitivities and 
false positive rates is shown r = 0.635, 95%CI (–0.226, 0.939). In addition, results 
regarding LR+ {median 106.45, 95%CI (7.03, 1685.99)}, LR− {median 0.10, 95%CI (0.05, 
0.22)} and DOR {median 828.39, 95%CI (45.47, 15090.85)} are displayed. The diagnostic 
performance of the selected studies is summarized in Figure 14 and Supplementary 
Figure 11. 
 
Lateral flow immunoassay for IgG 
Eleven studies were selected using LFIA as an IgG detection technique [75,77,79,109–
116]. A total of 15,935 subjects were studied. Sensitivity ranged from 35.9 to 97.4%, with 
a median of 87.3%, 95%CI (76.5, 91.9), while the test for equality of sensitivities 
presented a χ2 = 666.12, df = 21, p-value = 2e-16. Specificity ranged from 88.5 to 99.6%, 
with a median of 97.9%, 95%CI (95.5, 99.3); the test for equality of specificities showed 
χ2 = 48.01, df = 21, p-value = 6.85e-04. A negative correlation between sensitivities and 
false positive rates is shown r = 0.175, 95%CI (–0.267, 0.555). In addition, results 
regarding LR+ {median 40.07, 95%CI (11.54, 131.19)}, LR− {median 0.13, 95%CI (0.08, 
0.25)} and DOR {median 502.97, 95%CI (56.53, 1796.41)}. The analyzed diagnostic 
performance is summarized in Figure 15 and Supplementary Figure 12. 
 
Lateral flow immunoassay for IgM 
Six studies were selected using LFIA as an IgM detection technique 
[75,77,79,111,112,115], in which a total of 2,704 subjects were studied. Sensitivity ranged 
from 23.3% to 87.2%, with a median of 62.4%, 95%CI (51.1, 72.5), while the test for 
equality of sensitivities presented a χ2 = 208.82, df = 11, p-value = 2e-16. Specificity ranged 
from 89.7 to 99.7%, with a median of 98.0%, 95%CI (93.7, 99.7); the test for equality of 
specificities showed χ2 = 40.45, df = 11, p-value = 3.00e-05. A negative correlation 
between sensitivities and false positive rates is shown r = 0.153, 95%CI (–0.461, 0.669). 
Additionally, results regarding LR+ {median 33.70, 95%CI (5.07, 263.29)}, LR− {median 
0.38, 95%CI (0.29, 0.51)} and DOR {median 96.36, 95%CI (13.50, 651.54)}. The 
analyzed diagnostic performance is summarized in Fig. 16 and Supplementary Figure 13. 
 
Lateral flow immunoassay for IgM-IgG 
Nine studies were selected using LFIA as an IgM-IgG detection technique 
[75,77,85,90,108,109,115,117,118]. A total of 9,629 subjects were studied. Sensitivity 
ranged from 44.1 to 97.0%, with a median of 83.7%, 95%CI (63.4, 88.2); ), while the test 
for equality of sensitivities showed: χ2 = 339.59, df =20, p-value = 2e-16. Specificity of the 
studies ranged from 87.4 to 99.5%, with a median of 97.1%, 95%CI (92.4, 99.7); while 
the test for equality of specificities presented χ2 = 107.85, df = 20, p-value = 4.83e-14. The 
correlation between sensitivities and false positive rates was analyzed a negative result 
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is shown r = 0.279, 95%CI (-0.173, 0.635). In addition, results regarding LR+ {median 
30.97, 95%CI (6.32, 445.62)}, LR− {median 0.18, 95%CI (0.13, 0.39)} and DOR {median 
334.86, 95%CI (22.18, 2704.72)} are displayed. The analyzed diagnostic performances 
are summarized in Figure 17 and Supplementary Figure 14. 
 
Lateral flow immunoassay for N protein 
Fourteen studies were selected using LFIA as an N protein detection technique [119–
132]. A total of 11,750 subjects were studied. Sensitivity ranged from 18.3 to 96.9%, with 
a median of 74.7%, 95%CI (50.7, 88.3), while the test for equality of sensitivities 
presented a χ2 = 145.62, df = 21, p-value = 2e-16. Specificity ranged from 93.8 to 99.9%, 
with a median of 99.4%, 95%CI (95.9, 99.8); the test for equality of specificities showed 
χ2 = 56.33, df = 21, p-value = 4.51e-05. A negative correlation between sensitivities and 
false positive rates is shown r = 0.193, 95%CI (–0.249, 0.568). In addition, results 
regarding LR+ {median 85.90, 95%CI (12.25, 482.92)}, LR− {median 0.26, 95%CI (0.12, 
0.54)} and DOR {median 501.51, 95%CI (46.03, 2611.02)}. The analyzed diagnostic 
performance is summarized in Figure 18 and Supplementary Figure 15. 
 
Chemiluminescent microparticle immunoassay 
The analysis identified 13 published studies that used CMIA as a diagnostic technique for 
COVID-19. After analysis, only five studies [81,88,105,107,133] were selected. A total of 
939 subjects were studied. Sensitivity ranged from 62.8 to 95.7%, with a median of 90.3%, 
and 95%CI (76.4, 96.4). Test for equality of sensitivities analysis showed: χ2 = 51.58, df 
= 4, p-value = 1.69e-10. Specificity ranged from 95.3 to 99.7%, with a median of 98.8%, 
95%CI (93.8, 99.8); ), while the test for equality of specificities: χ2 = 6.26, df = 4, p-value 
= 0.18. Also, a negative correlation between sensitivities and false positive rates is shown 
r = 0.487, 95%CI (–0.693, 0.958). In addition, results regarding LR+ {median 60.79, 
95%CI (12.37, 476.78)}, LR− {median 0.10, 95%CI (0.04, 0.27)} and DOR {median 
615.95, 95%CI (74.57, 4343.60)} are displayed. The diagnostic performance of the 
selected studies is summarized in Figure 19 and Supplementary Figure 16. 
 
Fluorescence immunoassay 
Three studies were selected using the FIA technique [121,134,135], in which a total of 
829 subjects were studied. Sensitivity ranged from 38.0% to 92.6%, with a median of 
64.4%, 95%CI (59.0, 73.0), while the test for equality of sensitivities presented a χ2 = 
49.92, df = 4, p-value = 3.75e-10. Specificity ranged from 97.1 to 99.5%, with a median of 
99.0%, 95%CI (93.5, 99.9); the test for equality of specificities showed χ2 = 4.12, df = 4, 
p-value = 0.39. A negative correlation between sensitivities and false positive rates is 
shown r = 0.282, 95%CI (–0.799, 0.932). Additionally, results regarding LR+ {median 
77.43, 95%CI (5.56, 1275.84)}, LR− {median 0.35, 95%CI (0.28, 0.43)} and DOR {median 
124.95, 95%CI (26.33, 2224.82)}. The analyzed diagnostic performance is summarized 
in Figure 20 and Supplementary Figure 17. 
 
Other techniques 
Regarding the NGS, MA, ELISA for IgG-IgM-IgA, ELISA for IgG-IgM / IgG-IgA, CLIA for 
IgG-IgM-IgA, CLIA for N protein, LFIA for S protein and ECLIA diagnostic techniques, one 
[89], zero, four [74,81,136,137], two [77,108], one [137], four [135,138–140], one [126], 
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and three [105,107,111]  studies were selected, respectively. According to the established 
criteria, at least five studies were needed for the analysis with a value of p < 0.05. So, no 
analysis was developed regarding these diagnostic techniques. 
 
Summary ROC curves (sROC) 
Comparison of the diagnostic techniques data for COVID-19 (RT-PCR, RT-LAMP, 
CRISPR, ELISA IgG, ELISA IgM, ELISA IgA, ABN, BS, CLIA IgG, CLIA IgM, CLIA IgM-
IgG, LFIA IgG, LFIA IgM, LFIA IgM-IgG, LFIA N protein, CMIA, and FIA) was performed 
through an sROC curve analysis (Figure 21), due to implicit or explicit alterations between 
studies and variation in the cut-off points of the test, differences in sensitivity and 
specificity may occur [141,142]. The area under the curve (AUC) calculated for the 
diagnostic techniques for COVID-19 is shown in Figure 21, showing better performance 
for ABN. Furthermore, when the AUC was limited to the observed false positive rates 
(FPR) (AUCFPR) results revealed the relatively better performance of the ABN diagnostic 
test for COVID-19 (Figure 21). 
 
 
Discussion 
COVID-19 is a disease that has caused a devastating impact, leaving an experience for 
the new generations to take into consideration different factors that favor the emergence 
of infectious diseases [143]. The COVID-19 pandemic highlighted the weaknesses that 
exist in disease detection, alert, and response mechanisms. It demonstrated the need for 
a restart of the global health and health security system, as the world is highly 
interconnected, and a pandemic can break out in a matter of days [144]. The transmission 
of infectious diseases is mainly related to human movement, in the increase is related to 
transportation networks and globalization. In this context, the spread of pathogenic 
microorganisms, such as SARS-CoV-2, can be rapid and difficult its prevent and manage 
[145]. Furthermore, the ratio of asymptomatic people who give a positive result for 
COVID-19 varies between 8.44% and 39.00% [146], with the potential that asymptomatic 
carriers could be capable of transmitting COVID-19 during the incubation process without 
showing any symptoms or sign [147,148]. The viral load of SARS-CoV-2 decreases 
rapidly with the immune response; on the other hand, the generation of antibodies begins 
days after the onset of the infection, so to establish an adequate diagnosis, the start time 
of the possible infection should be considered. infection, taking into account that the 
sensitivity of molecular tests will decrease over time, but the sensitivity of serological tests 
will increase after several days of infection[149]. For these reasons, the accurate and 
timely identification of patients infected with COVID-19 plays an important role in the 
detection, diagnosis, follow-up, and surveillance of this pandemic [150,151]. However, 
most of the early diagnostic techniques developed for COVID-19 present limitations, such 
as sensitivity and/or specificity [152]. In addition, diagnostic tests required processing in 
laboratories with sophisticated materials, leading to a longer turnaround time and several 
days needed for results be available. Some of these hurdles were later perfected by newly 
developed assays that have better-defined analytical accuracy than earlier assays with 
better-defined analytical accuracy than earlier one[153,154]. 
SARS-CoV-2 is an RNA virus and, therefore, the different molecular tests available for 
detection of R; therefore, the different molecular tests available for detecting can be used 
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to identify the virus [155,156]. RNA of the virus must be transcribed into a DNA 
complement by reverse transcriptase to apply DNA detection methods [157]. Currently, 
the most widely used molecular method for the early detection of COVID-19 is RT-PCR; 
while other promising options, such as RT-LAMP and CRISPR have been developed 
[158]. RT-PCR is considered the gold standard molecular diagnostic test for COVID-19 
worldwide due to its high specificity; however, limited access to kits and reagents, the use 
of expensive laboratory equipment, and the need for qualified personnel led to slow 
detection of the virus [159,160]. As well, it has been reported that the RT-PCR test can 
fail in suspected and confirmed patients with clinical implications. In this context, other 
clinical and molecular tests should also be considered in the diagnosis of COVID-19 
[159,161]. On the other hand, it has been described that asymptomatic infected people 
have a few copies below the detection limit of the nucleic acid within the upper respiratory 
tract, causing false negatives in asymptomatic infected individuals, due to this the 
determination of asymptomatic infections with high specificity and sensitivity is a key point 
for managing the pandemic [162]. About these criteria, the analysis showed that there is 
no significant difference between molecular tests between RT-PCR and CRISPR, with a 
median sensitivity of 94.5, 94.4%, and specificity of 98.4, and 98.6% for RT-PCR. PCR, 
and CRISPR, respectively. However, when comparing AUCFPR, CRISPR showed 
superior results, which can be explained partially explained by the difference in the 
number of studies evaluated and sample sizes. CRISPR-based COVID-19 diagnosis has 
advantages such as high detection speed (approximately 30 minutes), high sensitivity 
and accuracy, portability, and does not need specialized laboratory equipment [160]. 
Furthermore, RT-LAMP showed the highest specificity among the molecular tests with a 
median of 98.8% but the lowest sensitivity with a median of 91.9%. RT-LAMP has 
advantages over RT-PCR, such as amplification at a constant temperature, no 
thermocycler required, and a faster result, while maintaining similar sensitivity and 
specificity, which could make it more suitable than RT-PCR for monitoring a pandemic 
[163]. The molecular diagnosis makes it possible to identify people infected with SARS-
CoV-2 one week before the onset of symptoms, while. At the same time, antibodies can 
only be detected ≥ 8 days after the onset of symptoms, so molecular diagnoses are 
essential for early diagnosis of COVID-19 [164,165]. When comparing data from 
molecular tests with serological tests for the diagnosis of COVID-19, molecular tests in 
general present a better performance, with AUCFPR of 0.949, 0.936, 0.952 for RT-PCR, 
RT-LAMP, and CRISPR, respectively. 
There are various serological tests to detect the antibody response caused by COVID-
19. The main methods are ELISA, CLIA, LFIA, CMIA, FIA, and ANB [166–168]. It has 
been reported that serological assays have adequate sensitivity and specificity for the 
detection of SARS-CoV2, but this performance is related to the patient's convalescence, 
so understanding the kinetics of antibodies during SARS-CoV-2 infection. In this context, 
it is essential to establish the serological result for the diagnosis of the disease [168,169]. 
Data from ELISA, CLIA, LFIA, CMIA, and FIA-based serological tests show low sensitivity 
with a median less than or equal to 90% and high specificity with a median greater than 
or equal to 97%. Low sensitivity would produce false negative results since they cannot 
detect intrinsic immunological differences or immune responses between individuals, and 
it must be considered that in asymptomatic patients antibodies can be produced, still, 
their titers are not as high as those detected in symptomatic patients [170]. When SARS-
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CoV-2 invades the human body and releases antigens, the immune system is activated 
to produce many specific antibodies (IgM/IgA/IgG), the host's immune cells produce IgM 
and IgA at an early stage of infection, while IgG at a late stage [171–173].  
ELISA, CLIA, and LFIA diagnostic techniques were broken down according to the 
antibody they detected (IgG, IgM, IgA, and IgG-IgM). The detection of IgG by these tests 
generated the highest AUCFPR demonstrating the higher performance of this antibody. 
This could be because IgM levels start to decrease at week 5 and almost disappear after 
week 7, while IgG levels persist beyond week 7, demonstrating the greater stability of IgG 
[174]. On the other hand, different structural proteins are anchored on the surface of the 
SARS-CoV-2 membrane, mainly spike (S) nucleocapsid (N), membrane (M), and 
envelope (E) [173,175]; N protein is a highly immunogenic protein and abundantly 
expressed during infection, so it can be useful for the diagnosis of COVID-19 [176]. In the 
data analysis of the LFIA technique, its performance was analyzed against the detection 
of detecting the N protein of SARS-COV-2, giving a median sensitivity and specificity of 
74.7% and 99.4%, respectively. Besides, it should be noted that N protein has better 
stability than RNA, which can effectively compensate for the low sensitivity it shows [177]. 
Because many companies can generate serology tests, these tests can reach millions of 
people per day, which can help improve the detection of SARS-CoV-2, especially in 
countries with limited resources [177]. However, to obtain adequate sensitivity and 
specificity, it is recommended to combine clinical, molecular, and serological diagnostic 
tests [178]. 
It is worth noting that the diagnostic test that showed a higher performance for the 
detection of COVID-19, considering molecular and serological techniques, was the ANB, 
with a median of 95.6 and 99.5% for sensitivity and specificity, respectively; in addition, it 
obtained the highest AUCFPR of 0.984. Neutralizing antibodies are produced weeks after 
infection and can protect cells from virus intrusion, protecting cells from virus intrusion 
and giving cells protective immunity [179]. ANBs are capable of quantitatively detecting 
neutralizing antibodies against SARS-CoV-2, making it possible to analyze the 
relationship between the level of neutralizing antibodies and the severity of the disease, 
and they can also predict the possibility of reinfection in patients with COVID-19 
[179,180]. In general, neutralizing antibodies are measured by the plaque reduction 
neutralization test (PRNT), which is currently the gold standard for serological tests and 
the determination of immune protection [181]. 
Molecular techniques such as NGS allow the investigation of the genetic composition of 
SARS-CoV-2, allowing its detection [182], and MA has been used for genotyping and the 
determination of agents that cause diseases such as SARS-CoV-2 [183,184]. 
Furthermore, ECLIA serological-based diagnostic technique is a valid detection method 
for COVID-19 [185,186]; however, the number of selected studies of these techniques 
prevented their inclusion in the meta-analysis, which needs at least five studies for 
analysis with a p-value lower than 0.05 [142]. In a search of individual MeSH terms for 
"COVID-19", "Sensitivity and specificity", "Next generation sequencing", "Microarray 
Analysis", and "Immunoassay" showed 195,931, 641,415, 49,966, 95,596, and 2,150 
studies, respectively, while linking them only found 16, 3 and 367, correspondingly. For 
what should be considered as work limitations, common errors associated with systematic 
review and meta-analysis studies, such as study location and selection, missing important 
information about the results, inappropriate subgroup analysis, conflicts with new 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


experimental data, and duplicate publication [187]. In addition, various problems, such as 
heterogeneity of study groups, clinical settings, and measures of diagnostic performance, 
were established in the present study, while. In contrast, biased estimates of diagnostic 
test performance could be overestimated [142,188]. It should be considered that to obtain 
adequate sensitivity and specificity, it is recommended to combine clinical, molecular, and 
serological diagnostic tests [178]; however, applying all these diagnostic techniques 
simultaneously is a barrier for countries with populations living in poverty, clearly 
observing the inequity in health that exists, which is a problem for the control of any 
pandemic [189]. 
 
 
Conclusions 
The precise detection of new infectious agents such as SARS-CoV-2 is important for the 
proper management of properly managing a pandemic to stop its spread. The present 
study evaluated the performance of various diagnostic techniques reported for COVID-
19, where molecular tests (RT-PCR, RT-LAMP, and CRISPR) presented a better 
performance in terms of sensitivity and specificity as compared to serological tests 
(ELISA, CLIA, LFIA, CMIA, and FIA) for the detection of SARS-CoV-2. In addition, 
serological tests were shown to have high specificity, mainly when IgG was detected, but 
relatively low sensitivity. It should be noted that the ANB-based diagnostic technique 
reported the best performance among all the methods evaluated, demonstrating its 
potential for the diagnosis of SARS-CoV-2 infection. However, further optimization of 
testing, in general, is still required, and emphasis should be placed on the development 
of rapid, scalable, and high-precision assays for the control of future outbreaks of SARS-
CoV-2 and other infectious agents that may occur in the future. 
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Abbreviations 
The following abbreviations are used in this study. 
ACE2 Angiotensin-converting enzyme 2 
ANB Antiviral neutralization bioassay 
AUC Area Under the Curve 
AUCFPR Area Under the Curve Restricted to The False Positive Rates  
BS Biosensors 
CI Confidence interval 
CLIA Chemiluminescence immunoassay 
CMIA Chemiluminescent microparticle immunoassay 
COVID-19 Coronavirus disease 
CRISPR Clustered regularly interspaced short palindromic repeats 
DOR Diagnostic Likelihood Ratio  
ECLIA Electrochemiluminescence immunoassay 
ELISA Enzyme-Linked Immunosorbent Assay  
FIA Fluorescence immunoassay 
FN False negatives 
FP False positives 
IgA Immunoglobulin A 
IgG Immunoglobulin G  
IgM Immunoglobulin M 
INPLASY International Platform of Registered Systematic Review and Meta-analysis Protocols  
LFIA Lateral flow immunoassay 
LR− Negative Likelihood Ratio  
LR+ Positive Likelihood Ratio  
MA Microarrays  
MeSH  Medical Subject Headings 
NCBI National Center for Biotechnology Information  
NGS Next-generation sequencing 
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses  
ROC Receiver Operating Characteristics 
RT-LAMP Reverse transcriptase loop-mediated isothermal amplification 
RT-PCR Reverse transcription–polymerase chain reaction 
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
Se Sensibility 
Sp Specificity 
sROC Summary Receiver Operating Characteristics  
TN True negatives 
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Figure Legends 
Figure 1. A systematic review and meta-analysis flow diagram of the study selection 
process. 
Figure 2. Selected articles using the PubMed database for the different diagnostic 
techniques using MeSH terms. A) Network map built by VOSviewer based on the co-occurrence 
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of MeSH terms. B) Number of articles found with the search for each diagnostic test, considered 
from cluster analysis. 
Figure 3. The geographical location of COVID-19 studies. A) The pie chart shows the type of 
diagnostic tests used in the COVID-19 studies for the meta-analysis. B) The bar graph shows the 
number of COVID-19 studies, included in the meta-analysis, carried out by different countries. C) 
Demographic representation of COVID-19 studies, included in the meta-analysis, worldwide 
(lower-blue to upper-red numbers) 
Figure 4. Data analysis and paired forest plot of the sensitivity and specificity of the reverse 
transcription–polymerase chain reaction (RT-PCR) in the diagnosis of COVID-19. Sensitivity 
and specificity are reported as a mean (95% confidence limits). The forest plot represents the 
estimated sensitivity and specificity (black squares) and their 95% confidence limits (horizontal 
black line) [44–58]. 
Figure 5. Data analysis and paired forest plot of the sensitivity and specificity of the reverse 
transcriptase loop-mediated isothermal amplification (RT-LAMP) in the diagnosis of 
COVID-19. Sensitivity and specificity are reported as a mean (95% confidence limits). The forest 
plot represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [59–65]. 
Figure 6. Data analysis and paired forest plot of the sensitivity and specificity of the 
clustered regularly interspaced short palindromic repeats (CRISPR) in the diagnosis of 
COVID-19. Sensitivity and specificity are reported as a mean (95% confidence limits). The forest 
plot represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [66–72]. 
Figure 7. Data analysis and paired forest plot of the sensitivity and specificity of the 
enzyme-linked immunosorbent assay (ELISA) for IgG in the diagnosis of COVID-19. 
Sensitivity and specificity are reported as a mean (95% confidence limits). The forest plot 
represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [73–88]. 
Figure 8. Data analysis and paired forest plot of the sensitivity and specificity of the 
enzyme-linked immunosorbent assay (ELISA) for IgM in the diagnosis of COVID-19. 
Sensitivity and specificity are reported as a mean (95% confidence limits). The forest plot 
represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [74,84,87,89,90]. 
Figure 9. Data analysis and paired forest plot of the sensitivity and specificity of the 
enzyme-linked immunosorbent assay (ELISA) for IgA in the diagnosis of COVID-19. 
Sensitivity and specificity are reported as a mean (95% confidence limits). The forest plot 
represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [74,75,77,89,90]. 
Figure 10. Data analysis and paired forest plot of the sensitivity and specificity of the 
antiviral neutralization bioassay (ANB) in the diagnosis of COVID-19. Sensitivity and 
specificity are reported as a mean (95% confidence limits). The forest plot represents the 
estimated sensitivity and specificity (black squares) and their 95% confidence limits (horizontal 
black line) [91–95]. 
Figure 11. Data analysis and paired forest plot of the sensitivity and specificity of the 
biosensors (BS) in the diagnosis of COVID-19. Sensitivity and specificity are reported as a 
mean (95% confidence limits). The forest plot represents the estimated sensitivity and specificity 
(black squares) and their 95% confidence limits (horizontal black line) [96–102]. 
Figure 12. Data analysis and paired forest plot of the sensitivity and specificity of the 
chemiluminescence immunoassay (CLIA) for IgG in the diagnosis of COVID-19. Sensitivity 
and specificity are reported as a mean (95% confidence limits). The forest plot represents the 
estimated sensitivity and specificity (black squares) and their 95% confidence limits (horizontal 
black line) [76,77,79,88,103–107]. 
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Figure 13. Data analysis and paired forest plot of the sensitivity and specificity of the 
chemiluminescence immunoassay (CLIA) for IgM in the diagnosis of COVID-19. Sensitivity 
and specificity are reported as a mean (95% confidence limits). The forest plot represents the 
estimated sensitivity and specificity (black squares) and their 95% confidence limits (horizontal 
black line) [77,79,103,104,106]. 
Figure 14. Data analysis and paired forest plot of the sensitivity and specificity of the 
chemiluminescence immunoassay (CLIA) for IgM-IgG in the diagnosis of COVID-19. 
Sensitivity and specificity are reported as a mean (95% confidence limits). The forest plot 
represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [77,85,103,106,108]. 
Figure 15. Data analysis and paired forest plot of the sensitivity and specificity of the lateral 
flow immunoassay (LFIA) for IgG in the diagnosis of COVID-19. Sensitivity and specificity are 
reported as a mean (95% confidence limits). The forest plot represents the estimated sensitivity 
and specificity (black squares) and their 95% confidence limits (horizontal black line) 
[75,77,79,109–116]. 
Figure 16. Data analysis and paired forest plot of the sensitivity and specificity of the lateral 
flow immunoassay (LFIA) for IgM in the diagnosis of COVID-19. Sensitivity and specificity are 
reported as a mean (95% confidence limits). The forest plot represents the estimated sensitivity 
and specificity (black squares) and their 95% confidence limits (horizontal black line) 
[75,77,79,111,112,115]. 
Figure 17. Data analysis and paired forest plot of the sensitivity and specificity of the lateral 
flow immunoassay (LFIA) for IgM-IgG in the diagnosis of COVID-19. Sensitivity and specificity 
are reported as a mean (95% confidence limits). The forest plot represents the estimated 
sensitivity and specificity (black squares) and their 95% confidence limits (horizontal black line) 
[75,77,85,90,108,109,115,117,118]. 
Figure 18. Data analysis and paired forest plot of the sensitivity and specificity of the lateral 
flow immunoassay (LFIA) for N-protein in the diagnosis of COVID-19. Sensitivity and 
specificity are reported as a mean (95% confidence limits). The forest plot represents the 
estimated sensitivity and specificity (black squares) and their 95% confidence limits (horizontal 
black line) [119–132]. 
Figure 19. Data analysis and paired forest plot of the sensitivity and specificity of the 
chemiluminescent microparticle immunoassay (CMIA) in the diagnosis of COVID-19. 
Sensitivity and specificity are reported as a mean (95% confidence limits). The forest plot 
represents the estimated sensitivity and specificity (black squares) and their 95% confidence 
limits (horizontal black line) [81,88,105,107,133]. 
Figure 20. Data analysis and paired forest plot of the sensitivity and specificity of the 
fluorescence immunoassay (FIA) in the diagnosis of COVID-19. Sensitivity and specificity are 
reported as a mean (95% confidence limits). The forest plot represents the estimated sensitivity 
and specificity (black squares) and their 95% confidence limits (horizontal black line) 
[121,134,135]. 
Figure 21. Meta-analysis of diagnostic test accuracy analysis. Summary receiver operating 
curve (sROC) plot of false positive rate and sensitivity. Comparison between RT-PCR, RT-
LAMP, CRISPR, ELISA IgG, ELISA IgM, ELISA IgA, ABN, BS, CLIA IgG, CLIA IgM, CLIA IgM-
IgG, LFIA IgG, LFIA IgM, LFIA IgM-IgG, LFIA N protein, CMIA and FIA methods in the diagnosis 
of COVID-19.  
Supplementary 1. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of reverse transcription–polymerase 
chain reaction (RT-PCR) in the diagnosis of COVID-19. Positive Likelihood ratio, Negative 
likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The 
Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence 
limits (horizontal black line) [44–58]. 
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Supplementary 2. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of reverse transcriptase loop-
mediated isothermal amplification (RT-LAMP) in the diagnosis of COVID-19. Positive 
Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean 
(95% confidence limits). The Forest plot depicts the estimated sensitivity and specificity (black 
squares) and its 95% confidence limits (horizontal black line) [59–65]. 
Supplementary 3. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of clustered regularly interspaced 
short palindromic repeats (CRISPR) in the diagnosis of COVID-19. Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence 
limits). The Forest plot depicts the estimated sensitivity and specificity (black squares) and its 
95% confidence limits (horizontal black line) [66–72]. 
Supplementary 4. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of enzyme-linked immunosorbent 
assay (ELISA) for IgG in the diagnosis of COVID-19. Positive Likelihood ratio, Negative 
likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The 
Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence 
limits (horizontal black line) [73–88]. 
Supplementary 5. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of enzyme-linked immunosorbent 
assay (ELISA) for IgM in the diagnosis of COVID-19. Positive Likelihood ratio, Negative 
likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The 
Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence 
limits (horizontal black line) [74,84,87,89,90]. 
Supplementary 6. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of enzyme-linked immunosorbent 
assay (ELISA) for IgA in the diagnosis of COVID-19. Positive Likelihood ratio, Negative 
likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The 
Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence 
limits (horizontal black line) [74,75,77,89,90]. 
Supplementary 7. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of antiviral neutralization bioassay 
(ANB) in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and 
Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts 
the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal 
black line) [91–95]. 
Supplementary 8. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of biosensors (BS) in the diagnosis of 
COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic Odds ratio are 
reported with a mean (95% confidence limits). The Forest plot depicts the estimated sensitivity 
and specificity (black squares) and its 95% confidence limits (horizontal black line) [96–102]. 
Supplementary 9. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of chemiluminescence immunoassay 
(CLIA) for IgG in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, 
and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot 
depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits 
(horizontal black line) [76,77,79,88,103–107]. 
Supplementary 10. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of chemiluminescence immunoassay 
(CLIA) for IgM in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, 
and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot 
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depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits 
(horizontal black line) [77,79,103,104,106]. 
Supplementary 11. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of chemiluminescence immunoassay 
(CLIA) for IgM-IgG in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood 
ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest 
plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence limits 
(horizontal black line) [77,85,103,106,108]. 
Supplementary 12. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of lateral flow immunoassay (LFIA) for 
IgG in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and 
Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts 
the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal 
black line) [75,77,79,109–116]. 
Supplementary 13. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of lateral flow immunoassay (LFIA) for 
IgM in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and 
Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts 
the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal 
black line) [75,77,79,111,112,115]. 
Supplementary 14. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of lateral flow immunoassay (LFIA) for 
IgM-IgG in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and 
Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts 
the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal 
black line) [75,77,85,90,108,109,115,117,118]. 
Supplementary 15. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of lateral flow immunoassay (LFIA) for 
N-protein in the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and 
Diagnostic Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts 
the estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal 
black line) [119–132]. 
Supplementary 16. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of chemiluminescent microparticle 
immunoassay (CMIA) in the diagnosis of COVID-19. Positive Likelihood ratio, Negative 
likelihood ratio, and Diagnostic Odds ratio are reported with a mean (95% confidence limits). The 
Forest plot depicts the estimated sensitivity and specificity (black squares) and its 95% confidence 
limits (horizontal black line) [81,88,105,107,133]. 
Supplementary 17. Study data and paired forest plot of the Positive Likelihood ratio, 
Negative likelihood ratio, and Diagnostic Odds ratio of fluorescence immunoassay (FIA) in 
the diagnosis of COVID-19. Positive Likelihood ratio, Negative likelihood ratio, and Diagnostic 
Odds ratio are reported with a mean (95% confidence limits). The Forest plot depicts the 
estimated sensitivity and specificity (black squares) and its 95% confidence limits (horizontal black 
line) [121,134,135]. 
Table S1. PRISMA 2020 Checklist 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
 
 
 

 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 
 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 

 
 
 
 
 
 

 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

 
 
 
 

 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

 
 
 
 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

 
 
 
 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282895doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

 
 
 
 

Section and 

Topic  

Item 

# 
Checklist item  

Location 

where 

item is 

reported  

TITLE   

Title  1 Identify the report as a systematic review. 1 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. 2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. 3 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 3 

METHODS   

Eligibility 

criteria  

5 Specify the inclusion and exclusion criteria for the review and how studies were grouped 

for the syntheses. 

4 

Information 

sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources 

searched or consulted to identify studies. Specify the date when each source was last 

searched or consulted. 

4 

Search 

strategy 

7 Present the full search strategies for all databases, registers and websites, including any 

filters and limits used. 
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Section and 

Topic  

Item 

# 
Checklist item  

Location 

where 

item is 

reported  

Selection 

process 

8 Specify the methods used to decide whether a study met the inclusion criteria of the review, 

including how many reviewers screened each record and each report retrieved, whether 

they worked independently, and if applicable, details of automation tools used in the 

process. 

4 

Data 

collection 

process  

9 Specify the methods used to collect data from reports, including how many reviewers 

collected data from each report, whether they worked independently, any processes for 

obtaining or confirming data from study investigators, and if applicable, details of 

automation tools used in the process. 

4 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that 

were compatible with each outcome domain in each study were sought (e.g. for all 

measures, time points, analyses), and if not, the methods used to decide which results to 

collect. 

4 

10b List and define all other variables for which data were sought (e.g. participant and 

intervention characteristics, funding sources). Describe any assumptions made about any 

missing or unclear information. 

4 

Study risk of 

bias 

assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of 

the tool(s) used, how many reviewers assessed each study and whether they worked 

independently, and if applicable, details of automation tools used in the process. 

4 

Effect 

measures  

12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the 

synthesis or presentation of results. 

4 

Synthesis 

methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. 

tabulating the study intervention characteristics and comparing against the planned groups 

for each synthesis (item #5)). 

4 

13b Describe any methods required to prepare the data for presentation or synthesis, such as 

handling of missing summary statistics, or data conversions. 

4 

13c Describe any methods used to tabulate or visually display results of individual studies and 

syntheses. 

4 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If 

meta-analysis was performed, describe the model(s), method(s) to identify the presence and 

extent of statistical heterogeneity, and software package(s) used. 

4 

13e Describe any methods used to explore possible causes of heterogeneity among study results 

(e.g. subgroup analysis, meta-regression). 

4 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 4 

Reporting 

bias 

assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis 

(arising from reporting biases). 

NA 

Certainty 

assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for 

an outcome. 

4 

RESULTS   

Study 

selection  

16a Describe the results of the search and selection process, from the number of records 

identified in the search to the number of studies included in the review, ideally using a flow 

diagram. 

5 (Fig. 1) 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and 

explain why they were excluded. 

5 

Study 

characteristics  

17 Cite each included study and present its characteristics. 5 

Risk of bias in 18 Present assessments of risk of bias for each included study. NA 
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Section and 

Topic  

Item 

# 
Checklist item  

Location 

where 

item is 

reported  

studies  

Results of 

individual 

studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where 

appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), 

ideally using structured tables or plots. 

5 

Results of 

syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among 

contributing studies. 

5 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for 

each the summary estimate and its precision (e.g. confidence/credible interval) and 

measures of statistical heterogeneity. If comparing groups, describe the direction of the 

effect. 

5 (Fig. 4-

10) 

20c Present results of all investigations of possible causes of heterogeneity among study results. 5 

20d Present results of all sensitivity analyses conducted to assess the robustness of the 

synthesized results. 

5 

Reporting 

biases 

21 Present assessments of risk of bias due to missing results (arising from reporting biases) for 

each synthesis assessed. 

5 

Certainty of 

evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome 

assessed. 

5 

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. 6 

23b Discuss any limitations of the evidence included in the review. 6 

23c Discuss any limitations of the review processes used. 6 

23d Discuss implications of the results for practice, policy, and future research. 6 

OTHER INFORMATION  

Registration 

and protocol 

24a Provide registration information for the review, including register name and registration 

number, or state that the review was not registered. 

4 

24b Indicate where the review protocol can be accessed, or state that a protocol was not 

prepared. 

4 

24c Describe and explain any amendments to information provided at registration or in the 

protocol. 

4 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the 

funders or sponsors in the review. 

7 

Competing 

interests 

26 Declare any competing interests of review authors. 8 

Availability 

of data, code 

and other 

materials 

27 Report which of the following are publicly available and where they can be found: template 

data collection forms; data extracted from included studies; data used for all analyses; 

analytic code; any other materials used in the review. 

9 

NA: not applicable; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 
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