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ABSTRACT

The clinical narrative in the electronic health record (EHR) carries valuable information for predictive
analytics, but its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-
scale clinical natural language processing (NLP) pipelines have focused on data warehouse applications
for retrospective research efforts. There remains a paucity of evidence for implementing open-source NLP
engines to provide interoperable and standardized CDS at the bedside. This clinical protocol describes a
reproducible workflow for a cloud service to ingest, process, and store clinical notes as Health Level 7
messages from a major EHR vendor in an elastic cloud computing environment. We apply the NLP CDS
infrastructure to a use-case for hospital-wide opioid misuse screening using an open-source deep learning
model that leverages clinical notes mapped to standardized medical vocabularies. The resultant NLP and
deep learning pipeline can process clinical notes and provide decision support to the bedside within
minutes of a provider entering a note into the EHR for all hospitalized patients. The protocol includes a
human-centered design and an implementation framework with a cost-effectiveness and patient outcomes

analysis plan.
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INTRODUCTION

As of 2017, over 95% of hospitals in the US have adopted an electronic health record (EHR);
more than 80% are collecting electronic clinical notes.* Clinical decision support (CDS) and intelligent
data-driven alerts are part of federal incentive programs for Meaningful Use.?* With the increasing
capacity of EHR data and financial incentives to improve quality care, hospitals are increasingly well-
equipped to leverage computational resources to improve case identification and care throughput.*

The unstructured narrative of the electronic health record provides a rich source of information on
patients' conditions that may serve as clinical decision-support tools. Detailed medical information is
routinely recorded in providers' intake notes. Yet, this information is neither organized nor prioritized
during routine care for augmented intelligence at the bedside. Moreover, clinical notes' free text format
hinders efforts to perform analytics and leverage the large domain of data. The computational methods of
natural language processing (NLP) can derive meaning from clinical notes, from which machine learning
algorithms can screen for conditions such as opioid misuse.

In 2020, overdose deaths from opioid misuse have soared to an all-time high with a record 93,000
deaths nationwide during the pandemic year.® Substance misuse ranks second among principal diagnoses
for unplanned 7-day hospital readmission rates.® Screening for patients at-risk for opioid use disorders is
not part of the admission routine at many hospitals, and many hospitalized patients in need are never
offered opioid treatment. The high prevalence of substance use disorders in hospitalized adults exceeds
rates in the general population or outpatient setting and reveals the magnitude of this lost opportunity.’
We previously trained a convolutional neural network (CNN) that outperformed a rule-based approach
and other machine learning methods for screening opioid misuse in hospitalized patients. The CNN
substance misuse classifier had greater than 80% sensitivity and specificity and demonstrated that clinical
notes captured during a hospitalization may be used to screen opioid misuse.®

There remains a paucity of evidence on implementing clinical NLP models in an interoperable
and standardized clinical decision support system for health operations and patient care.® The interactions

among an Al system, its users, the implementation, and the environment influence the Al interventions'
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overall potential effectiveness. Few health systems have been able to accommodate the complexities of an
NLP deep learning model integrated into an existing operational ecosystem and EHR. This protocol
describes a cloud service designed to ingest, process, and store clinical notes as standardized and
interoperable messages from a major EHR vendor in an elastic cloud computing environment. We
subsequently demonstrate the use of multiple open-source tools, including an open-source NLP engine to
process the EHR notes and feed them into a deep-learning algorithm for screening opioid misuse. Our
resultant NLP and deep learning pipeline can process clinical notes and provide decision support to the
bedside within minutes of a provider entering a note into the EHR.

To our knowledge, we offer the first protocol for a bedside implementation of an NLP-driven
clinical decision support tool. We expect our protocol will serve as a guide for other health systems to
leverage open-source tools across interoperable data standards and ontologies. Our goal is to describe a
hospital-wide protocol and computing architecture to implement a real-time NLP-driven CDS tool. We
provide an implementation framework and cost-effectiveness analysis of a tool developed for the

automated screening of hospitalized adults for opioid misuse.

METHODS

Hospital Setting and Study Period

The NLP CDS tool will be implemented at the University of Wisconsin (UW) Hospital across the
surgical and medical hospital inpatient wards. The EHR system at UW Health is Epic® (Epic Systems
Corporation, Verona, WI, USA). The tool is designed for hospitalized adults (18 years of age and older)
and will be assessed using a pre-post quasi-experimental study design over 30 months (24 months of
usual care and 6 months with implementation of automated screening). The study is a quality
improvement initiative by the health system to provide an automated hospital-wide screening system for
opioid misuse. The clinical study met exemption status for human subjects research by the UW

Institutional Review Board.
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Pre-Intervention Period: Usual Care with Ad-Hoc Addiction Consults

UW Hospital launched an Addiction Medicine inpatient consult service in 1991 to address the
high prevalence of substance use disorders in hospitalized adults. A screening, brief intervention, and
referral to treatment (SBIRT) program?*! was instituted for alcohol misuse. Screening, intervention flow
sheets, and consult order sets were built into EHR-driven workflows for inpatient nurses and social
workers for alcohol screening with the Alcohol Use Disorders Identification Test-Concise??, including a
best practice alert (BPA) for patients at risk of alcohol use disorder and order sets for withdrawal
treatment. For other drugs, a single screening item queries ‘marijuana or other recreational drug use,” but
no formal screening process has been in place specifically targeting opioid misuse. For patients at risk of
an opioid use disorder, the current practice is ad-hoc consultations at the discretion of the primary

provider.

Post-Intervention Period: Computing Architecture and Real-Time Implementation

The technical architecture that enables the real-time, NLP CDS tool incorporates
industry-leading and emerging technological capabilities. Figure 1. details the overall NLP CDS
infrastructure to export the notes from the EHR, organize them and feed them into an NLP pipeline, input
the processed text features into the opioid screener deep learning model, and deliver the resultant scores
back to the bedside EHR as a BPA. The final architecture is a real-time NLP CDS tool, and the six

components of the architecture are further detailed below.
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Figure 1. Architecture for Real-Time Natural Language Processing and Deep Learning
Implementation for Clinical Decision Support
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Two major implementation processes are depicted. The first process runs a scheduled program to ingest notes from the EHR
(Step 1) for each patient and organize them and relay the notes via an HL7 data feed (Cloverleaf) into the cloud computing
environment and data lake (Microsoft Azure and Databricks) onto a virtual machine (Step 2). The NLP engine (cCTAKES)
processes the text stored on the VM and maps them to medical concepts from the National Library of Medicine’s metathesaurus
(CUIs). The machine learning model receives the CUIs as inputs and stores the results in DataBricks. At regular intervals, a
custom python script in Databricks does the text extraction, linguistic feature engineering via cTAKES, and storage of CUls with
appended data with patient identifiers. The CUls serves as the input to the machine learning model (SMART-AI) at the encounter
level. The output of prediction probabilities and classification are stored in a Databricks table (Step 3). The second process is an
API call from the EHR cloud to determine if the cutpoint threshold from the machine learning model is met to trigger a best
practice alert. The EHR cloud makes an HTTP call to Databricks to request the score (Step 4). The score is returned to the EHR
cloud and subsequently delivered as a BPA when the provider opens the patient’s chart in the on-premise instance of the EHR at
the bedside (Step 5). The full life cycle iterates every 15 minutes for a near real-time operation.

Component 1: Transferring Clinical Notes from EHR to Cloud Computing

HL?7 refers to the standards for transferring healthcare data between data sources. Cloverleaf®
(Infor CloverleafeIntegration Suite) is UW’s vendor solution to serve as an Application Programming
Interface (API) gateway to access the clinical narratives in the EHR via an HL7 data feed. The API
extracts clinical notes from Epic® and transfers them into a Microsoft Azure cloud computing
environment that is under a Business Associate Agreement with UW. On-premise relays with the FTP

protocol are used to transfer the clinical notes to a specified location in the Azure cloud environment.

Component 2: Cloud Analytic Computing Platform
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In the Microsoft® Azure framework (Microsoft, 2022), UW Health invoked the Databricks®
(Databricks Inc., San Francisco) analytic resource and services for scalable computing, data storage and
guerying. The open-source tools from the NLP engine and our trained, publicly available machine-
learning model are hosted in Databricks. The Machine Learning model lifecycle management (MLFlow)
tool in Databricks® supports the data flow for the deep learning model. MLFlow creates and scores
models when clinical notes are received and subsequently reports the results upon request. The final

infrastructure is a scaleable and failure-resistant environment for analytic computation.

Component 3: Natural Language Processing Pipeline

The clinical Text Analysis and Knowledge Extraction System (cTAKES, Apache Software
Foundation) builds on multiple open-source Apache projects and incorporates technologies with the
Unstructured Information Management Architecture (UIMA) framework and the Apache OpenNLP
natural language processing toolkit.*® This configuration contains several engines for sentence detection,
tokenization, part-of-speech tagging, concept detection, and normalization to extract information from the
clinical narrative in the EHR. cTAKES is one of the most ubiquitous NLP engines used in the clinical
domain.** cTAKES provides named entities from the free text that are mapped from the National Library
of Medicine’s Unified Medical Language System (UMLS), which are groups of words with relevant
clinical context (e.g., Drugs, Diseases, Symptoms, Anatomical Sites, and Procedures). Each named entity
maps to a concept unique identifier (CUI) using the UMLS SNOMED and RXNORM ontologies. For
instance, ‘heroin misuse’ from the text is assigned C0600241 as its CUI and is a separate CUI from
‘history of heroin misuse’, which is C3266350. For generalizability, we use the default cTAKES pipeline

available at https://cwiki.apache.org/confluence/display/CTAKES/.

As clinical notes are entered into the EHR for an individual patient, Cloverleafe relays the notes
via HL7 from Epic® EHR and uses the Azure FTP server running on a virtual machine to place themin a
known location within the Azure cloud environment. In 15-minute intervals, DataBricks triggers a custom

python script to extract the text and feed it into the cTAKES pipeline to map and extract the CUIs. The
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CUIs are stored in the Azure Data Lake with appended data including patient ID, encounter ID, and note

timestamp and are now ready to be fed into any machine learning model.

Component 4: Text Feed from NLP Pipeline into Deep Learning Model

We previously published a substance misuse screening tool using CUIs fed into a CNN called the
Substance Misuse Algorithm for Referral to Treatment using Artificial Intelligence (SMART-AI).2
SMART-AI was trained on the first 24 hours of clinical notes from the EHR to provide enough time for
robust training but lead time for the Addiction consult service to intervene before hospital discharge. For
ease of implementation, the model was not trained on any specific note type and followed a timestamp
approach for all notes filed within 24 hours from arrival at the hospital. Temporal validation of the
classifier (trained on data between 2017 and 2019 and tested on data from 2020) at an outside hospital
demonstrated an area under the precision-recall curve of 0.87 (95% CI 0.84-0.91) for screening opioid
misuse. Similar results were shown in external validation at a second, independent health system.® The
number needed to alert to detect a true positive screen was 1.4 for opioid misuse and would create 26
alerts per 1000 hospitalized patients. This was deemed as an acceptable workload for consultation
requests in live production for the UW Addiction Medicine providers. An additional retrospective review
was performed at UW Health to examine sensitivity and specificity with 95% confidence intervals (CI).%

All notes from the first 24 hours of arrival at the UW hospital are combined into a single
document per patient encounter and converted into sequences of vector representations (e.g.,
embeddings). The CUI embeddings define the input layer to the SMART-AI model at the encounter level.
The model provides prediction probabilities for opioid misuse and stores them in a DataBricks® table with
a predefined cutpoint for screen positives. The SMART-AI is publicly available

at https://github.com/Rush-SubstanceUse-AlLab/SMART-AI

Component 5: Real-Time Delivery of Prediction Results
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Nebula Cloud Platform is Epic®’s Software as a Service (SaaS) platform for integrating new
technology and specifically supporting clinical prediction modeling. Nebula capabilities include the
deployment of machine learning models, including a library of Epic-curated models for healthcare and
custom algorithms. Our solution leverages the latter to facilitate triggers from the Epic© EHR to call out
to the Databricks© environment and provide the predictions for BPAs.

In the case of SMART-AI, we designed a BPA (Figure 2) to trigger once a provider opens the
patient’s EHR. Epic® calls its Nebula component to see if a BPA should be generated. Nebula makes an
HTTP call to DataBricks®to request the score. The RESTful HTTP API to provide the SMART-AI model
score is serviced using MLFlow. Parameters include UMLS dictionaries, model results, a flag for patient
identifiers, and other necessary attributes for individual-level predictions. The score is returned to Nebula
which is used to trigger a BPA if it meets the cutpoint for opioid misuse. For screen positives, the alert
provides the recommendation to the clinician for consultation with UW’s Addiction Medicine consult
service. The following were internal targets to meet the real-time needs of the end-user at the bedside: (1)
a throughput of 1000 notes per minute (<60ms each); (2) three nines (99.9%) availability — equivalent of

fewer than nine hours downtime annually; and (3) establishing an error rate threshold.

Component 6: Cybersecurity

Two principles of security were applied: (1) defense-in-depth and (2) zero-trust. Zero trust
architecture is outlined in the National Institute of Standards and Technology publication SP 800-207.1
To secure access between Azure Databricks® MLFlow and Epic®’s Nebula we employed an authentication
token and IP range restriction (Databricks® admin utility). The authentication token is issued via
Databrickse standard authentication. As a security best practice, we employed the Databricks service
principal and its Databricks® access token to give automated tools and systems access to Databricks®

resources.
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Figure 2. Opioid Misuse Screen Positive Clinical Decision Support with a Best Practice Alert
into the Electronic Health Record (2021 Epic Systems Corporation)
(@ This Patient is at High Risk for Opioid Misuse
This patient has been identified by our screening classifier for unhealthy opioid use using data from the clinical notes collected during routine
care. The goal of the BPA is to screen for unheaithy opioid use and identify patients at-risk for an opioid use disorder who may benefit from a
consultation with our Addiction Medicine care team. Opioid Misuse Project

Physician Champions: Majid Afshar, MD and Randy Brown, MD Questions or feedback on BPA?

m DoNotOrder & ADDICTIVE DISORDERS
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In an iterative design with feedback from end-users, a final best practice alert (BPA) was implemented for bedside care. The
BPA triggers upon opening a chart for a patient that meets the cutpoint predicted probability for opioid misuse from the NLP and
Deep Learning Model (SMART-AI).

Implementation Framework

The Consolidated Framework for Implementation Research (CFIR) informed the development of
the pre-implementation assessments and will be used during the rapid Plan-Do-Study-Act (PDSA)
cycles.t” Key stakeholder interviews were planned to better understand the context and identify barriers
and facilitators to implementing the BPA tool. Selected implementation strategies from the Expert
Recommendations for Implementing Change (ERIC) were selected to overcome barriers.'® For pilot
implementation, a regular cadence of meetings is planned with the implementation team to process,
reflect, and evaluate barriers to implementation and use of the BPA. Process evaluation will incorporate
interviews with providers and addiction specialists to understand what barriers still exist to utilizing and
acting on the BPA. During pilot implementation, we will collect and summarize clinical performance data
during PDSA cycles to guide clinicians and administrators to monitor, evaluate, and modify provider
behavior. Using the CFIR-ERIC matching tool*°, we will tailor relevant implementation strategies to
enhance provider uptake and use of the tool. Also, during the pilot phase, we will interview providers on
the hospital units beyond the pilot units to identify and explore their determinants to use of the BPA.
After a pilot implementation period of three months, we will optimize provider training, enhance

educational materials, and institute quality monitoring preparatory to hospital-wide rollout.
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Patient Outcomes Analysis and Power Calculation

The SMART-AI study intervention sample consists of all hospitalized patients who screen
positive for opioid misuse from the NLP CDS tool. The primary effectiveness measure is the percentage
of hospitalized patients in the NLP CDS intervention sample who are screened positive for opioid misuse
and who received an intervention by the inpatient addiction consult service. A control sample will be
derived by retrospectively applying the NLP CDS tool to all inpatient EHR records for the two years
before the present study initiation in January 2023. Hospitalized patients who would have screened
positive retrospectively under the NLP CDS tool will form the usual care control group.

The primary outcome is the percentage of inpatients who screened positive (or would have
screened positive) based on the NLP CDS tool who receive an addiction consult with any of the following
interventions: (1) receipt of opioid use intervention or motivational interviewing; (2) receipt of
medication-assisted treatment (MAT); and/or (3) referral to substance use disorder treatment. The primary
outcome will be reported as a percentage in the pre- and post-intervention periods and consists of
substance use screening and treatment service engagement for hospitalized patients screened for opioid
misuse. Secondary outcomes will include the 30-day unplanned hospital readmission rate. Criteria for
unplanned hospital readmissions were adopted from the Centers for Medicare & Medicaid Services.?

Hypothesis testing for intervention effects will be conducted using independent tests of the
difference in the proportion of patients receiving motivational interviewing, MAT, and/or referral to
substance use disorder treatment. The null hypothesis is that the proportion with the primary outcome is
lower (inferior) in the post-intervention period compared to pre-intervention, and the non-
inferiority/equivalence margin is M, i.e., Ho: p1- p2> M. The alternative one-tailed test for non-inferiority,
Hi: p1- p2< M, will be tested with the z-statistic.

In hospital-wide screening, we expect a prevalence of 3% of adult inpatients with opioid misuse
based on prior findings of hospital-wide analyses. A total sample size of 12500 patients with 10000 in the
pre-intervention 2-year period and 2500 in the post-intervention 6-month period have 85% power to

detect a difference of +0.75% in the post-intervention period (3.75%) compared to the pre-intervention
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period (3.0%) with a non-inferiority difference of -0.5% using a one-sided z-test with significance level =

0.025.

Cost-effectiveness analysis

Cost-effectiveness analysis estimates the incremental costs of the SMART-AI intervention (i.e.,
the added costs post-implementation of the SMART-AI tool in reference to usual care) and the
incremental effectiveness for the primary and secondary outcomes. The health economic evaluation will
determine incremental intervention costs by examining: (1) the opportunity start-up costs of implementing
the SMART-AI tool; (2) the incremental medical costs resulting from usual care for hospitalized patients
with opioid misuse versus SMART-AI automated screening supported care costs; and (3) the ongoing
costs of administering and maintaining the SMART-AI tool.

The start-up costs of establishing SMART-AI substance use screening care will include the costs
associated with developing and implementing the NLP CDS tool: (1) the cost of supporting the NLP and
machine learning components and building the BPA in the EHR; and (2) training the health professionals
on tool use. The incremental costs between usual care and SMART-AI automated screening supported
care will be determined by calculating medical care costs before and after the implementation of the
SMART-AI. Medical costs associated with the hospitalization stay and all subsequent medical costs for
the 30 days following hospital admission for the pre- and post-SMART-AI intervention period will be
derived from hospital billing records and presented from the single-payer (a health system) perspective.

The following three-pronged approach will be applied to identify the administration and
maintenance costs associated with SMART-AI screening workflow changes introduced by the NLP CDS
tool: (1) conducting in-depth interviews with hospital administrators; (2) performing activity-based
observations of healthcare personnel who use SMART-AI; and (3) querying the clinician messaging
system in the EHR. Average hospital compensation rates will be used for valuing healthcare personnel

time costs. Research-related costs will be excluded.
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Analytical approach to cost-effectiveness analysis

Cost-effectiveness analysis is reported in terms of the incremental cost-effectiveness ratio (ICER)
per additional patient who receives substance use treatment. For this study, the ICER will be calculated as
the difference between pre-implementation and post-implementation intervention costs divided by the
difference between pre-implementation and post-implementation intervention effectiveness as measured
by rates of patient engagement with substance use treatment services (i.e., primary outcome) and 30-day
hospital readmission (i.e., secondary outcome).

The usual care control group and SMART-ALI intervention group will each be characterized by
the pathway probabilities of substance use treatment receipt and meeting the primary outcome. The
pathway probabilities of patients’ engagement with inpatient substance use consult, brief
intervention/motivational interviewing (MI), and referral to substance use treatment for both study groups
will result in 8 treatment combinations based on (Addiction consult/MI/MAT/Referral x pre-/post-
implementation). The differential costs pre- and post-SMART-AI intervention will be determined as the
difference in the weighted sum of the individual pathway costs, using the pathway probabilities as
weights for the intervention and control groups. Effectiveness will be determined as the difference in rates
of hospitalized patients engaging with substance use disorder treatment pre- and post-implementation of
the SMART-AI automated screening aided care for the intervention and control groups. The ICER will be

calculated as follows:

(X (Intervention Group Costs) — Y,(Control Group Costs))

ICER =
(X (Intervention Group Treatment Rates) — Y.(Control Group Treatment Rates))

Sensitivity analyses will introduce uncertainty in substance use treatment receipt rates and costs
for the intervention and control groups. Monte Carlo-based simulation estimation will use the rates of

substance use treatment service uptake observed in the intervention and control groups as a reference to
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simulate a cohort of post-implementation hospitalized patients and a cohort of usual care hospitalized
patients. The ICER per additional individual who receives an inpatient substance use consult, brief
intervention, M1, MAT, or referral to substance use treatment will be calculated by drawing a random
sample with replacement from the observed distributions for health-care costs (Ucost) and substance use
treatment services (W) for intervention and control groups. This process will then be repeated (N=1000)
to produce bootstrap estimates of the 95% confidence intervals for the ICER per additional individual
who receives an inpatient substance use consult, brief intervention, M1, MAT, or referral to substance use
treatment. These probabilistic sensitivity analyses will estimate the elasticity of the differential cost per

patient relative to differential substance use treatment service rates for intervention and control groups.

RESULTS

Early-stage investigations were performed to assess the Al system's predictive performance in a
retrospective setting and evaluate the human factors surrounding the BPA before initiating the quasi-
experimental clinical study. During the retrospective review of SMART-AI at UW Health, a random
sample of 100 adult patient encounters (with an over-sampling of patients with ICD codes for substance
use) in 2021 was extracted and reviewed by an inpatient physician and clinical informatics expert.
SMART-AI performed similarly to prior published reports for screening opioid misuse with a sensitivity
of 93% (95% CI 66%-99%) and specificity of 92% (95% CI 84%-96%).

Before the deployment of SMART-AI, approvals were received across hospital committees for
inpatient operations, EHR super users, clinical decision support, and nursing documentation. The
proposal protocol was also reviewed by the Center for Clinical Knowledge Management to confirm no
competing interests or roles with existing protocols for screening substance use conditions existed in the
health system. In addition, SMART-AI was reviewed by UW’s Clinical Al and Predictive Analytics
Committee. A model review form providing details on the clinical problem, model value proposition,

model description, proposed workflow integration, internal validation, and monitoring strategy (including
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fairness and equity) was reviewed and approved by a multidisciplinary committee of clinicians,
informaticians, bioethicists, executive leadership, and data scientists. The planned workflow from

introduction to implementation is depicted in Figure 3.

Figure 3. Flow Diagram for the Process to Bedside Implementation and Evaluation

Site validation of SMART-AI on
retrospective cohort of hospitalized
patients

Submission of model review form to hospital's Clinical Al and
Predictive Analytics committee

Iterative human-centered design of operational workflow
elements with feedback from clinicians

l
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i
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strategy and evaluation plan

i

Implementation and data collection for outcomes and
cost-effectiveness analysis

i

Plan-Do-Study-Act cycles for improved adoption and
utilization of the workflow

|

v

Ongoing monitoring of model performance by Clinical Al and
Predictive Analytics committee

An end-user interview guide and survey were developed to examine the user acceptability of the

BPA. Open-ended questions were asked about barriers and facilitators to using the BPA. Five interviews
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were conducted (three nurse practitioners, one family medicine resident, and one surgical attending), and
the responses led the production team to create an educational flyer, modify the BPA with more details
and options for consultation refusal, and modify when and where the BPA would trigger. Figure 2 is the
final production version of the BPA for deployment. Dissemination efforts included Grand Round
presentations to the Addiction Medicine Division, Department of Family Medicine, and notification via
the hospital’s weekly electronic newsletter.

The longest delay in operational workflow and architecture was receiving cybersecurity
approvals, especially with data exchange of protected health information between the Microsoft® and
Epic® cloud vendors. An additional six months of delays occurred to achieve acceptable security monitors

and checks. The Go-live of SMART-AI into the EHR was scheduled for January 2023.

DISCUSSION

The digital era in medicine continues to grow exponentially in both the quantity of unstructured
data collected in the EHR and the number of prediction models developed for detection, diagnostic,
prognostic, and therapeutic guidance. In parallel, the clinical NLP field has grown in its capabilities with
the advent of transformer architectures and more affordable and efficient cognitive computing of big
data.?! However, a major bottleneck remains in the successful implementation of NLP and deep learning
models into clinical practice. Much of the progress in NLP has focused on information retrieval and
extraction?? but the application of these methods at scale with the combination of software developers and
operations (DevOps) remains challenging at healthcare institutions. We offer one of the first protocols
that detail the components for a real-time NLP-driven CDS system for healthcare delivery at the bedside.
We further detail an implementation framework with human-centered design principles and a planned
iterative process to evaluate the cost-effectiveness and health outcomes to improve screening in opioid
misuse.?

Applied clinical NLP has predominantly remained a rule-based approach but statistical machine-

learning models are now the leading method in the research literature.!* Few vendors that provide NLP
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services rely entirely on machine learning and a gap remains in effectively applying NLP models into
bedside EHRs that go beyond disease detection with explicit, keyword mentions.* 2* Several barriers exist
with neural language models, including the need to remove PHI so the trained models may be shared and
the computational requirements to run complex deep learning models in a production environment.?® We
offer solutions for both approaches using a feature engineering approach to map free text to coded
vocabulary and describe a large computing infrastructure with a connection between a data science cloud
platform and the electronic health record to support direct data feeds into any machine learning model.
The NLP CDS pipeline accomplishes efficiencies in data standardization and scalability? for successful
implementation and is extensible to other NLP engines. The benefit of augmented intelligence remains
unknown and is the next step with our healthcare outcomes and cost-effectiveness analysis in a clinical
study.

Our implementation framework is largely guided by a team of implementation scientists,
supported by the university’s Clinical and Translational Science Award (CTSA). We leveraged our
CTSA’s Dissemination and Implementation (D&I) Launchpad to help bridge the gap between evidence-
based research and practice.?” The D&I Launchpad works to accelerate the pace of disseminating research
findings and increase the adoption and implementation of effective interventions, leading to sustainable
practice and policy changes. They employ strategies from implementation science, design thinking, and
human-centered engineering for better integration of Al technologies in health systems. As part of the
pre-implementation phase, we assessed contextual factors that may impact implementation by engaging
both adopters, who are the decision-makers, and end-users, who are the main implementers, of the tool.?
We performed qualitative interviews with end-users to evaluate the need for the tool and the BPA design.
We involved adopters early in the process to inform the intervention/implementation process through
consultations during the design, feasibility testing, and implementation phases. An iterative process
ensued to address constraints and contextual factors that affect adoption and implementation in our health

system.
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During pre-implementation, the project team clarified roles with project management with an
assessment for the readiness of the clinical workflow approved through hospital committee meetings and
individual interviews with end-users. Our health system is an early adopter of Al governance with a
review process similar to other health systems.?® 3 The Clinical Al and Predictive Analytics committee
follows the minimum information about clinical artificial intelligence modeling (MI-CLAIM Checklist).3
The offline validation of our model incorporated principles from multiple reporting guidelines on
prediction models, bias and fairness, and validation.3>32 Clinical evaluation after the go-live of SMART-
Al will follow the reporting guideline for the early-stage clinical evaluation of decision support systems
driven by artificial intelligence (DECIDE-AI).* During implementation, reviews by the Clinical Al and
Predictive Analytics committee will include quarterly evaluations for the sustained effectiveness of the
tool, audit its fairness across parity groups, and examine for alert fatigue.

The build of an enterprise-wide Al infrastructure for data-driven CDS is an important feature of a
data-driven Learning Health System (LHS). At UW, LHS activities dating back to 2013 established an
evidence-based framework with a series of organizational-level quality improvement (QI) interventions.3*
In 2020, UW Health reaffirmed its strategic plan embedding discovery and innovation as well as
diversity, equity, and inclusion in clinical care. Successful implementation included coaching staff and
administrative leaders to work in PDSA with lean management to get the problem, analysis, corrective
actions, and action plan down on a single sheet of large (A3) paper, also known as “A3” thinking.®® A
rapid PDSA cycle is important in the advent of Al-driven interventions that require rigorous evaluation
for implementation or de-implementation.

The deployment of medical Al systems in routine clinical care presents an important yet
unfulfilled opportunity®, and our protocol aims to close the gap in the implementation of Al-driven
CDS.?" Our protocol implementation for an enterprise-wide production environment of an Al opioid
misuse screener provides a model for other health systems to use to bring NLP models into practice for
CDS. We highlight opportunities to leverage the expertise of our Applied Data Science team to employ

the open-source tools for feature engineering and model development inside a larger infrastructure with
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vendor support of hardware and software dependencies. Given the sensitive nature of healthcare data, the
biggest challenge remains to ensure high standards for cybersecurity and meet the privacy requirements

for protecting patient data.

DATA AVAILABILITY

The raw EHR data are available upon request due to ethical and legal restrictions imposed by the
University of Wisconsin-Madison Institutional Review Board. The original data derives from the
institution’s EHR and contains patients’ protected health information (PHI). Data are available
from the University of Wisconsin Health Systems for researchers who meet the criteria for
access to confidential data and have a data usage agreement with the health system. Only the
final trained model that is fully de-identified with a vocabulary of mapped concept unique

identifiers is open-source and available at: https://github.com/Rush-SubstanceUse-

AlLab/SMART-AI. Our de-identification approach has been previously described.®
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