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28

Abstract29

Using epigenetic markers and fragmentomics of cell-free DNA for cancer30

detection has been proven applicable. We further combine the two features31

and explore the diagnostic potential of the features on pan-cancer detection.32

We extracted cfDNA fragmentomic features from 191 whole-genome33

sequencing data and investigated them in 396 low-pass 5hmC sequencing34

data from four common cancer types and controls. We identified aberrant35

ultra-long fragments (220-500bp) of cancer samples in 5hmC sequencing36

data, both in size and coverage profile, and showed its dominant role in37

cancer prediction. Since cfDNA hydroxymethylation and fragmentomic38

markers can be detected simultaneously in low-pass 5hmC sequencing data,39

we built an integrated model including 63 features of both fragmentomic40

features and hydroxymethylation signatures for pan-cancer detection with41

high sensitivity and specificity (88.52% and 82.35%, respectively). We42

showed that fragmentomic information in 5hmC sequencing data is an ideal43

marker for cancer detection and that it shows high performance in low-pass44
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sequencing data.45

46

Introduction47

Displaying a trend of increase, more than 19.3 million individuals were48

diagnosed with cancer, and 10.0 million individuals died of cancer worldwide49

in 2020 (1). Currently, tissue biopsy is the most widely used method for50

cancer diagnosis and staging. However, owing to being an invasive51

examination method, tissue biopsy has difficulties in tracking clonal evolution,52

monitoring treatment response, and early detection of cancer and recurrence53

(2). Therefore, the need for the development of accurate liquid biopsy54

methods is urgent, with the potential to detect cancer and identify resistance55

mechanisms early, to quantify minimal residual disease, and to monitor56

treatment responses (2, 3).57

Circulating cell-free tumor DNA (ctDNA) is a kind of tumor-derived material in58

the blood of patients with cancer and is mainly derived from cancer cells via59

apoptosis or necrosis (3, 4). ctDNA carries cancer-specific genetic mutations,60

epigenetic alterations, and fragmentomic aberrations, allowing for cancer61

detection and tissue-of-origin prediction in a non-invasive manner.62

Nevertheless, as cancer is a highly heterogeneous disease, biomarkers63

based on genetic and epigenetic aberrations often have limitations in practical64

applications. Recent studies have shown that cell-free DNA (cfDNA)65

fragmentation is a non-random process (5, 6), and it is thus possible to66
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develop a generic approach for non-invasive cancer detection using cfDNA67

fragmentomics.68

The fragmentomics analysis of cfDNA encompasses the sizes (7), coverage69

(7), nucleosome footprints (8), end-points (9, 10) and end-motifs (11) of cfDNA.70

For example, the size distribution of cfDNA fragments can indicate specific71

cellular biological changes (12, 13). Coverage in cfDNA sequencing can be72

used to analyze nucleosome positions (8, 14) and identify expressed genes73

(14). Fragmentation patterns of cfDNA can be characterized by deferentially74

phased fragment end signals, which were preferentially found in tissue-75

specific open chromatin regions (15). Practically, Jiang et al. showed that76

cfDNA fragments ending with particular genomic coordinates or motifs had77

higher degrees of association with hepatocellular carcinoma (HCC) (10, 11).78

Recently, the epigenetic marker 5-hydroxymethylcytosine (5hmC) has79

attracted attention in the field of cancer research due to its regulatory role in80

tissue-specific gene expression (16). The cfDNA captured by 5hmC comprises81

a subset of all circulating cfDNA and, therefore, may contain fragmentomic82

information. Integrative multi-omics analysis including the 5hmC profile of83

cfDNA improves the sensitivity and specificity of cancer detection, as84

demonstrated by recent studies (17, 18).85

To highlight the potential of 5hmC sequencing data in cancer detection, we86

obtained a large cohort of cancer samples, including HCC, pancreatic ductal87

adenocarcinoma (PDAC), lung adenocarcinoma (LUAD), and glioblastoma88
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(GBM). We then established a pan-cancer preferred end map based on WGS89

data from these four cancer types and checked their characteristics in low-90

pass 5hmC sequencing data. We hypothesized that the fragmentomic91

information would be consistent between WGS and 5hmC sequencing data92

and tested it by comparison of each feature. We built classification models93

and investigated the effect of combining 5hmC signatures with fragmentomic94

information in pan-cancer screening.95

96

Methods97

Sample collection and study design98

In total, low-pass (mean mapped reads: 38.32±8.02 million) 5hmC-seq data99

from 85 healthy controls and 311 cancer patients were included in this study.100

We obtained 5hmC sequencing data from 33 LUAD (18), 74 PDAC (37), 132101

HCC (38), and 85 control (37) samples from three publications, and 72 GBM102

samples from an unpublished paper.103

Plasma samples from 15 healthy controls and 59 cancer patients were104

collected and subjected to WGS (mean: 14×, range: 8.6-23.7×) to establish105

the preferred end marker set, while the low-pass WGS data from 19 healthy106

controls and 98 cancer patients (mean: 3×, range: 2.3-6.2×) were obtained to107

cross-check with low-pass 5hmC sequencing data. 13 of the samples with108

low-pass WGS sequencing had above 10x WGS sequencing data. The109

demographics and clinical characteristics of the cohort are summarized in110
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Supplementary Tables 1 and 2. The design of the study is shown in Figure 1.111

112

Plasma sample collection and cfDNAWGS sequencing113

We collected plasma samples from 46 GBM patients, 29 PDAC patients and114

34 controls from West China Hospital. Plasma samples of 37 HCC patients115

and 32 LUAD patients were collected from Mengchao Hepatobiliary Hospital116

of Fujian Medical University and the First Affiliated Hospital of the Second117

Military Medical University, respectively. For every subject, the QIAseq cfDNA118

All-in-one Kit (Qiagen) was applied on the 2 ml plasma sample for the cfDNA119

extraction and library construction. Pair-end 150 bp sequencing of the libraries120

was performed on the Illumina Novaseq 6000 platform.121

122

cfDNA 5hmC profiling and sequencing123

cfDNA extraction and 5hmC library construction was performed as previously124

described (28). Firstly, cfDNA was extracted from 2 ml plasma sample using125

QIAamp Circulating Nucleic Acid Kit (QIAGEN Inc., Valencia, CA, USA). Then,126

cfDNA (5–10 ng) ligated with sequencing adaptors was incubated in a 25 μL127

reaction solution containing HEPES buffer (50 mM, pH 8.0), 25 mM MgCl2, 60128

μM N3-UDP-Glc (ActiveMotif, Carlsbad, CA, USA), and 12.5 U β-129

glucosyltransferase (NEB, Beverly, MA, USA) for 2 h at 37 °C. Next, 2.5 μL130

DBCO-PEG4-biotin (Sigma, Carlsbad, CA, USA) was directly added and131

incubated for 2 h at 37 °C. 10 μg sheared salmon sperm DNA (Life132
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Technologies, USA) was added, then the Micro Bio-Spin 30 Column (Bio-Rad,133

Hercules, CA, USA) was used to purify the DNA following the instruction, and134

the final volume was adjusted to 25μL. After that, the purified DNA was135

incubated with 5 μL C1 streptavidin beads (Life Technologies, USA) in buffer 1136

(5 mM Tris pH 7.5, 0.5 mM EDTA, 1 M NaCl and 0.2% Tween 20) for 30 min.137

The beads were subsequently undergone three 5-min washes each with138

buffer 1, buffer 2 (buffer 1 without NaCl), buffer 3 (buffer 1 with pH 9) and139

buffer 4 (buffer 3 without NaCl). Then, the beads were resuspended in water140

and amplified with 11 cycles of PCR amplification (initial denaturing at 98 °C141

for 45 s, followed by 11 cycles of denaturing at 98 °C for 15 s, annealing at142

60 °C for 30 s, extension at 72 °C for 30 s, and a final extension at 17 °C for 5143

min). The amplified products were purified using 0.8 × AMPure XP beads144

(Beck-man Coulter, Fullerton, CA, USA). Pair-end 150 bp sequencing was145

performed on the Illumina Novaseq 6000 platform.146

147

Fragmentomic profiling of cfDNA and cancer prediction analysis148

The details of the preferred end, 5hmC signatures, size profile and coverage149

profile calculation are described in the Supplementary Material. We used a150

random forest model to distinguish healthy people from cancer patients using151

fragmentomic features. To estimate the prediction error, we used five cross-152

validations. Near-zero variance features were removed. The training,153

validation, and test sets account for 60%, 20%, and 20% of the data,154
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respectively. The samples were selected randomly in a balanced way to keep155

the ratio of the number of cancer to non-cancer samples similar in the training,156

validation, and test subsets. Feature importance was calculated using the157

training data in each cross-validation run, and we sorted the features158

according to the mean value of feature importance. The number of features159

used in the final model was obtained by the highest AUC value in the160

validation set. To build an integrative model, we fitted the features selected by161

every feature-alone model into one random forest model, and performed162

feature selection, training, testing as described above. Random forest163

machine learning was implemented using the python package164

sklearn.ensemble.RandomForestClassifier with the following parameters:165

n_estimators = 100, criterion="gini".166

167

Statistics168

All statistical analyses were performed using R version 3.6.1 and python 3.7.0.169

All tests were two-sided, and P values < 0.05 were considered statistically170

significant. The ROC-AUC plot and AUC value were implemented using171

sklearn.metrics.plot_roc_curve.172

173

Ethics174

This study was approved by the Ethics Committee of Sichuan Cancer Hospital175

(SCCHEC-02-2016-005). The written informed consent was obtained from all176
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participants.177

178

179

Results180

181

182

Constructing the cfDNA preferred end map183

cfDNA fragments ending at specific genomic coordinates that were statistically184

more abundant than the Poisson distribution was an essential fragmentation185

signature referred to as the preferred end (10). We utilized WGS data from186

the four cancer types to build a preferred end map and checked the feature187

using low-pass data. The basis of utilizing cfDNA preferred end coordinates to188

indicate the occurrence and location of cancer was its ability to locate189

nucleosomes, the position of which is related to cell identity (19). To confirm190

this, we defined upstream (U) ends and downstream (D) ends by their191

genomic coordinate order on the reference genome calculated via alignment.192

We surveyed the distance distribution between adjacent U ends, D ends, and193

nucleosome centers, and the result suggested the preferred ends were194

enriched on the DNA linker (Supplementary Figure 1a-f). We further checked195

the distribution of the predicted nucleosome location based on non-malignant196

tissues at chr12: 34517269-34519122, and the preferred U and D ends of197

WGS data from controls (n=15) and HCC patients (n=15). As expected, the198
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preferred U and D ends of the controls were enriched at the midpoint between199

two nucleosomes, which is the location of the DNA linker (Figure 2a), and U200

ends were found downstream of their nearest D ends. However, in HCC201

patients, U ends were upstream of their nearest D ends, and only D ends202

were found at one midpoint between two nucleosomes (Figure 2b), which203

indicated inconsistent nucleosome positions between HCC patients with204

controls. We observed the same abnormal preferred end distribution in GBM,205

LUAD and PDAC patients (Supplementary Figure 1g-i).206

By using WGS data, we constructed cfDNA fragment preferred end maps for207

the four cancer types and control (Figure 2c-d). Preferred end enrichment was208

observed in intron and open chromatin regions (Supplementary Figure 2).209

Additionally, we noticed that for every cancer type, both U and D preferred210

ends were more enriched in health-specific open chromatin regions than in211

cancer-specific open chromatin regions (Supplementary Figure 2). One212

explanation was the nucleosome pattern in the health-specific open chromatin213

regions was unstable, as the enrichment of both U and D preferred ends in214

healthy cfDNA were significantly lower than cancer patients (Mann‒Whitney,215

P<0.05). Another was the heterogeneous nature of cfDNA, as cfDNA can be216

derived from various tissue sources. To search for preferred ends specific to217

each of the four cancer types, we determined genome-wide cancer-specific218

preferred U/D end coordinates and health-specific preferred U/D end219

coordinates based on the Youden index. In total, we got 81,083 D and 80,505220
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U preferred ends. Intriguingly, compared with all repeatable ends (preferred221

ends appeared in at least two samples in each cancer type), cancer-specific222

preferred U/D ends were no longer enriched in health-specific open chromatin223

regions, but they showed enrichment in promoter regions and cancer-specific224

open chromatin regions (Figure 2e-f, Supplementary Figure 3-4). Furthermore,225

health-specific preferred U/D ends showed enrichment in intergenic regions226

and were not found in promoters, as cancer-specific preferred ends were227

(Supplementary Figure 4). To cross check the cancer specificity of the228

preferred ends in low-pass WGS data, we calculated a ratio, which was the229

ratio of detected cancer-specific preferred end numbers to health-specific230

preferred end numbers for each sample. The results showed significantly231

higher ratios of cancer-specific to health-specific preferred U/D ends in the232

three cancer types (except GBM) than in the control (Figure 2g,233

Mann‒Whitney, p value<0.001). In addition to the difference between cancer234

and health, statistically significant differences in the ratios between cancer235

types were observed (Supplementary Figure 5).236

237

Fragmentomic features in 5hmC data238

We checked the batch effect of the 5hmC sequencing data based on size239

profile and coverage profile, and found no clustering of samples according to240

cancer types (Supplementary Figure 6).241

The cfDNA captured by 5hmC marks comprised a subset of DNA in whole242
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plasma. In theory, one sequenced fragment should contain at least one 5hmC.243

Hence, we investigated the consistency of the size profile between WGS data244

and 5hmC sequencing data. According to the results, fragment sizes of 5hmC245

cfDNA in the four cancer samples were significantly shorter than those in the246

control (Mann‒Whitney test, p value<0.001, pan-cancer Median N50 = 174 bp,247

control Median N50 = 210 bp), though the difference between cancer and248

control groups in WGS data was only observed for HCC and LUAD (Figure249

3a). Next, we confirmed that the cfDNA size profile of the 5hmC sequencing250

data was consistent with that of the WGS data in the size range of 0-220 bp251

(Figure 3b), with both data types displaying a dominant peak at 167 bp252

(Supplementary Figure 7a). A difference between the cancer and control253

samples in both short (100-150 bp) and long (151-220 bp) cfDNA fragments254

(7) was found in the 5hmC data, as in the WGS data (Supplementary Figure255

7b-c), though the 5hmC data showed a unique secondary peak at ~320 bp256

(Figure 3c, Supplementary Figure 7a). In the WGS data, cfDNA fragments257

ranging from 0-220 bp accounted for nearly 100% of fragments ranging from258

0-800 bp, but the percent value of the same size interval in the 5hmC259

sequencing data ranged from 31.8% to 99.6% (Figure 3f). Thus, we confirmed260

the presence of ultra-long fragments (221-500 bp) in the 5hmC cfDNA. We261

suspected that the existence of ultra-long fragments may have resulted from262

the capture-based technique applied in 5hmC sequencing, and we263

consequently assessed the relationship between fragment length and 5hmC264
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peak number. In ultra-long fragments, the percentage of fragments with more265

than one peak was significantly higher than that in non-ultra-long fragments266

(0-220 bp) (Mann‒Whitney test, p value<0.001) (Figure 3d). Indeed,267

enrichment analysis of the ultra-long fragments with more than one peak268

revealed primary enrichment at CpG islands (Supplementary Figure 7d). This269

indicated that the capture-based sequencing technique is more likely than270

WGS to capture ultra-long cfDNA fragments. Another finding was that in all271

cancer types, the percentage of ultra-long fragments was significantly lower272

than that in the control (Supplementary Figure 7b). We examined the273

percentage of ultra-long fragments with more than one 5hmC peak in the four274

cancer types and the control and found that the value was significantly lower275

in the former (Figure 3e). As reported by a recent study, the stability of276

circulating DNA derives mostly from the nucleosome structure (21). We hence277

evaluated the proportion of 5hmC cfDNA fragments at 146 bp, 166 bp, 312 bp,278

and 332 bp, which indicates the length of one mono-nucleosome and one di-279

nucleosome (plus the linker size). The result showed a higher proportion of280

mono-nucleosome-sized cfDNA fragments and a lower proportion of di-281

nucleosome-sized cfDNA fragments in the cancer group than in the control282

(Supplementary Figure 7e).283

We also explored the cancer specificity of the pan-cancer preferred end set284

built upon WGS data in the 5hmC sequencing data by calculating the ratio of285

cancer-specific to health-specific preferred U/D ends. The ratios were286
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significantly increased in cfDNA samples in three cancer types (except PDAC)287

compared with healthy individuals (Figure 3g, Supplementary Figure 5c-d,288

Mann‒Whitney, p value<0.005). Coverage profiles in 5hmC sequencing data289

also showed a higher variance than WGS data in samples from control and290

cancer (Supplementary Figure 8). We explored the coverage patterns of short,291

long, and ultra-long cfDNA fragments at the 5 Mb bins of the genome. Similar292

to WGS data (Supplementary Material), cancer patients exhibited multiple293

unstable genomic regions: coverage of short/long/ultra-long fragments was294

inconsistent in cancer patients but consistent in controls (Figure 4a,295

Supplementary Figure 9a). We analyzed the genome-wide coverage profile296

correlation of cancer patients to controls in the 5hmC data and found that the297

coverage profiles were consistent among controls and that the correlation298

value in cancer patients was significantly lower (Wilcoxon rank-sum test, p299

value<0.005). Importantly, the largest difference between cancer samples and300

controls was found with respect to the coverage profile of ultra-long fragments301

(Wilcoxon rank-sum test, p value<0.005) (Figure 4b).302

303

Genomic distribution of 5hmC in cancer and control cohorts304

To gain an understanding of the genomic regions associated with305

hydroxymethylation in cfDNA, we first determined 5hmC-enriched loci in the306

control and four types of cancer, which were detected as peaks via MACS2307

(22). 5hmC-modified regions among samples were compared in 1 kb bins on308
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the reference genome, and thus a consensus list of the absence and309

presence of 5hmC-modified peaks among the samples was obtained. 5hmC310

signatures were enriched over genic features, most significantly in the311

promoter, 5’UTRs, 3’UTRs, exons, and transcription end sites (TESs) (Figure312

5a). Comparison of 5hmC signature enrichment in the four types of cancers313

with the control revealed significant differences, whereby 5hmC peak314

enrichment was lower in all cancer types than in the control over promoters,315

5’UTRs, exons, and CpG islands (Wilcoxon rank-sum test, p value<0.001)316

(Figure 5a).317

Differential analysis of 5hmC-modified peaks between cancer patients and318

controls by Fisher’s exact test detected 1,010, 6,395 and 773 differentially319

modified 5hmC peaks in GBM, HCC and PDAC, respectively. Moreover, this320

pan-cancer 5hmC peak set was able to separate most cancer samples from321

the control (Figure 5b). KEGG enrichment analysis of genes located within the322

differentially modified 5hmC peaks revealed associated oncogenesis323

pathways for each cancer type (Supplementary Figure 10), such as the324

neurotrophin signaling pathway and platelet activation for GBM (23, 24), the325

MAPK signaling pathway and focal adhesion for HCC (25, 26), and the FoxO326

signaling pathway and insulin signaling pathway for PDAC (27).327

328

Cancer detection by combining fragmentomic features and 5hmC signatures using329

5hmC sequencing data330
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As 5hmC sequencing data retain both 5hmC signatures and fragmentomic331

information, it is expected to theoretically show high sensitivity and specificity332

in cancer detection. A receiver operator characteristic (ROC) curve was used333

to evaluate the performance of the classifier. In total, 53 5hmC signatures334

were selected, and the AUC of the classifier was 0.876 in the validation set335

(sensitivity = 82.26%, specificity = 82.35%) and 0.872 in the test set336

(sensitivity = 81.97%, specificity = 82.35%) (Figure 5d-e, Supplementary337

Figure 11 c).338

Overall, the fragmentomic information in the 5hmC sequencing data339

performed well. Using the size profile as features, 40 were selected to build a340

pan-cancer prediction model, among which 32 features were of the ultra-long341

and longer size range (>= 220 bp) (Figure 5c). The AUC value was 0.981 in342

the validation set (sensitivity = 93.55%, specificity = 94.12%) and 0.882 in the343

test set (sensitivity = 71.43%, specificity = 88.24%) (Figure 5d-e). Using344

preferred ends as features, 37 were selected to build a pan-cancer prediction345

model. ROC analysis showed an AUC value of 0.940 in the validation set346

(sensitivity = 83.87%, specificity = 94.12%) and 0.899 in the test set347

(sensitivity = 73.02%, specificity = 94.12%) (Figure 5d-e, Supplementary348

Figure 11a). Regarding the coverage profile of the 5hmC sequencing data, we349

explored the genomic distribution of short, long, and ultra-long cfDNA350

fragments on a 100 kb window of the genome. This model achieved an AUC351

value of 0.946 in the validation set (sensitivity = 80.65%, specificity = 94.12%)352
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and 0.882 in the test set (sensitivity = 71.43%, specificity = 88.24%) (Figure353

5d-e).354

Finally, we constructed an integrated cancer screening model by combining355

fragmentomic features and 5hmC signatures in 5hmC data. Sixty-three356

features, including 10 5hmC signatures, 24 size profile features, 21 coverage357

profile features, and 8 preferred end features, were selected to build the pan-358

cancer prediction model. The AUC value was 0.927 in the validation set359

(sensitivity = 93.44%, specificity = 88.24%) and 0.920 in the test set360

(sensitivity = 88.52%, specificity = 82.35%) (Figure 5d-e). The performance of361

single-cancer detection is depicted in Supplementary Figure 11b.362

With data from the four cancer types, we further explored tissue-of-origin363

prediction. The performance of the random forest model with 5hmC364

fragmentomic features and the integrated model are shown in Supplementary365

Tables 3-5.366

367

Discussion368

cfDNA 5hmC signatures are reported to have potential for cancer detection,369

such as in lung cancer (28), hepatocellular carcinoma (28), colon cancer (29),370

gastric cancer (29), and pancreatic cancer (17, 30). The large-scale cohort of371

5hmC sequencing data utilized in this study additionally shows the potential of372

cfDNA 5hmC signatures for cancer detection in glioblastoma and pan-cancer.373

Besides, we further examined the classification effect using fragmentomic374
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features in tissue-of-origin prediction of cancer. Most importantly, we explored375

cfDNA fragmentomic information in 5hmC sequencing data and found that it is376

possible to detect cfDNA hydroxymethylation and fragmentomic markers377

simultaneously. The size profile, preferred end, and coverage profile in 5hmC378

sequencing data showed a large difference between cancer patients and379

healthy individuals. The integrated model covering the 5hmC signature, size380

profile, preferred end, and coverage profile contained more information than381

the model with the 5hmC signature alone, as revealed by higher sensitivity382

and specificity in pan-cancer detection.383

384

Previous work reported a difference in the size profile between specific cancer385

patients or pan-cancer patients and healthy controls (12, 13, 31), though the386

analyses only focused on lengths less than 320 bp. Here, we characterized387

ultra-long fragments in 5hmC sequencing data and identified their size and388

coverage profile aberrations in cancer samples. Although it is commonly389

acknowledged that ctDNA tends to be more fragmented than cfDNA in normal390

tissue (12, 31), we found an even larger size difference in cfDNA between391

cancer samples and controls in 5hmC data owing to ultra-long fragments.392

Hence, we further expanded the size range to 800 bp by setting 80 adjacent,393

non-overlapping bins to capture 10-bp interval signals (32). The coverage394

profile is another major improvement we made with regard to previously395

reported models based on fragmentation information (9). Indeed, only the396
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ratio of short to long cfDNA fragments has been analyzed in previously397

reported models, with information on cfDNA ultra-long fragments being lost.398

Our results suggest that the coverage distribution of size-selected cfDNA399

fragments in ultra-long fragments has the strongest inconsistency between400

control and cancer samples (Figure 4a). Of note, the classification models401

selected the majority of features from ultra-long and longer size range402

fragments in the coverage profile model (34/42), size profile model (32/40)403

(Figure 5c, Supplementary Figure 12c) and integrated model (41/63),404

suggesting that ultra-long features are a major contribution to the405

classification model. Further research on the mechanism of the aberration of406

the captured ultra-long fragments in cfDNA from cancer samples may provide407

insights into the fundamental biological properties of plasma cfDNA from408

patients with cancer.409

410

In our work, we constructed a single-base resolution preferred end set based411

on a set of WGS data. Our results indicated that the preferred end set had412

good generalization ability because the differences between patients with413

cancer and controls were also shown in other independent data sets, e.g.,414

low-pass WGS data and 5hmC data. It has been reported that referred end415

coordinates differ between HCC patients and healthy people at a whole-416

genome scale (10). Apart from HCC, our results suggest the cfDNA preferred417

end can also be used to distinguish patients with GBM, LUAD, and PDAC. We418
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herein discussed the distribution of cfDNA preferred ends in genomic features,419

open chromatin regions, and nucleosome structure. The distribution of cfDNA420

preferred ends can reflect nucleosome positioning, though there is no421

apparent preference in genomic features and open chromatin regions,422

consistent with previous work (15). However, informative cancer-specific423

preferred ends were found to be significantly enriched in promoter and far424

away from health-specific open chromatin regions (Figure 2e-f,425

Supplementary Figure 4c-d, Supplementary Figure 5c-d).426

427

In summary, our results indicate that cfDNA fragmentomic analysis with a428

nonlinear classification algorithm using low-pass 5hmC sequencing data may429

provide a simple, low-cost, and highly effective method for cancer detection.430

The success of utilizing ultra-long fragments in 5hmC sequencing data as431

biomarkers indicates the potential of other capture-based sequencing432

approaches, such as cell-free methylated DNA immunoprecipitation and high-433

throughput sequencing (cfMeDIP–seq) (33), in the diagnosis of cancer.434

Notably, third-generation sequencing methods are expected to detect long435

cfDNA molecules, which have been utilized in non-invasive prenatal testing436

(34). As third-generation sequencing methods can detect sequence context437

and epigenetic modification at the same time, they can provide simultaneous438

analysis of genome-wide genetic, fragmentomic and epigenetic detection (35,439

36). Moreover, standardized and effective workflows for analysis of cfDNA440
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fragments need to be developed.441

442

Data availability443

The 5hmC sequencing data for controls, LUAD, HCC and PDAC were publicly444

available as described in the Method section. The 5hmC sequencing data for445

GBM can be accessed at https://ngdc.cncb.ac.cn/gsa-human/s/15mfS98o.446

447

Acknowledgments448

This study was supported by the 1·3·5 project for disciplines of excellence,449

West China Hospital, Sichuan University (ZYYC20006) to D. Xie; Thousand450

Talents Program of the West China Hospital (0040205401F58) to D. Xie;451

Sichuan Provincial Foundation of Science and Technology (2020YFS0051) to452

D. Xie, (2017SZ0006) to Y. Liu; Clinical Research Innovation Project, West453

China Hospital, Sichuan University (19HXCX009) to Y. Liu; the San Hang454

Program of the Second Military Medical University, Medical basic research455

project of the First Affiliated Hospital, the Second Military Medical University456

(2021JCMS16) to W. Zhang; the Science and technology project of Sichuan457

Province (2021YFS0109) to A. Li; Post-Doctor Research Project, West China458

Hospital, Sichuan University (20HXBH035) to S. Zhang; the high quality459

development of Guang 'an People's Hospital (21FZ003) to A. Wei.460

Author Contributions461

Conception and design: Dan Xie, Zhidong Zhang, Xuenan Pi and Lin Xia.462

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


22

Collection and assembly of data: Jun Zhang, Xiaoqin Yan, Shuxing Zhang,463

Ailin Wei, Jingfeng Liu, Ang Li, Xiaolong Liu, Wei Zhang and Yanhui Liu. Data464

analysis and interpretation: Zhidong Zhang, Xuenan Pi, Chang Gao, Xinlei Hu,465

Xiyue Yan and Yuer Guo. Manuscript writing: Zhidong Zhang and Xuenan Pi.466

All authors read and approved the final version of the manuscript.467

Competing interests468

The authors declare no competing interests.469

470

References471

1. Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of472

incidence and mortality worldwide for 36 cancers in 185 countries. CA473

Cancer. J. Clin. 0, 1–41 (2021).474

2. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current475

and future perspectives of liquid biopsies in genomics-driven oncology.476

Nat. Rev. Genet. 20, 71–88 (2019).477

3. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid478

biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14,479

531–48 (2017).480

4. Jahr, S., et al. DNA fragments in the blood plasma of cancer patients:481

quantitations and evidence for their origin from apoptotic and necrotic482

cells. Cancer. Res. 61, 1659-65 (2001).483

5. Serpas, L., et al. Dnase1l3 deletion causes aberrations in length and484

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


23

end-motif frequencies in plasma DNA. Proc. Natl. Acad. Sci. U. S. A.485

116, 641-49 (2019).486

6. Han, D. S. C. , et al. The Biology of Cell-free DNA Fragmentation and487

the Roles of DNASE1, DNASE1L3, and DFFB. Am. J. Hum. Genet. 106,488

202-14 (2020).489

7. Cristiano, S., et al. Genome-wide cell-free DNA fragmentation in490

patients with cancer. Nature. 570, 385-89 (2019).491

8. Snyder, M. W., Kircher M., Hill A. J., Daza R. M. & Shendure J. Cell-free492

DNA Comprises an In Vivo Nucleosome Footprint that Informs Its493

Tissues-Of-Origin. Cell. 164, 57-68 (2016).494

9. Chan, K. C., et al. Second generation noninvasive fetal genome495

analysis reveals de novo mutations, single-base parental inheritance,496

and preferred DNA ends. Proc. Natl. Acad. Sci. U. S. A. 113, E8159-68497

(2016).498

10. Jiang, P., et al. Preferred end coordinates and somatic variants as499

signatures of circulating tumor DNA associated with hepatocellular500

carcinoma. Proc. Natl. Acad. Sci. U. S. A. 115, E10925-33 (2018).501

11. Jiang, P., et al. Plasma DNA End-Motif Profiling as a Fragmentomic502

Marker in Cancer, Pregnancy, and Transplantation. Cancer. Discov. 10,503

664-73 (2020).504

12. Mouliere, F., et al. Enhanced detection of circulating tumor DNA by505

fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).506

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


24

13. Jiang, P., et al. Lengthening and shortening of plasma DNA in507

hepatocellular carcinoma patients. Proc. Natl. Acad. Sci. U. S. A. 112,508

E1317-25 (2015).509

14. Ulz, P., et al. Inferring expressed genes by whole-genome sequencing510

of plasma DNA. Nat. Genet. 48, 1273-8 (2016).511

15. Sun, K., et al. Orientation-aware plasma cell-free DNA fragmentation512

analysis in open chromatin regions informs tissue of origin. Genome513

Res. 29, 418-27 (2019).514

16. He, B., et al. Tissue-specific 5-hydroxymethylcytosine landscape of the515

human genome. Nat. Commun. 12, 4249 (2021).516

17. Chen, L., et al. Genome-scale profiling of circulating cell-free DNA517

signatures for early detection of hepatocellular carcinoma in cirrhotic518

patients. Cell. Res. 31, 589-92 (2021).519

18. [dataset]* Hu, X., et al. Integrated 5-hydroxymethylcytosine and520

fragmentation signatures as enhanced biomarkers in lung cancer. Clin.521

Epigenetics. 14, 15 (2022).522

19. Roadmap Epigenomics Consortium, et al. Integrative analysis of 111523

reference human epigenomes. Nature. 518, 317-30 (2015).524

20. Gaffney, D. J., et al. Controls of nucleosome positioning in the human525

genome. PLoS. Genet. 8, e1003036 (2012).526

21. Sanchez, C., et al. Circulating nuclear DNA structural features, origins,527

and complete size profile revealed by fragmentomics. JCI. Insight. 6,528

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


25

e144561 (2021).529

22. Zhang, Y., et al. Model-based analysis of ChIP-Seq (MACS). Genome530

Biol. 9, R137 (2008).531

23. Lawn, S., et al. Neurotrophin signaling via TrkB and TrkC receptors532

promotes the growth of brain tumor-initiating cells. J. Biol. Chem. 290,533

3814-24 (2015).534

24. Nolte, I., Przibylla, H., Bostel, T., Groden, C. & Brockmann, M. A.535

Tumor-platelet interactions: glioblastoma growth is accompanied by536

increasing platelet counts. Clin. Neurol. Neurosurg. 110, 339-42 (2008).537

25. Moon, H. & Ro, S. W. MAPK/ERK Signaling Pathway in Hepatocellular538

Carcinoma. Cancers (Basel). 13, 3026 (2021).539

26. Gnani, D., et al. Focal adhesion kinase depletion reduces human540

hepatocellular carcinoma growth by repressing enhancer of zeste541

homolog 2. Cell. Death. Differ. 24, 889-902 (2017).542

27. Li, J., et al. Knockdown of FOXO3a induces epithelial-mesenchymal543

transition and promotes metastasis of pancreatic ductal544

adenocarcinoma by activation of the β-catenin/TCF4 pathway through545

SPRY2. J. Exp. Clin. Cancer. Res. 38, 38 (2019).546

28. Song, C. X., et al. 5-Hydroxymethylcytosine signatures in cell-free DNA547

provide information about tumor types and stages. Cell. Res. 27, 1231-548

42 (2017).549

29. Li, W., et al. 5-Hydroxymethylcytosine signatures in circulating cell-free550

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


26

DNA as diagnostic biomarkers for human cancers. Cell. Res. 27, 1243-551

57 (2017).552

30. Guler, G. D., et al. Detection of early stage pancreatic cancer using 5-553

hydroxymethylcytosine signatures in circulating cell free DNA. Nat.554

Commun. 11, 5270 (2020).555

31. Lam, W. K. J., et al. Sequencing-based counting and size profiling of556

plasma Epstein-Barr virus DNA enhance population screening of557

nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 115, E5115-558

24 (2018).559

32. Lo, Y. M., et al. Maternal plasma DNA sequencing reveals the genome-560

wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2,561

61ra91 (2010).562

33. Shen, S. Y., et al. Sensitive tumour detection and classification using563

plasma cell-free DNA methylomes. Nature. 563, 579-83 (2018).564

34. Yu, S. C. Y., et al. Single-molecule sequencing reveals a large565

population of long cell-free DNA molecules in maternal plasma. Proc.566

Natl. Acad. Sci. U. S. A. 118, e2114937118 (2021).567

35. Tse, O. Y. O., et al. Genome-wide detection of cytosine methylation by568

single molecule real-time sequencing. Proc. Natl. Acad. Sci. U. S. A.569

118, e2019768118 (2021).570

36. Liu, Q., et al. Detection of DNA base modifications by deep recurrent571

neural network on Oxford Nanopore sequencing data. Nat. Commun. 10,572

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


27

2449 (2019).573

37. [dataset]* Cao, F., et al. Integrated epigenetic biomarkers in circulating574

cell-free DNA as a robust classifier for pancreatic cancer. Clin.575

Epigenetics. 12, 112 (2020).576

38. [dataset]* Cai, Z., et al. Liquid biopsy by combining 5-577

hydroxymethylcytosine signatures of plasma cell-free DNA and protein578

biomarkers for diagnosis and prognosis of hepatocellular carcinoma.579

ESMO Open. 6, 100021 (2021).580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282918doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282918


28

595

596

597

598

Figure 1 Overview of the study design.599

cfDNA from cancer patients and controls were sequenced with WGS.600
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Available 5hmC sequencing data from the same four cancer types and601

controls were combined with WGS data to get the accurate fragmentomic602

information and upon it a machine learning model was built to distinguish603

healthy controls and cancer patients.604
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605

Figure 2 Genome-wide cfDNA fragment preferred end map construction.606

cfDNA preferred end signals in a nucleosome array region (chr12: 34517269-607

34519122) in healthy (a) and HCC (b) subjects. Brown dots at the bottom608
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represent the predicted nucleosome center loci reported in a previous study (8,609

22). (c) Venn diagram showing the intersection of the preferred U and D ends610

between the cancer cohort and the control cohort. (d) Circle diagram showing611

the density of preferred ends in 1 Mb windows in four types of cancer and in612

healthy controls (the order of sample sources from outer ring to inner ring are613

control, GBM, HCC, LUAD and PDAC). (e) Enrichment of preferred U/D ends614

in promoter regions. (f) Enrichment of preferred U/D ends in health-specific615

open chromatin regions. (g) Boxplots showing the ratios of the cancer-specific616

to health-specific preferred U/D ends in low-pass WGS data for the four617

cancer types (Wilcoxon rank-sum test).618
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619

Figure 3 cfDNA fragmentomic information in 5hmC sequencing data.620

(a) Violin plots showing fragment size profile comparison between cancer621

samples and controls in terms of N50 (Mann‒Whitney test). (b) tSNE plot622

showing 5hmC sequencing data and WGS data by fragments below 220 bp.623

(c) The cfDNA size profile of 5hmC sequencing data. (d) Comparison of the624

percentage of fragments with more than one 5hmC peak between ultra-long625

and non-ultra-long fragments in every sample. The dashed line indicates the626

diagonal line. (e) Violin plots showing the percentage of ultra-long fragments627

with more than one 5hmC peak in cancer samples and controls628

(Mann‒Whitney test). (f) Boxplots showing the percentage of fragments629
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ranging from 0-220 bp and 221-500 bp among fragments ranging from 0-800630

bp in WGS data and 5hmC sequencing data (Wilcoxon rank-sum test). (g)631

Boxplots showing the ratios of the cancer-specific to health-specific preferred632

U/D ends in each of the four cancer types (Wilcoxon rank-sum test).633
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634

Figure 4 Size-selected coverage profile and correlation to median health635

of cfDNA fragments in 5hmC sequencing data.636

(a) Genome-wide coverage profile of short, long, and ultra-long cfDNA637

fragments; color indicates sample-wise correlation to median health. (b)638
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Coverage profile correlation to median healthy in control and four types of639

cancer in short, long, and ultra-long cfNDA fragments (Wilcoxon rank-sum test,640

p value<0.005).641

642
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Figure 5 Performance of cancer detection combining fragmentomic643

features and 5hmC signatures using 5hmC sequencing data.644

(a) Enrichment of 5hmC in genomic features in control and four types of645

cancer (Wilcoxon rank-sum test, p value<0.001). (b) Heatmap of differentially646

modified 5hmC peaks. (c) Selected size profile features in the size profile647

model. (d) ROC curves for the validation set and test set in pan-cancer648

diagnosis. (e) Performance evaluation of validation set and test set in pan-649

cancer diagnosis.650

651

652
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