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Abstract 9 

Short-term forecasts can provide predictions of how an epidemic will change in the near 10 

future and form a central part of outbreak mitigation and control. Renewal-equation based 11 

models are increasingly popular. They infer key epidemiological parameters from historical 12 

epidemiological data and forecast future epidemic dynamics without requiring complex 13 

mechanistic assumptions. However, these models typically ignore interaction between age-14 

groups, partly due to challenges in parameterising a time varying interaction matrix. Social 15 

contact data collected regularly by the CoMix survey during the COVID-19 epidemic in 16 

England, provide a means to inform interaction between age-groups in real-time.   17 

We developed an age-specific forecasting framework and applied it to two age-stratified 18 

time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and 19 

antibody prevalence survey; and, reported cases according to the UK national COVID-19 20 

dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred 21 

a time-varying next generation matrix which we used to project infections and cases in the 22 

four weeks following each of 29 forecast dates between October 2021 and November 2022. 23 

We evaluated the forecasts using proper scoring rules and compared performance with 24 

three other models with alternative data and specifications alongside two naive baseline 25 

models.  26 

Overall, incorporating age-interaction improved forecasts of infections and the CoMix-data-27 

informed model was the best performing model at time horizons between two and four 28 

weeks. However, this was not true when forecasting cases. We found that age-group-29 

interaction was most important for predicting cases in children and older adults. The contact-30 

data-informed models performed best during the winter months of 2020 - 2021, but 31 

performed comparatively poorly in other periods. We highlight challenges regarding the 32 

incorporation of contact data in forecasting and offer proposals as to how to extend and 33 

adapt our approach, which may lead to more successful forecasts in future.  34 
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Introduction 35 

Effective epidemic response relies on accurate infection surveillance to provide status 36 

updates which support decision makers[1]. Surveillance data can be enhanced by estimating 37 

key epidemiological parameters in real-time such as the growth rate and time-varying 38 

reproduction number (Rt) and by generating short-term-forecasts of incidence of infection, 39 

hospitalisation and mortality[2–4]. These provide estimates of the current and future 40 

epidemic trajectory to public health decision makers. As such a host of approaches have 41 

been developed to make short term epidemiological forecasts. A popular genre of 42 

methodology for infectious disease forecasts are renewal-equation based ‘semi-mechanistic’ 43 

models [2,4–6], which infer key epidemiological parameters from historical time-series data, 44 

in particular changes in transmission intensity, and use them to forecast future epidemic 45 

dynamics without requiring the more detailed assumptions and complex mathematical 46 

framework involved in ‘fully-mechanistic’ models (e.g. compartmental or agent based 47 

models).  48 

Age has been shown to be an important factor in both transmission risk [7,8] and severity of 49 

disease [9–11] caused by SARS-CoV-2. This is not unique to the COVID epidemic. In the 50 

past, epidemiological analysis and modelling have shown variability and homophily in 51 

transmission by age to have important implications for the dynamics of infection[12–15]. 52 

Moreover, age distribution of infection has important implications for the potential burden of 53 

disease as infection moves between age groups, who are more and less prone to severe 54 

illness and death[7,8,16].  55 

Although age-specific forecasts are desirable to better understand the risk to particularly 56 

vulnerable groups, due to variance in prevalence of infection between age-groups, accurate 57 

estimates of future incidence might require risk of transmission between age groups to be 58 

captured effectively. However, the high dimensionality of the problem means that estimating 59 

an age-interaction matrix is not possible from epidemiological data alone [17]. Instead, much 60 
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infectious disease dynamics research in the past 30 years has made assumptions in line 61 

with the social contact hypothesis [17]. It states that the rate of transmission of directly 62 

infectious agents is proportional to the population-level rate of social contact between 63 

population groups. This hypothesis is the basis for age-structured mixing assumptions in 64 

many mathematical models. Such models are generally parameterised from data gathered in 65 

social contact surveys[15,18], which typically ask participants to report their social contacts 66 

from a fixed period in the recent past, e.g. the last 24 hours. Participants are also asked 67 

about the characteristics of their contacts at each contact event, usually including age[15]. A 68 

key challenge to the use of historically collected contact data has been of their temporal and 69 

geographical generalisability. This is especially true when non-pharmaceutical interventions 70 

(NPIs) are in effect, potentially drastically changing the contact behaviour of the general 71 

public. The variability in behaviour with time and age during a pandemic makes 72 

parameterisation of age-specific-real-time-models particularly challenging as up-to-date 73 

information on interaction is essential for time-varying parameterisation of the model.  74 

During the COVID-19 pandemic, as a means to monitor the behaviour of the general public 75 

relevant to transmission and provide insight into risk posed to vulnerable populations, a 76 

number of studies were conducted to survey social contacts at a frequency and scale not 77 

seen previously. One example is the CoMix study, which collected contact data weekly 78 

between March 2020 to March 2022 in 19 European countries[19–22]. The UK arm of the 79 

study, which involved a survey of greater than 5000 participants, was the first to launch and 80 

most complete in terms of data collected over this period. This regularly collected contact 81 

data provides a means to parameterise models with temporally and geographically relevant 82 

estimates of social interaction, and an opportunity to evaluate how incorporating such data 83 

into a real-time analysis framework impacts forecast performance at different scales. 84 

Existing studies of forecasting performance[5,6,23] have focused on age-agnostic numbers 85 

of cases, hospitalisations and deaths. Probabilistic forecasts can be robustly assessed using 86 

proper scoring rules [24]. Although these methods have been popular for some time in other 87 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.22282935doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22282935
http://creativecommons.org/licenses/by/4.0/


 

4 

fields, they have only recently been applied to epidemic forecasts[5,6,23]. To the authors 88 

knowledge one such evaluation has previously been made [25] of age-stratified epidemic 89 

forecasts however, the study by Held et. al. used historical contact data to parameterize 90 

interaction between age-groups and evaluated at a population level by summing age-specific  91 

forecasts. To our knowledge there has been no evaluation of the use of the regularly 92 

collected age-stratified contact data in comparison to other approaches to make short term 93 

forecasts at an age-group specific level. 94 

Here we present age-specific forecasts in the UK, with the aim of understanding whether 95 

incorporating the weekly collected social contact data improves the predictive ability 96 

compared to ignoring this interaction. We incorporated data from the CoMix study in a semi-97 

mechanistic forecasting framework and applied this to case numbers, as the most commonly 98 

tracked metric for COVID-19 dynamics in the UK throughout the pandemic. We further 99 

applied it to infection incidence estimated from a weekly cross-sectional household survey of 100 

infection [26,27] in order to better understand the influence of reporting patterns on results. 101 

To quantify the relative benefits of incorporating interaction between age groups and specific 102 

contact data into forecasts we compared three models with interaction between age groups 103 

with an equivalent model with no such interaction and evaluated the models against two 104 

naive baseline models.  105 

Materials and Methods  106 

Study overview 107 

To establish the relative benefit of incorporating interaction between age-groups in short-108 

term epidemiological forecasts, we implemented four age-stratified semi-mechanistic 109 

models, which each estimate a time-varying Next Generation Matrix (NGM). This matrix is 110 

inferred as the interaction matrix between age-groups under the assumption that all 111 

infections in each age group are informed by the sum of past infections in all age-groups 112 

weighted by the distribution of time between infections - the generation interval distribution 113 
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and the NGM. Two of the models included interaction between age groups, one of which 114 

was informed by contact data from the CoMix study (regularly collected during the period of 115 

study). We also evaluate the same model using data collected in the POLYMOD survey 116 

(single survey performed in 2008). In the fourth model the interaction was estimated entirely 117 

from historical epidemiological data. We compared these models with a fourth model which 118 

allowed no interaction between age-groups.  119 

We applied this to reported cases, as a commonly available quantity for forecasting epidemic 120 

dynamics[5]. This, however, incurs a secondary challenge due to potential variability in 121 

reporting of cases by age and over the course of an epidemic, which may serve to 122 

complicate our interpretation of the application of contact data to forecasts. Hence, to isolate 123 

the impact of incorporating contact data we chose to additionally apply the models to 124 

estimated infection incidence from a repeated cross-sectional household survey of 125 

infections.  126 

We forecast weekly reported cases using the data from the UKHSA Covid-19 dashboard. 127 

For convenience we used the full case time-series aggregated to weekly incidence and 128 

truncated at different forecast dates, rather than the data available on each forecast date. 129 

Although this does not give a full picture of the real-time applicability and performance of the 130 

model, it avoids complications in delays in gathering case reports which require additional 131 

treatment prior to application of a forecasting model such as truncation of the most recent 132 

data or now-casting[28]. Secondly, we applied the models to estimates of weekly incidence 133 

of infection estimated[26] from national infection prevalence data, again with the full final 134 

data set truncated at each forecast date rather than snapshots available at the time. To 135 

further isolate the role of contact data in the forecasts of infections, we used weekly age-136 

stratified estimates of antibody prevalence to inform age-specific susceptibility.   137 
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Data 138 

We accessed daily, age-stratified, case data from the UK COVID-19 dashboard [29] on 11th 139 

May 2022. We aggregated this data to weekly incidence by taking the 7 day sum from the 140 

previous 7 days, aligned such that the weekly data is reported on the proposed forecast 141 

dates, to forecast weekly case counts in future weeks. The case reports were grouped in 142 

seven decade groups between zero and 69 years with a single group for over 70 year olds 143 

(0-9, 10-19, …, 60-69, 70+).  144 

We accessed aggregates of SARS-CoV-2 infection prevalence and antibody prevalence 145 

collected as part of the COVID-19 infection survey(CIS) through the CIS Website[27] on 18th 146 

March 2022. We used data covering the period between August 2020 and January 2022 to 147 

estimate weekly infection incidence and antibody prevalence for seven age-groups (2-10, 148 

11-15, 16-24, 25-34, 35-49, 49-69 and 70+). In addition to the CIS data, we used vaccination 149 

data published by the National Health Service and accessed via the UK coronavirus 150 

dashboard[30] on the same date. 151 

We generated SARS-CoV-2 infection incidence and antibody prevalence time-series for the 152 

period between August 2020 and January 2022 using an approach described 153 

elsewhere[26,31](Figure 1). To establish a weekly time-series of infections we took the sum 154 

of incident infections in each week on a sample-by-sample basis and calculated the credible 155 

intervals from the resultant sum. To establish a weekly time series of antibodies we took the 156 

antibody prevalence on the last day of each week and calculated credible intervals from the 157 

full posterior sample.  158 
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 159 

Fig. 1. Estimated incidence of A) infection, B) antibody prevalence and C) case reports by age-160 

group. 161 

We combined these data with social contact data collected as part of the CoMix social 162 

contact survey (CoMix)[19,32], a multinational, weekly, cross-sectional survey of social 163 

contacts. We used published weekly contact matrices from the UK arm of CoMix, generated 164 

under the framework described previously[20]. 165 

Transmission Model  166 

We extended the concept of the Next Generation Matrix to include transmission interval 167 

distributions (the generation interval for infections, and the interval between a positive test in 168 

infector and infectee for cases). Here, the number of incident cases or infections  at time  169 

was given by the sum of the products of the next generation matrix  and the age-stratified 170 

vector of cases or infections on dates between  and , weighted by the 171 

transmission interval distribution .  172 

	173 
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where  is a fixed upper-limit of the transmission interval distribution, set to 4 weeks and 174 

 is assumed to follow a discretised log-normal distribution with time since the primary 175 

event (infection or positive test of the infector):  176 

 177 

where  is the cumulative distribution function of the log-normal distribution with 178 

parameters  and . Under the social contact hypothesis[17], the next generation matrix 179 

is calculated by multiplying the contact matrix,  quantifying the mean number of contacts 180 

between age groups, with vectors of age-specific susceptibility ( ) and infectiousness ( ), 181 

where each element, and  give the specific susceptibility and infectiousness of age group 182 

 [13].  183 

 184 

We assumed that age specific infectiousness, , is inherent and unrelated to time varying 185 

factors associated with the epidemic. We assumed that age-specific susceptibility included 186 

two components:  187 

 188 

The first ( ) is drawn from age-specific immunity to infection, which is informed by age-189 

specific antibody prevalence. We used a leaky definition of antibody effectiveness in line with 190 

the definition used in the estimation of the infection and antibody timeseries: 191 

 192 

Where 𝛷 is the effectiveness of antibodies in preventing infections in an exposed member of 193 

the population. The second component ( ) is due to an age-correlated variation in inherent 194 

susceptibility to infection and unrelated to time-varying factors associated with the epidemic. 195 

Both  and  were assumed to remain constant in time, such that all of the variation in  the 196 

next generation matrix by time is governed by changes in contacts and estimated antibody 197 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.22282935doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22282935
http://creativecommons.org/licenses/by/4.0/


 

9 

derived immunity. Both  and  were fit as random effects in a hierarchical framework 198 

(Table 1).  199 

Parameter estimation and forecasting 200 

To allow variation in parameter values over the course of the study period, we parameterised 201 

the model with the estimated antibody prevalence and contact matrices and fitted it to 8 202 

weeks of weekly estimated infection or reported case data prior to the forecast date. We 203 

fitted the model using Hamiltonian Monte Carlo, implemented in the Stan probabilistic 204 

programming language[33] assessing the convergence of each model by monitoring 205 

transition divergence and chain mixing.   206 

We fitted to the mean infection time series  under the likelihood:  207 

	208 

Where  is the overall uncertainty in the modelled infections, combining the time-varying 209 

inherent uncertainty in the NGM model, , and the standard deviation of the infection 210 

estimates, , 211 

 212 

 is constructed at each time point from the estimated coefficient of variation  and 213 

infection incidence such that:  214 

 215 

which ensures the uncertainty scales with the magnitude of the infection incidence 216 

estimates. We fit to the case time series  under the likelihood:  217 

 218 
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Where  is the modelled uncertainty in cases and is constructed from the estimated 219 

coefficient of variation  at each time point such that:  220 

 221 

which ensures the uncertainty scales with the magnitude of the reported case incidence. To 222 

incorporate the contact data in the CoMix based model we jointly fit the contact matrices 223 

under the likelihood:  224 

	225 

 226 

and  is the estimated standard deviation of the measured contact rate and  is the 227 

uncertainty in the fitted contacts. 228 

Each of the models estimated a NGM which varied over the 8 weeks of prior data only by 229 

changes in the estimated contact matrices and antibody inferred immunity, whilst the 230 

inherent susceptibility and infectiousness vectors were assumed constant for the whole 231 

modelled period. However, as each forecast date was modelled independently, all 232 

parameters were able to vary between forecasts.  233 

We used uninformative priors (Table 1) for the contact rate between each pair of age groups 234 

( ), model uncertainty parameters ( , ) and antibody protection ( ). Antibody 235 

prevalence priors were set to the distribution of the estimate provided by the model used to 236 

estimate incidence (inc2prev)[31] and relative susceptibility and infectiousness vector 237 

elements were set such that the Secondary Attack Rate (SAR) was roughly half that of 238 

estimates of Household SAR in literature[34]—which aimed to account for reduced risk of 239 

transmission to known contacts outside the household. The prior for the log-mean ( ) and 240 

log-standard-deviation ( ) of the transmission interval had a mean and standard 241 

deviation of 5 days to reflect the broad distribution or transmission intervals recorded in 242 
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literature [35–37], these were converted to the appropriate log-parameters for the log-normal 243 

framework in equation 2, and their prior was set to be normally distributed with a standard 244 

deviation of 20% of the mean.  245 

We used posterior distributions of the parameters (Table 1) to project infections and cases 246 

forwards up to four weeks after each forecast date. We note that contact data directly 247 

relevant to  the dates forecasted would not be known on the forecast date, so we used the 248 

contact data corresponding to the week of the forecast date itself, assuming that these also 249 

reflected contacts in the following week. For the case forecasts we offset the contact data by 250 

7 days to account for delay between infection and specimen date and used the generation 251 

interval as a proxy of the test-to-test distribution[38], which is consistent with a 5 day 252 

incubation period and a 2 day report delay[39].  253 
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 Table 1. Model parameters and priors 254 

parameter Symbol Prior 

Antibodies   	 	

Antibody protection  	

Generation interval 
distribution log-mean and 
log-variance  

 

 
 

 
 
 

 
  

  

inherent susceptibility  	

	
	

	

	
	

	

inherent infectiousness 	

		
	

	
	

	
 

Contact matrices 	  

Uncertainty in infections  	

Uncertainty in cases  	

Uncertainty in contacts  	

Where  indicates distribution is truncated between the values a and b 
  255 
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Model evaluation 256 

We evaluated the performance of the NGM models (CoMix-data, No-contact-data and No-257 

interaction) across 29 forecast dates between October 2020 and December 2021. We chose 258 

this period as there was major disruption to the CoMix survey during July 2020 and following 259 

changes in the survey in June 2020. We excluded dates after December 2021 due to the 260 

complication of the emergence of the Omicron variant, which has been shown to evade 261 

immunity to a greater extent than earlier variants[40], complicating our interpretation of 262 

antibody prevalence as a mix of omicron-specific and previously acquired antibodies persist 263 

in the population.  264 

We evaluated the forecasts against the reported number of cases or mean estimated 265 

number of infections in the week forecasted, for case and infection forecasts respectively. 266 

We evaluated the forecasts based on Continuous Ranked Probability Score (CRPS) and a 267 

measure of bias (see appendix for definitions) each implemented using the scoringutils R 268 

package [41]. The CRPS measures the ‘distance’ of the predictive distribution to the 269 

observed data-generating distribution, hence a lower score indicates more accurate 270 

predictions and therefore a higher performing model. The bias measures the tendency for a 271 

model to over (positive value) or under (negative value) predict the incidence in its 272 

projections, hence a bias of zero is optimal.  273 

We also assessed the models calibration by evaluating the central interval coverage 274 

(coverage) of each model's forecast (Proportion of incidence points which fell in the ranges 275 

projected by the forecast model’s posterior distribution of future cases).  276 

To provide a comparator as a lower bound of performance, we also evaluated two baseline 277 

models. These baselines were intended to represent naive assumptions, which may be 278 

applied without the use of a model. The first baseline assumed no change in incidence from 279 

the day the forecast was made. The second calculated the change in incidence between the 280 

forecast date and each week within the four week forecast horizon, the rate of change is 281 
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projected as an exponential extrapolation based on the previous two weeks of data. Both 282 

baselines were modelled without uncertainty and, consequently, the CRPS reduced to the 283 

mean absolute error. To provide a clear comparison of performance with and without 284 

interaction between age-groups, we provide all CRPS scores relative to the score of the no-285 

interaction model (rCRPS).  286 

As well as the overall performance of each forecasting model, we also evaluated the 287 

forecasts by grouping forecasts made by each model in two ways. Firstly, we aggregated the 288 

forecasts by age-group—showing the relative performance of the models when forecasting 289 

incidence in particular age categories. Secondly, to evaluate how performance changed over 290 

the course of the analysis period, we scored the forecasts separately for seven key phases 291 

of the pandemic (Table 2). For this we used the phases used in Gimma, et. al. [19] which 292 

overlapped with our analysis, with the addition of two phases that were not covered by the 293 

previous CoMix work. Due to the small number of weeks covered by ‘Christmas’ and 294 

‘Lockdown 3 schools open’ we combined these with ‘Lockdown 3’ and ‘Lockdown 3 Easing’ 295 

respectively.  296 

Table 2. Pandemic period names and dates  297 

Period Start date End date 

Lockdown 2  2020-11-05 2020-12-02 

Lockdown 2 Easing 2020-12-03 2020-12-19 

Christmas 2020-12-20 2021-01-04 

Lockdown 3  2021-05-01 2021-03-08 

Lockdown 3 Schools open 2021-03-09  2021-03-28 

Lockdown 3 easing  2021-03-29 2021-09-30 

Opening up  2021-10-01  2021-11-24 

 298 

 299 
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Age-specific transmission parameters  300 

Finally, to compare the implicit assumptions within the models we applied, we assessed how 301 

the values of the relative susceptibility and infectiousness parameters s and i varied over the 302 

pandemic. To provide an interpretable quantification of these parameters, we used the age-303 

specific values estimated in the model to calculate ratios of susceptibility and infectiousness 304 

of younger adults, and older adults relative to that of children. Due to the different age-305 

stratification in the data available, the broader age-bands here varied between case forecast 306 

models and infection forecast models: Children were defined as up to 15 for infections and 307 

up to 19 for cases, younger adults were defined as 16-49 for infections and 20-49 for cases 308 

and older adults were defined as over 50 in both instances. 309 

Results 310 

Forecasts 311 

We made forecasts with a horizon of one, two, three and four weeks at fortnightly intervals 312 

(Figure 2, Figures S1 - S6) between 30th October 2020 and 26th November 2021 (29 313 

forecast dates). Visually the forecasts deviate more from the true data at longer forecast 314 

horizons.  315 
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Fig. 2  A) and B) Infections and cases, respectively, forecast using the CoMix-data based next 317 

generation model, the no-contact-data, no-interaction and POLYMOD-data data based model, for 318 

each age group (top to bottom) and forecast horizon (left to right). projected infections from each 319 

model (coloured bars) and black points show infection estimates and reported cases in plots A and B 320 

respectively. The estimates being forecast on each axis are shown as solid points; those not being 321 

forecast are shown as rings. C) and D) show the continuous ranked probability score relative to the 322 

score of the “no interaction” model for each forecast date, calculated from the Infection and Case 323 

forecasts respectively.  324 

Model Evaluation  325 

To assess the relative performance of each of the models for different forecast horizons, we 326 

calculated evaluation metrics separately for each forecast horizon across all forecast dates 327 

(Figure 3 A, Table S1). For an alternative approach using multivariate evaluation across age 328 

groups and time horizons, see Held et al. (2017) [25]. 329 

When forecasting case reports from the UK Covid-19 dashboard [29], the non-interaction model 330 

performed better than any of the models which allowed interaction. The next best model was the 331 

model with no contact data which performed similarly to the no-interaction model, particularly at 332 

longer time horizons with  rCRPS of 1.02,  0.99, 1.01 and 1.01 (relative to the no-interaction 333 

model) respectively at horizons of one to four weeks in ascending order. The two models that 334 

incorporated contact data both performed poorly when considering the CRPS relative to the no-335 

interaction model, with the Polymod model performing the worst.  However, the relative 336 

performance of both models improved at longer time horizons, with the CoMix model performing 337 

similarly to the other NGM models at four week horizons (rCRPS of 1.53 and 3.78 at one week 338 

horizon reducing to 1.01 and 1.53 at four week horizon for the CoMix and Polymod data models 339 

respectively). Both CoMix and Polymod forecasts had a substantial positive bias, showing that, 340 

on average, they over-predicted cases with bias between 0.15 and 0.25. The other models tended 341 

to under predict cases by a smaller margin (between 0 and 0.18). The exponential baseline 342 

performed worse than the no-interaction model at all forecast horizons (rCRPS 1.35, 1.25, 1.11 343 
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and 1.09 at one to four weeks in ascending order). The fixed value baseline initially performed 344 

second to worst for one week forecasts (rCRPS=1.76) but improved as the horizon increased, 345 

eventually becoming the best performing forecast at four week horizons (rCRPS = 0.74) .  346 

When forecasting infection incidence estimated from UK prevalence survey data[27], the no-347 

interaction model performed second only to the no-contact-data model (rCRPS = 0.89) for 348 

horizons of one week, followed closely by the CoMix-data model (rCRPS=1.05). The POLYMOD-349 

data model performed worst when forecasting one week horizons with a rCRPS of 1.21. 350 

However, at two week horizons the non-interaction model became the worst performing model 351 

overall - which remained true for three and four week forecast horizons. In these cases the 352 

CoMix-model performed best of all the models including the baseline models with rCRPS of 0.68, 353 

0.64 and 0.57 (relative to the no-interaction model) for two, three and four week horizons 354 

respectively. The second best performing NGM model at two and three week horizons was the 355 

no-contact-data model, rCRPS of 0.82, 0.85 respectively. At four week horizons the POLYMOD-356 

data model was second best performing NGM model with a rCRPS of 0.76. The baselines both 357 

did worse than all but the POLYMOD-data model when forecasting at a one week horizon, 358 

however the performance of the fixed value baseline improved relative to all of the NGM models 359 

at longer forecast horizons and produced the second best performing forecasts overall for 360 

forecast horizons of three and four weeks (after the CoMix-data model) with rCRPS of 0.79 and 361 

0.68 respectively.  362 

  363 
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 364 

Fig. 3 continuous ranked probability score relative to the score of the no-interaction model. A. shows 365 

overall performance of each model when applied to case (left) and infection (right) data with rCRPS 366 

on the y-axis and Bias on the x-axis. Forecast horizon is indicated by marker size. B. and C. show the 367 

CRPS relative to the no-interaction model against forecast horizon disaggregated by age for infection 368 

and case data respectively. The colour of the points shows the corresponding model. 369 

We compared the relative forecast performance scoring predictions in each age-group 370 

separately (Figure 3 B and C, Table S2). When forecasting infection incidence, we found 371 

that the CoMix model and no-contact-data model forecast infections better than the no-372 

interaction model in middle-aged adults and older adults (35+ years old) for all forecast 373 

horizons. The models also performed best at forecast horizons of two weeks or more in 374 

young children (2-10 years old) and older adults. In contrast, the non-interaction model 375 

performed much more similarly to the interaction models for forecasts within younger adults 376 

(16-34 years old). The same was also true for older age groups (60+) in the case forecasts 377 

but not for children, middle aged adults or children. For infections, the performance of all the 378 

models improved in all age categories relative to the exponential extrapolation baseline as 379 

forecast horizon increased, the fixed value baseline improved relative to the non-interaction 380 
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model in all age categories but provided poorer forecasts than the CoMix model in all age-381 

categories and time horizons. For case forecasts however the fixed value baseline improved 382 

relative to all of the models as horizon increased, providing the best forecasts at four week 383 

horizons in age groups between 0 and 59 years. 384 

We divided the analysis into seven periods (Figure 4, Table S3), within each of which 385 

national restrictions on social activity remained broadly consistent. For consistency we used 386 

the same periods as those presented in Gimma et. al.[19], which presents the key findings of 387 

the CoMix study. The relative improvement in performance for the CoMix-data model was 388 

most consistent when forecasting infections during the Christmas and Lockdown 3 period, 389 

which was the only period where the CoMix-data model performed the best overall at all 390 

forecast horizons.  When forecasting cases, the CoMix-data model also performed relatively 391 

well during this period at forecast horizons of two or more weeks, but performed comparably 392 

to the no-interaction model at one week forecast horizon. The Comix model’s infection 393 

forecasts outperformed all other NGM models in the two periods following this (Lockdown 3 394 

easing and Opening up) for forecast horizons of two weeks or more, where only the fixed 395 

value baseline model improved on its score. Similarly for the Lockdown 2 easing period, the 396 

CoMix-data model performed better than the no-interaction model at all forecast horizons, 397 

but the no-contact-data model performed better for one and two week forecast horizons. The 398 

improved performance of the CoMix model  was not wholly reflected in the case forecasts. In 399 

particular, the CoMix model performed more poorly than the no-interaction model at all time 400 

horizons during the Lockdown 3 easing period. However the CoMix model performed better 401 

during the Lockdown 2 period, than the other NGM models for case forecasts, whereas for 402 

infection forecasts the CoMix model performed comparably to the no-interaction model 403 

during this period. 404 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.22282935doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22282935
http://creativecommons.org/licenses/by/4.0/


 

21 

 405 

Fig. 4 Continuous ranked probability score relative to the score of the no-interaction model against 406 

increasing forecast horizon (one to four weeks). Panels left to right show each pandemic period, 407 

Panels top to bottom show forecasts of cases and infections.  408 

Forecast calibration 409 

Of the four NGM models, the CoMix data-based model was best calibrated for case 410 

forecasts at one and two week horizons and at all horizons for infection forecasts. This is 411 

evidenced by closer agreement between the proportion of true values in each central range 412 

of the predictive distribution (50% and 90%) with the value of the range (Figure 5 A and B). 413 

Calibration typically became poorer at longer forecast horizons, with more true values falling 414 

outside the specified ranges than would be expected. We also note that none of the 415 

forecasts were particularly well calibrated when considered overall forecast dates. The best 416 

performing forecast, infection forecasts made by the CoMix model at a one week horizon, 417 

saw fewer than 75% of true values fall within the 90% confidence range of the associated 418 
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projections and fewer than 40% within the 75% confidence range. Separating the forecasts 419 

by period of the pandemic (Supplementary Figures S7 and S8) revealed that the CoMix 420 

model was best calibrated for  ‘Christmas and Lockdown 3’ and ‘Lockdown 3’ periods, for 421 

both the case and infection forecasts. In particular the CoMix model’s forecast of infections 422 

was very well calibrated during the ‘Christmas and Lockdown 3’ period, with more than 80% 423 

of true values falling within the 90% confidence range of the  forecast at all horizons. The 424 

other models were also relatively well calibrated during these periods. Overall the other 425 

periods were much more poorly calibrated. In particular, the “Lockdown 2” and “Lockdown 2 426 

easing” periods were very poorly calibrated across all models with no true values falling 427 

within the 90% confidence range for the No-contact-data and No-interaction model forecasts 428 

during the ‘Lockdown 2’ period. The baseline models are not presented as they present no 429 

confidence ranges - hence the forecast coverage is zero for all forecasts by definition.   430 
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 431 

Fig. 5 Calibration of the forecasts made by each of the next-generation-matrix-based models. A) The 432 

proportion of observed mean incidence of infection estimates (inc2prev) and B) the proportion of 433 

observed case numbers that fall within the 50% and 90% central interval of the relevant forecasts of 434 

the four models. C) and D) the percentage of observed mean incidence of infection estimates 435 

(inc2prev) falling below each quantile of the forecasts at one and four week horizons respectively. E) 436 

and F) the percentage of observed case counts falling below each quantile of the forecasts at one and 437 

four week horizons respectively. 438 

Age-specific susceptibility and infectiousness 439 

We extracted estimates of age specific infectiousness and susceptibility from the model fits 440 

to assess the biological plausibility of these parameters (Figure 6). For the CoMix model the 441 

susceptibility of younger adults (16-49 years old for infections and 20-49 for cases) and older 442 

adults (50+ years old) was higher relative to children (under 16 for infections and under 20 443 

for cases). In the early part of 2021, this began to shift such that first susceptibility reduced 444 
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relative to children in the older adults and then in younger adults. Ultimately by the end of the 445 

period evaluated, children had higher susceptibility relative to all adults. A similar pattern 446 

was present in all models that allowed interaction between age-groups. Infectiousness 447 

broadly remained equal between age-groups, with the exception of a small number of 448 

outlying values within which there is no clear trend.  449 

 450 

Fig. 6 Infectiousness (top panels) and susceptibility (bottom panels) of younger adults (16-50 for 451 

infections and 20-50 for cases) against that of older adults (50+) each relative to children (under 16 452 

for infections and under 20 for cases) by forecast date (hue). Each model is shown in panels left to 453 

right. 454 

 455 

  456 
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Discussion  457 

Evaluating the forecast performance of four next generation matrix models, we found that 458 

allowing interaction between age-groups and using regularly collected contact data did not 459 

consistently improve performance when forecasting cases as reported through the UK 460 

COVID-19 dashboard. However, when forecasting infection incidence estimated from 461 

prevalence survey data, forecast performance was improved overall by allowing interaction 462 

between age-groups at all time horizons. We found that informing interaction by regularly 463 

collected contact data improved forecasts further at time horizons of two weeks and greater. 464 

Although we found that the improvement was not consistent across all periods or when 465 

considering the resulting forecasts for each age-group separately. 466 

The NGM models with interaction showed the most benefit over the no-interaction model 467 

when forecasting infections during the Christmas and Lockdown 3 period. Here the CoMix-468 

data model outperformed all other models. During this period the CoMix-data model also 469 

proved to be the best calibrated of any model during any period. It’s notable that the 470 

forecasts being made at a time where the most intense restrictions were imposed for an 471 

extended period of time following a very sharp rise in cases. The sharp rise in cases 472 

combined with growing hospitalisations and deaths may have resulted in a period of 473 

consistent behaviour amongst the population, since although restrictions changed on 474 

January 5th[42] the contact behaviour recorded by CoMix remained similar between 475 

Christmas and Lockdown 3[19]. This consistency of behaviour, well described by CoMix 476 

data, over an extended period of time may ultimately support the performance of this model 477 

over the others.  478 

Generally, the NGM models that allowed interaction between age-groups performed better 479 

than the model with no interaction for infection forecasts. This was particularly true when 480 

considering performance in older and younger age-groups. This effect may relate to the age-481 

specific incidence and transmission rates. Whereas infections in the younger adults groups 482 
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were largely driven by transmission within the age-group, for long periods of the pandemic 483 

infections in elderly and children are likely to have been driven primarily by transmission 484 

from the younger adults age-groups, particularly when schools were closed, which was the 485 

case for a large proportion of the studied period[7,43]—making incidence projections in 486 

these groups more reliant on between-age-group interaction.  487 

Overall, all forecasts performed better than the exponential extrapolation baseline when 488 

forecasting infections. The relative performance of this baseline compared to all other 489 

models generally worsened over time suggesting that the simplistic exponential growth 490 

model tends to overestimate any change in infections over time - which is compounded at 491 

longer horizons. Although the relative performance of the simple exponential extrapolation 492 

was better for case forecasts than infection forecasts at short time horizons, similarly to the 493 

infection forecasts, all models improved relative to this baseline as the forecast horizon 494 

increased, mostly surpassing it to provide better predictions at a longer horizon, showing that 495 

this simple assumption of transmission dynamics breaks down rapidly.  496 

In contrast, in both case and infection forecasts, the relative performance of the fixed value 497 

baseline improved with increased forecast horizon as all of the modelled values deviated 498 

from the true values over time in the case of all models. This may represent the rapidly 499 

changing behaviour of the public under constantly changing interventions. This however, 500 

also compounds existing evidence that effective forecasts of infectious disease incidence 501 

can rarely be made at horizons of greater than a few weeks[6].  502 

The distributions of relative infectiousness and susceptibility inferred by the models are 503 

consistent with others findings, beginning with adults exhibiting higher susceptibility than 504 

children in general[7,8,16]. This changes throughout the pandemic, following a sequence 505 

consistent with what may be expected as a result of acquisition of antibodies through 506 

vaccination and natural infection. The largest changes occur after vaccination is introduced, 507 

where the susceptibility of the older adults reduces relative to other ages first, followed by 508 
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susceptibility of younger adults. This is consistent with the vaccine roll out schedule in 509 

England during the early part of 2021[44]. The general trajectory of age-specific 510 

susceptibility also agrees well with findings of Franco et. al.[44,45] which used the Belgian 511 

arm of the CoMix study to estimate age-specific infectiousness and susceptibility 512 

independently to this study.  513 

Our estimates of age-specific infectiousness and susceptibility need to be interpreted with 514 

caution for three main reasons. Firstly, the framework is optimised for prediction as opposed 515 

to inference and therefore is not set up to best reflect the biological processes at play but 516 

rather to make good predictions. Secondly, there is likely to be some bias in the way contact 517 

data is collected by age which may impact these estimates[19]. Importantly, contacts of 518 

children are reported by their parents or guardians. In addition, children’s contacts are 519 

disproportionately reported as groups—markedly different from adult contacts, which were 520 

reported by the participant themselves and were mostly reported as individual contacts. 521 

Finally, we also make no differentiation between contacts by location, duration or intimacy. In 522 

reality contacts made in different contexts (e.g. home and school) are likely to carry different 523 

potential of transmission, which may also affect the way our susceptibility and infectiousness 524 

estimates can be interpreted. One potential extension would be to include contacts by 525 

setting (Work, School, Home and Other), which would allow contacts in different contexts to 526 

be weighted differently. 527 

There may also be other factors associated with inferred changes in susceptibility and 528 

infectiousness which do not correspond to inherent transmissibility. For example, the degree 529 

of mitigating behaviours unrelated to contact rate (e.g., masks, preferring outdoor meetings, 530 

physical distancing) may have changed differently over the epidemic for each age group. A 531 

reduction in relative susceptibility in older adults may indicate that these age groups were 532 

able to reduce the risk of infection even when making contact with others further into the 533 

pandemic than younger age groups. Also, we assumed immunity is determined by 534 

seropositivity as reported in the publicly available CIS data[27], from which we only used a 535 
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single antibody level threshold for positivity. It may be the case that there is substantial 536 

variation in the antibody level distribution in sero-positive individuals of different age groups 537 

based on the distribution of vaccine history and infection acquired antibodies, which may 538 

affect age-stratified susceptibility to infection. Finally, there may be variation in the age-539 

profile of susceptibility by variant, however due to the limitations discussed, we are unable to 540 

quantify this here.  541 

Whereas the relative performance of the models was fairly consistent for infections, the 542 

performance when applied to case data was generally more erratic with the ranking for 543 

models and baselines changing between horizons within the same aggregation of forecast 544 

dates and age groups. This may reflect the more variable nature of case reporting, which is 545 

affected by multiple external factors affecting the week-by-week variation in cases beyond 546 

transmission dynamics. Notably, case reports are subject to variation in reporting rate, which 547 

may also differ between age-groups. This is exacerbated by changes in the UK 548 

Government's testing policy over the course of the pandemic. This was not the case with the 549 

infection time-series, which was estimated from weekly prevalence estimates. Moreover, the 550 

infection forecasts incorporated estimates of antibody prevalence modelled from weekly 551 

serosurveys[27] and vaccination data[29], whereas the case forecasts did not.  552 

Our work provides an indication of the potential benefits of including contact data in 553 

epidemiological forecasts, but for transparency in our analysis we have chosen not to use 554 

state of the art methods of surveillance, instead there are a number of simplifications we 555 

made when selecting and processing the epidemiological data to provide clearer analysis of 556 

this effect. These simplifications would be expected to affect the performance of forecasts 557 

when implemented in real time. Firstly, in our analysis we forecast infections using a 558 

modelled time-series fit to weekly prevalence estimates[26]. In truth, under the current data 559 

sharing protocol of the ONS Covid-19 infection survey, this data would not be publicly 560 

available on the forecast date and hence is not, in this form, applicable as a real-time 561 

application without fully integrating into the ONS infection survey workflow. We chose to do 562 
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this to provide the most idealised scenario to test the application of contact data to short 563 

term forecasts, without the complexities associated with case data. Furthermore, although 564 

these estimates agree well with other estimates and case time-series, the methodology 565 

promotes a smooth infection history leading to autocorrelation in the time-series. This may 566 

unduly benefit models with high autocorrelation properties, e.g., the fixed value baseline. 567 

However, the similar relative performance of this model when evaluating case data supports 568 

our observations that this model performs best at longer time horizons. Secondly, an 569 

important feature of real-time epidemiological data is that there are several complex delay 570 

distributions which may affect the recent time series of cases[46]. This is especially true 571 

when using data by date of specimen as we do here, where full information of cases at 572 

specimen date are not available until all tests from that date have been processed. For this 573 

reason, case counts are increasingly truncated in the days leading up to the forecast date. 574 

Approaches to account for this exist[28], but here we have used the case data as known 575 

now as opposed to as known on each forecast date, as such we did not need to make this 576 

adjustment—as we would if we were making the forecasts in real-time. Extending existing 577 

approaches for real-time modelling that can deal with truncated data to include interactions 578 

between multiple time series will be an important area of future research[47,48]. 579 

The models we present used a normal likelihood, unconventional for epidemiological 580 

forecasts which tend to operate on count data. In our case, we use estimates of infection 581 

incidence, our input data is therefore not an integer time series, but a distribution at each 582 

time-point. To keep the estimates consistent between the case and infection time series’ we 583 

maintained this approach for forecasting cases as well. Lastly, the absolute measure 584 

provided by CRPS means that the overall score is weighted towards age-groups and time 585 

periods where the absolute incidence was high, this may negatively impact the overall score 586 

of models which did poorly in the “young adults” age range (16-35) where incidence was 587 

highest for much of the study period.  588 
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Overall, allowing interaction between age-groups and integrating regularly collected contact 589 

data improved forecasts when forecasting infections based on estimates from national 590 

prevalence surveys. This benefit was, however, not clear when applied to regularly collected 591 

case data, which is generally much more readily available for real-time applications. The 592 

picture this offers of the usefulness of contacts in forecasts is nuanced. Even for the 593 

idealised example of incident infections estimated retrospectively from repeated cross-594 

sectional prevalence surveys, there are periods of improved performance, and times where 595 

the contact-based models failed to capture the dynamics of the epidemic sufficiently to 596 

improve on the other models' predictions. The period where the contact data performed the 597 

best was during a period where contacts remained relatively consistent. This raises the 598 

question as to whether real-time contact data is capable of capturing relevant changes in 599 

transmission related behaviour when implementation of non-pharmaceutical interventions 600 

are regularly changed. As applications using contact data in real-time develop, it is important 601 

to evaluate whether the periods where contact data are informative are aligned with periods 602 

when they are also useful for infection control, and consider how future studies might be 603 

optimised to ensure this target can be achieved. 604 
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